ABSTRACT

Given a toric manifold (M^{2n}, P^n) , with P^n having m facets Then for every sequence of positive integers $J = (j_1, \ldots, j_m)$ we construct a toric manifold denoted by (M(J), P(J)), where if $d(J) = \sum j_i$, (M(J), P(J)) has dimension (2d(J) - 2m + 2n, d(J) - m + n). The original toric manifold corresponds to the sequence (1, 1, ..., 1) and is naturally embedded in M(J). The manifold M^{2n} comes with a locally standard action of the torus T^n and with a characteristic epimorphism $\lambda: T^m \to T^n$. A presentation of the cohomology ring $H^*(M(J))$ is as the quotient of $H^*(BT^m)$ by the sum of two ideals. One is the J-weighted Stanley-Reisner face ideal of P^n and the other is the "linear" ideal of M^{2n} , generated by the image of $H^2(BT^n)$ in $H^2(BT^m)$ under $B^*(\lambda)$.