
Realisation of cycles by aspherical manifolds

Alexander A. Gaifullin

Moscow State Universiity



N. Steenrod’s problem on realisation of
cycles.

Suppose X is a compact polyhedron, z ∈ Hn(X ; Z) is
a homology class.

Do there exist an oriented closed manifold Nn and
a continuous mapping f : Nn → X such that
f∗[Nn] = z?

Theorem (R. Thom, 1954). For a compact poly-
hedron X and a homology class z ∈ Hn(X ; Z) there
is a nonzero integer k = k(n) such that the class kz is
realisable in sense of Steenrod.

For n ≤ 6 all homology classes are realisable.

For n ≥ 7 there are non-realisable classes.



R. Thom’s approach

For a compact polyhedron X and a positive integer n
there is an embedding i : X ↪→ Qq such that

•Qq is an oriented closed manifold;
• i∗ : πj(X) → πj(Q

q) is an isomorphism for j ≤ n.

For q sufficiently large the realisation of cycles of X in
sense of N. Steenrod is equivalent to the realisation of
cycles of Qq by oriented submanifolds.

By R. Thom’s transversality theorem a homology class
z ∈ Hn(X ; Z) is realisable by a submanifold ⇔ there is
a mapping g : Qq → MSO(q−n) such that g∗ι = Dz.



There is a mapping

MSO(k) → K(Z, k)×K(Z, k + 4)×
K(Z, k + 8)2 × . . .

that induces an isomorphism of rational homology
groups.



Explicit realisation of homology classes

Problem 1. Given a singular simplicial cycle
ξ ∈ Cn(X ; Z) construct explicitly a manifold Nn and
a continuous mapping f : Nn → X realising k[ξ] for a
nonzero integer k.

Problem 2. Describe a class Mn of oriented closed
n-dimensional manifolds such that every n-dimensional
homology class of every compact polyhedron can be re-
alised with a multiplicity by an image of a manifold be-
longing to Mn.

Example. No multiple of the fundamental class of a
torus Tn can be realised by an image of a sphere Sn.



Manifold of isospectral symmetric
tridiagonal matrices

L =


a1 b1 0 . . . 0
b1 a2 b2 . . . 0
0 b2 a3 . . . 0
... ... ... . . . ...
0 0 0 . . . an+1

 , ai, bi ∈ R

Mn is the manifold of all matrices L with a fixed spec-
trum λ1 < λ2 < . . . < λn+1.



Toda flow

B(L) =


0 b1 0 . . . 0
−b1 0 b2 . . . 0
0 −b2 0 . . . 0
... ... ... . . . ...
0 0 0 . . . 0


dL

dt
= [B(L), L]



Main theorem

Theorem. Every n-dimensional integral homology
class of every compact polyhedron can be realised with
some multiplicity by a continuous image of a finite-fold
covering of the manifold Mn.

Theorem (C. Tomei, 1984). Mn is aspherical, that
is, πj(M

n) = 0 for j > 1.

Corollary. Every integral homology class of every con-
nected compact polyhedron can be realised by a contin-
uous image of an aspherical manifold.



Permutahedra.

The permutahedron Πn is the convex hull of the points
obtained by permutations of coordinates of the point
(1, 2, . . . , n + 1) ∈ Rn+1.
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Facets of the permutahedron

Facets Fω ⊂ Πn Nonempty proper faces
∆ω ⊂ ∆n

Nonempty proper subsets
ω ⊂ {1, 2, . . . , n + 1}

Fω :
∑
i∈ω

xi =
|ω|(2n + 3− |ω|)

2

dim ∆ω = |ω| − 1

Fω1 ∩ Fω2 6= ∅ ⇔ ω1 ⊂ ω2 or ω2 ⊂ ω1
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Gluing manifolds from permutahedra

Suppose V is a finite set and Φω : V → V are involu-
tions without fixed points such that

• Fω1 ◦ Fω2 = Fω2 ◦ Fω1 whenever ω1 ⊂ ω2;

• there is a mapping p : V → Zn
2 such that

p (Φω(v)) = p(v) + e|ω|, where (e1, . . . , en) is the

basis of Zn
2 .

Take a permutahedron Πn
v for each v ∈ V and glue

together the permutahedra Πn
v and Πn

Φω(v)
along their

facets Fω for every v and ω.
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Gluing manifolds from permutahedra

Suppose V is a finite set and Φω : V → V are involu-
tions without fixed points such that

• Fω1 ◦ Fω2 = Fω2 ◦ Fω1 whenever ω1 ⊂ ω2;

• there is a mapping p : V → Zn
2 such that

p (Φω(v)) = p(v) + e|ω|, where (e1, . . . , en) is the

basis of Zn
2 .

Take a permutahedron Πn
v for each v ∈ V and glue

together the permutahedra Πn
v and Πn

Φω(v)
along their

facets Fω for every v and ω.

The manifold obtained is denoted by Mn(V, {Φω}). It
is canonically smoothable.



Main example

Suppose V = Zn
2 , Φω(g) = g + e|ω|.

Then Mn(V, {Φω}) is diffeomorphic to the man-
ifold Mn of isospectral symmetric tridiagonal real
(n + 1)× (n + 1) matrices. (C. Tomei, 1984)

For arbitrary V and Φω the manifold Mn(V, {Φω}) is
a finite-fold covering of Mn.
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Let Mn
ε1,...,εn

, εi = ±1, be the set of all matrices

L =


a1 b1 0 . . . 0
b1 a2 b2 . . . 0
0 b2 a3 . . . 0
... ... ... . . . ...
0 0 0 . . . an+1

 , ai, bi ∈ R

with fixed spectrum λ1 < . . . < λn+1 such that
εibi > 0 for all i. (J. Moser.)

Mn
ε1,...,εn

is the integral manifold of the Toda flow.
Since the Toda flow is integrable, it follows from Liou-
ville’s theorem that Mn

ε1,...,εn
≈ Rn.

The closure Mn
ε1,...,εn

is a permutahedron. The facet
Fω consists of those matrices L for which b|ω| = 0, the
first block of L has eigenvalues λi, i ∈ ω, and the second
block has eigenvalues λi, i /∈ ω.



Pseudomanifolds

An n-dimensional pseudomanifold is a simplicial com-
plex such that

• every simplex is contained in an n-dimensional sim-
plex;

• every (n − 1)-dimensional simplex is contained in
exactly two n-dimensional simplices.

Example. ΣNn−1.
Obviously, any homology class z ∈ Hn(X ; Z) can be

represented by an image of a compact oriented pseudo-
manifold Z under a continuous mapping h : Z → X .
Therefore the problem of realisation with multiplicity

of an arbitrary homology class reduces to the problem of
realisation with multiplicity of the fundamental class of
a pseudomanifold Z.



Colourings of simplices of the barycentric
subdivision Z ′

•A regular colouring of vertices into n+1 colours. The
barycenter of a k-dimensional simplex is coloured in
colour k + 1.

•A checkerboard colouring of n-dimensional simplices.
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Sets Pω.

Suppose U is the set of n-dimensional simplices of Z.
Let Pω be the set of all involutions Λ : U → U such

that

• Λ inverses the checkerboard colouring;
• for every σ ∈ U the simplices σ and Λ(σ) have a

common face of type ∆ω.

V = U ×
∏
ω

Pω × Zn
2 ,

Φω

(
σ,

(
Λγ

)
γ , g

)
=

(
Λω(σ),

(
Λ̃γ

)
γ
, g + e|ω|

)
,

Λ̃γ =

{
Λω◦Λγ ◦ Λω if γ ⊂ ω,

Λγ if γ 6⊂ ω.



Take the manifold Mn(V, {Φω}) and map the permu-
tahedron corresponding to the triple (σ, (Λω)ω, g) onto
the simplex σ so that the facet Fω is mapped onto the
face ∆ω.

Thus we obtain a well-defined mapping

f : Mn(V, {Φω}) → Z

that realises the fundamental class [Z] with multiplicity

2n
∏
ω

|Pω|.




