Realisation of cycles by aspherical manifolds

Alexander A. Gaifullin

Moscow State Universiity

N. Steenrod's problem on realisation of cycles.

Suppose X is a compact polyhedron, $z \in H_{n}(X ; \mathbb{Z})$ is a homology class.

Do there exist an oriented closed manifold N^{n} and a continuous mapping $f: N^{n} \rightarrow X$ such that $f_{*}\left[N^{n}\right]=z ?$
Theorem (R. Thom, 1954). For a compact polyhedron X and a homology class $z \in H_{n}(X ; \mathbb{Z})$ there is a nonzero integer $k=k(n)$ such that the class $k z$ is realisable in sense of Steenrod.

For $n \leq 6$ all homology classes are realisable.
For $n \geq 7$ there are non-realisable classes.

R. Thom's approach

For a compact polyhedron X and a positive integer n there is an embedding $i: X \hookrightarrow Q^{q}$ such that

- Q^{q} is an oriented closed manifold;
- $i_{*}: \pi_{j}(X) \rightarrow \pi_{j}\left(Q^{q}\right)$ is an isomorphism for $j \leq n$.

For q sufficiently large the realisation of cycles of X in sense of N . Steenrod is equivalent to the realisation of cycles of Q^{q} by oriented submanifolds.

By R. Thom's transversality theorem a homology class $z \in H_{n}(X ; \mathbb{Z})$ is realisable by a submanifold \Leftrightarrow there is a mapping $g: Q^{q} \rightarrow M S O(q-n)$ such that $g^{*} \iota=D z$.

There is a mapping
$M S O(k) \rightarrow K(\mathbb{Z}, k) \times K(\mathbb{Z}, k+4) \times$

$$
K(\mathbb{Z}, k+8)^{2} \times \ldots
$$

that induces an isomorphism of rational homology groups.

Explicit realisation of homology classes

Problem 1. Given a singular simplicial cycle $\xi \in C_{n}(X ; \mathbb{Z})$ construct explicitly a manifold N^{n} and a continuous mapping $f: N^{n} \rightarrow X$ realising $k[\xi]$ for a nonzero integer k.

Problem 2. Describe a class \mathcal{M}_{n} of oriented closed n-dimensional manifolds such that every n-dimensional homology class of every compact polyhedron can be realised with a multiplicity by an image of a manifold belonging to \mathcal{M}_{n}.

Example. No multiple of the fundamental class of a torus T^{n} can be realised by an image of a sphere S^{n}.

Manifold of isospectral symmetric tridiagonal matrices

$$
L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \ldots & 0 \\
b_{1} & a_{2} & b_{2} & \ldots & 0 \\
0 & b_{2} & a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & a_{n+1}
\end{array}\right), \quad a_{i}, b_{i} \in \mathbb{R}
$$

M^{n} is the manifold of all matrices L with a fixed spectrum $\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n+1}$.

Toda flow

$$
\begin{gathered}
B(L)=\left(\begin{array}{ccccc}
0 & b_{1} & 0 & \ldots & 0 \\
-b_{1} & 0 & b_{2} & \ldots & 0 \\
0 & -b_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 0
\end{array}\right) \\
\frac{d L}{d t}=[B(L), L]
\end{gathered}
$$

Main theorem

Theorem. Every n-dimensional integral homology class of every compact polyhedron can be realised with some multiplicity by a continuous image of a finite-fold covering of the manifold M^{n}.

Theorem (C. Tomei, 1984). M^{n} is aspherical, that is, $\pi_{j}\left(M^{n}\right)=0$ for $j>1$.
Corollary. Every integral homology class of every connected compact polyhedron can be realised by a continuous image of an aspherical manifold.

Permutahedra.

The permutahedron Π^{n} is the convex hull of the points obtained by permutations of coordinates of the point $(1,2, \ldots, n+1) \in \mathbb{R}^{n+1}$.

Permutahedra.

The permutahedron Π^{n} is the convex hull of the points obtained by permutations of coordinates of the point $(1,2, \ldots, n+1) \in \mathbb{R}^{n+1}$.

Permutahedra.

The permutahedron Π^{n} is the convex hull of the points obtained by permutations of coordinates of the point $(1,2, \ldots, n+1) \in \mathbb{R}^{n+1}$.

Permutahedra.

The permutahedron Π^{n} is the convex hull of the points obtained by permutations of coordinates of the point $(1,2, \ldots, n+1) \in \mathbb{R}^{n+1}$.

Permutahedra.

The permutahedron Π^{n} is the convex hull of the points obtained by permutations of coordinates of the point $(1,2, \ldots, n+1) \in \mathbb{R}^{n+1}$.

Facets of the permutahedron

$$
\begin{gathered}
F_{\omega}: \quad \sum_{i \in \omega} x_{i}=\frac{|\omega|(2 n+3-|\omega|)}{2} \\
\\
\operatorname{dim}_{\omega_{1}} \cap F_{\omega_{2}} \neq \emptyset \Leftrightarrow|\omega|-1
\end{gathered}
$$

Gluing manifolds from permutahedra

Suppose V is a finite set and $\Phi_{\omega}: V \rightarrow V$ are involutions without fixed points such that

- $F_{\omega_{1}} \circ F_{\omega_{2}}=F_{\omega_{2}} \circ F_{\omega_{1}}$ whenever $\omega_{1} \subset \omega_{2}$;
- there is a mapping $p: V \rightarrow \mathbb{Z}_{2}^{n}$ such that $p\left(\Phi_{\omega}(v)\right)=p(v)+e_{|\omega|}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the basis of \mathbb{Z}_{2}^{n}.

Take a permutahedron Π_{v}^{n} for each $v \in V$ and glue together the permutahedra Π_{v}^{n} and $\Pi_{\Phi_{\omega}(v)}^{n}$ along their facets F_{ω} for every v and ω.

Gluing manifolds from permutahedra

Suppose V is a finite set and $\Phi_{\omega}: V \rightarrow V$ are involutions without fixed points such that

- $F_{\omega_{1}} \circ F_{\omega_{2}}=F_{\omega_{2}} \circ F_{\omega_{1}}$ whenever $\omega_{1} \subset \omega_{2}$;
- there is a mapping $p: V \rightarrow \mathbb{Z}_{2}^{n}$ such that $p\left(\Phi_{\omega}(v)\right)=p(v)+e_{|\omega|}$, where $\left(e_{1}, \ldots, e_{n}\right)$ is the basis of \mathbb{Z}_{2}^{n}.

Take a permutahedron Π_{v}^{n} for each $v \in V$ and glue together the permutahedra Π_{v}^{n} and $\Pi_{\Phi_{\omega}(v)}^{n}$ along their facets F_{ω} for every v and ω.

The manifold obtained is denoted by $M^{n}\left(V,\left\{\Phi_{\omega}\right\}\right)$. It is canonically smoothable.

Main example

Suppose $V=\mathbb{Z}_{2}^{n}$, $\Phi_{\omega}(g)=g+e_{|\omega|}$.

Then $M^{n}\left(V,\left\{\Phi_{\omega}\right\}\right)$ is diffeomorphic to the manifold M^{n} of isospectral symmetric tridiagonal real $(n+1) \times(n+1)$ matrices. (C. Tomei, 1984)

For arbitrary V and Φ_{ω} the manifold $M^{n}\left(V,\left\{\Phi_{\omega}\right\}\right)$ is a finite-fold covering of M^{n}.

Let $M_{\varepsilon_{1}, \ldots, \varepsilon_{n}}^{n}, \varepsilon_{i}= \pm 1$, be the set of all matrices

$$
L=\left(\begin{array}{ccccc}
a_{1} & b_{1} & 0 & \ldots & 0 \\
b_{1} & a_{2} & b_{2} & \ldots & 0 \\
0 & b_{2} & a_{3} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & a_{n+1}
\end{array}\right), \quad a_{i}, b_{i} \in \mathbb{R}
$$

with fixed spectrum $\lambda_{1}<\ldots<\lambda_{n+1}$ such that $\varepsilon_{i} b_{i}>0$ for all i. (J. Moser.)
$M_{\varepsilon_{1}, \ldots, \varepsilon_{n}}^{n}$ is the integral manifold of the Toda flow. Since the Toda flow is integrable, it follows from Liouville's theorem that $M_{\varepsilon_{1}, \ldots, \varepsilon_{n}}^{n} \approx \mathbb{R}^{n}$.
The closure $\overline{M_{\varepsilon_{1}, \ldots, \varepsilon_{n}}^{n}}$ is a permutahedron. The facet F_{ω} consists of those matrices L for which $b_{|\omega|}=0$, the first block of L has eigenvalues $\lambda_{i}, i \in \omega$, and the second block has eigenvalues $\lambda_{i}, i \notin \omega$.

Pseudomanifolds

An n-dimensional pseudomanifold is a simplicial complex such that

- every simplex is contained in an n-dimensional simplex;
- every $(n-1)$-dimensional simplex is contained in exactly two n-dimensional simplices.
Example. ΣN^{n-1}.
Obviously, any homology class $z \in H_{n}(X ; \mathbb{Z})$ can be represented by an image of a compact oriented pseudomanifold Z under a continuous mapping $h: Z \rightarrow X$.
Therefore the problem of realisation with multiplicity of an arbitrary homology class reduces to the problem of realisation with multiplicity of the fundamental class of a pseudomanifold Z.

Colourings of simplices of the barycentric subdivision Z^{\prime}

- A regular colouring of vertices into $n+1$ colours. The barycenter of a k-dimensional simplex is coloured in colour $k+1$.
- A checkerboard colouring of n-dimensional simplices.

Sets \mathcal{P}_{ω}.

Suppose U is the set of n-dimensional simplices of Z. Let \mathcal{P}_{ω} be the set of all involutions $\Lambda: U \rightarrow U$ such that

- Λ inverses the checkerboard colouring;
- for every $\sigma \in U$ the simplices σ and $\Lambda(\sigma)$ have a common face of type Δ_{ω}.

$$
\begin{gathered}
V=U \times \prod_{\omega} \mathcal{P}_{\omega} \times \mathbb{Z}_{2}^{n}, \\
\Phi_{\omega}\left(\sigma,\left(\Lambda_{\gamma}\right)_{\gamma}, g\right)=\left(\Lambda_{\omega}(\sigma),\left(\widetilde{\Lambda}_{\gamma}\right)_{\gamma}, g+e_{|\omega|}\right), \\
\widetilde{\Lambda}_{\gamma}=\left\{\begin{array}{cl}
\Lambda_{\omega} \circ \Lambda_{\gamma} \circ \Lambda_{\omega} & \text { if } \gamma \subset \omega, \\
\Lambda_{\gamma} & \text { if } \gamma \not \subset \omega .
\end{array}\right.
\end{gathered}
$$

Take the manifold $M^{n}\left(V,\left\{\Phi_{\omega}\right\}\right)$ and map the permutahedron corresponding to the triple $\left(\sigma,\left(\Lambda_{\omega}\right)_{\omega}, g\right)$ onto the simplex σ so that the facet F_{ω} is mapped onto the face Δ_{ω}.

Thus we obtain a well-defined mapping

$$
f: M^{n}\left(V,\left\{\Phi_{\omega}\right\}\right) \rightarrow Z
$$

that realises the fundamental class $[Z]$ with multiplicity

$$
2^{n} \prod\left|\mathcal{P}_{\omega}\right|
$$

ω

