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Sources of Error

f : Cn×n → Cn×n.
Want to compute f (A) but given A +∆A not A.

∆A may come from

Rounding errors in storing A.
Measurement errors.
Errors from an earlier computation.

Photocopying errors!
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Photocopier

http://en.wikipedia.org/wiki/Photocopier

“Most current photocopiers use a technology called
xerography, a dry process that uses electrostatic
charges on a light sensitive photoreceptor to first attract
and then transfer toner particles (a powder) onto paper
in the form of an image”

“There is an increasing trend for new photocopiers to
adopt digital technology, thus replacing the older
analog technology. With digital copying, the copier
effectively consists of an integrated scanner and laser
printer.”
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Xerox WorkCentre 7535, 7556

August 2013: German computer scientist David Kriesel
discovered the machines often change “6” to “8”.

Jbig2 compression algorithm implicated.
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Maxim

Every code for solving a numerical problem should return
an error estimate or bound with the computed result.
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Conditioning of f (x)

Scalar function f ∈ C2, and y = f (x), y +∆y = f (x +∆x).
Then

∆y
y

=

(
xf ′(x)
f (x)

)
∆x
x

+ O
(
∆x2).

The relative condition number

c(x) =
∣∣∣∣xf ′(x)

f (x)

∣∣∣∣ .

Condition number of the condition number: assuming
xf ′(x) > 0 and f (x) > 0,

c[2](x) :=
∣∣∣∣xc′(x)

c(x)

∣∣∣∣ = ∣∣∣∣1 + x
(

f ′′(x)
f ′(x)

− f ′(x)
f (x)

)∣∣∣∣ .
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Fréchet Derivative

Fréchet derivative of f : Cn×n → Cn×n at X ∈ Cn×n

A linear mapping Lf : Cn×n → Cn×n s.t. for all E ∈ Cn×n

f (X + E)− f (X )− Lf (X ,E) = o(‖E‖).

Examples:

(X + E)2 − X 2 = XE + EX + E2 ⇒ Lx2(X ,E) = XE + EX .

(X + E)−1 − X−1 = −X−1EX−1 + O(E2)

⇒ Lx−1(X ,E) = −X−1EX−1.

Scalar case: Lf (x ,e) = f (′x)e.
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Gâteaux Derivative

Gâteaux derivative of matrix function f at A in direction E :

Gf (A,E) = lim
ε→0

f (A + εE)− f (A)
ε

.

Weaker notion of differentiability.
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Applications of Fréchet Derivative

Computation of correlated choice probabilities (2013),

registration of MRI images (2013),

Markov models applied to cancer data (2013),

matrix geometric mean computation (2012),

model reduction (2012),

first and second Fréchet derivative in Halley’s method
on Banach space (2003).
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Componentwise Sensitivity (1)

Let E = eieT
j . Then

lim
ε→0

f (X + εeieT
j )− f (X )

ε
= Lf (X ,eieT

j ).

(Lf (X ,eieT
j ))rs measures the sensitivity of f (X )rs to

perturbations in aij .
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Componentwise Sensitivity (2)

Since Lf is a linear operator,

vec(Lf (A,E)) = Kf (A)vec(E)

where Kf (A) ∈ Cn2×n2 is the Kronecker form of the Fréchet
derivative.

a11 a21 a31 . . . ann

f11

f21

f31
...

fnn

Kf (A) ≡
Lf (A,eieT

j )
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Condition Number

condabs(f ,A) = lim
ε→0

sup
‖E‖≤ε

‖f (A + E)− f (A)‖
ε

.

‖Lf (A)‖ := max
E 6=0

‖Lf (A,E)‖
‖E‖

.

Lemma

condabs(f ,A) = ‖Lf (A)‖.

Scalar case: condabs(f , x) = |f ′(x)|.
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Relative Condition Number

condrel(f ,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f (A + E)− f (A)‖
ε‖f (A)‖

= condabs(f ,A)
‖A‖
‖f (A)‖

.
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Computing Lf : Methods for Specific f

exponential Kenney & Laub (1998),
Al-Mohy & H (2009)

logarithm Al-Mohy, H & Relton (2013)
fractional power H & Lin (2013)

Latter three methods obtained by differentiating
alg for f .
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Computing Lf : Via 2n × 2n Matrix

Theorem (Mathias, 1996)
If f is 2n − 1 times ctsly diffble,

f
([

A E
0 A

])
=

[
f (A) Lf (A,E)

0 f (A)

]
.

Note that Lf (A, αE) = αLf (A,E), but α may effect alg
used for the evaluation.
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Computing Lf : Complex Step

Assume that f : Rn×n → Rn×n and A,E ∈ Rn×n. Then

f (A + i hE)− f (A)− i hLf (A,E) = o(h).

Thus (Al-Mohy & H, 2010)

f (A) ≈ Re f (A + i hE),

Lf (A,E) ≈ Im
f (A + i hE)

h
.

Errors O(h2).
h not restricted by fl pt arith considerations. Can take
h = 10−100.
f alg must not employ complex arith.
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Condition Estimation (1)

Since Lf is a linear operator,

vec(Lf (A,E)) = Kf (A)vec(E)

where Kf (A) ∈ Cn2×n2 is the Kronecker form of the Fréchet
derivative.

Can show

‖Lf (A)‖F = ‖Kf (A)‖2,

‖Lf (A)‖1

n
≤ ‖Kf (A)‖1 ≤ n‖Lf (A)‖1.

So problem reduces to matrix norm estimation.
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Condition Estimation (2)

Use the block 1-norm estimator of H & Tisseur (2000).
For ‖B‖1 it needs Bx and B∗y for several x and y .
Let vec(X ) = x . Then Kf (A)x = vec(Lf (A,X )).

Theorem (H & Lin, 2013)

Let f ∈ C2n−1 and and f̃ (z) := f (z).
If f̃ (A)∗ = f̃ (A∗) for all A ∈ Cn×n then
Kf (A)∗x = vec(Lf̃ (A,X

∗)∗), where vec(X ) = x.

f̃ = f for most functions of interest.
f̃ = f ⇒ f̃ (A∗)∗ = f̃ (A∗).
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Software for 1-Norm Estimator

MATLAB: normest1.

NAG library: F04YD, F04ZD, Mark 24.

Python:
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Python: SciPy 0.13.0

linalg/_expm_frechet.py

linalg/_expm_multiply.py

linalg/_sqrtm.py (blocked)
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Higher Derivatives

Needed for
level-2 condition number,
understanding accuracy of algorithms for computing
Lf (A,E).

Second Fréchet derivative L(2)
f (A,E1,E2) is unique

mutlilinear function of E1,E2 satisfying

Lf (A+E2,E1)− Lf (A,E1)− L(2)
f (A,E1,E2) = o(‖E2‖).

k th Fréchet derivative defined by

L(k−1)
f (A+Ek ,E1, . . . ,Ek−1)− L(k−1)

f (A,E1, . . . ,Ek−1)

− L(k)
f (A,E1, . . . ,Ek ) = o(‖Ek‖).
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Existing Literature

Large literature on Fréchet derivatives in Banach
space.
Need specialized results for matrix functions.
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Existence & Continuity of Fréchet Derivatives

D = open subset of C.
Cn×n(D,p) = matrices with spectrum in D and largest
Jordan block of size p.

Theorem (H & Relton, 2013)

Let f be 2kp − 1 times continuously differentiable on D.
Then for A ∈ Cn×n(D,p) the kth Fréchet derivative L(k)

f (A)
exists and L(k)

f (A,E1, . . . ,Ek) is continuous in A and
E1, . . . ,Ek ∈ Cn×n.

Proof uses Gâteaux derivative.
k = 1: Mathias (1996).
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Properties

Assume from now on conditions of theorem satisfied.
Then the Ei are interchangeable:

L(2)
f (A,E1,E2) = L(2)

f (A,E2,E1).

Indeed

L(k)
f (A,E1, . . . ,Ek) =

∂

∂s1 · · · ∂sk

∣∣∣∣
s=0

f (A+ s1E1 + · · ·+ skEk).
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The Setup

Wish to estimate norms and condition numbers.
Knowing how to evaluate exact quantities helps
develop and test the estimates.
In practice we only ever work with n × n matrices.

Nick Higham Matrix Function Condition Numbers 25 / 33



How to Compute L(2)
f

X1 =
[

A E1
0 A

]
. Know f (X1) =

[
f (A) Lf (A,E)

0 f (A)

]
.

Let

X2 = I2 ⊗ X1 +

[
0 1
0 0

]
⊗ E2 =


A E1 E2 0
0 A 0 E2

0 0 A E1

0 0 0 A

 .
Then

f (X2) =


f (A) Lf (A,E1) Lf (A,E2) L(2)

f (A,E1,E2)
0 f (A) 0 Lf (A,E2)
0 0 f (A) Lf (A,E1)
0 0 0 f (A)

 .
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How to Compute L(k)
f

Define Xi ∈ C2i n×2i n by

Xi = I2 ⊗ Xi−1 +

[
0 1
0 0

]
⊗ I2i−1 ⊗ Ei , X0 = A.

Theorem (H & Relton, 2013)

The (1,n) block of f (Xk) is L(k)
f (A,E1, . . . ,Ek).
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Level-2 Condition Number

“Condition number of the condition number”.

Demmel (1987) showed that for

matrix inversion (and D. J. Higham, 1995),
the eigenproblem,
polynomial zero-finding,
pole assignment in linear control problems

(relative) level-1 and level-2 cond no’s are equivalent.

Cheung & Cucker (2005) show same holds when
“condition number = 1 / distance to nearest ill-posed
problem”.
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Level-2 Condition Number

cond[2]
abs(f ,A) = lim

ε→0
sup
‖Z‖≤ε

|condabs(f ,A + Z )− condabs(f ,A)|
ε

.

Theorem (H & Relton, 2013)

cond[2]
abs(f ,A) ≤ ‖K

(2)
f (A)‖2,

for a Kronecker matrix K (2)
f (A) ∈ Cn4×n2.
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Level-2 Condition Number: Exponential

Theorem
Let A ∈ Cn×n be normal. Then in the 2-norm

cond[2]
abs(exp,A) = condabs(exp,A).

Theorem
Let A ∈ Cn×n be normal. Then in the 2-norm

1 ≤ cond[2]
rel(exp,A) ≤ 2condrel(exp,A) + 1.
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Level-2 Condition Number: Matrix Inverse

Theorem

For nonsingular A ∈ Cn×n,

cond[2]
abs(x

−1,A) = 2condabs(x−1,A)3/2.

Latter is what is expected from the scalar case:
f (x) = x−1 ⇒ |f ′′| = |2(f ′)3/2|.
Have experimental evidence that matrix case can be
similar to scalar case.
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Condition Number of the Fréchet Derivative

condabs(Lf ,A,E) = lim
ε→0

sup
‖∆A‖≤ε
‖∆E‖≤ε

‖Lf (A +∆A,E +∆E)− Lf (A,E)‖
ε

.

Theorem (H & Relton, 2013)
We have

condabs(f ,A) ≤ condabs(Lf ,A,E)

≤ max
‖Z‖=1

‖L(2)
f (A,E ,Z )‖+ condabs(f ,A).

We have developed method to estimate the bounds.
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Summary and Open Questions

Showed that given an O(n3) flop method for f :

Computing L(k)
f (A,E) costs O(8kn3) flops.

Computing K (k)
f (A) costs O(8kn3+2k) flops.

Cost of estimates is O(n3) flops, given an O(n3) flop
method for Lf .

Open questions about relation between level-1 and
level-2 condition numbers.

How can we exploit the symmetry of
L(k)

f (E1,E2, . . . ,Ek) in the Ei?

Looking at componentwise condition numbers.
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