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1. Variety classification and equivariant
cohomology

Def. A toric variety X of dimC n is a normal algebraic
variety of dimC n with T = (C∗)n-action having a
dense orbit.

We note Hom(C∗, T ) = Zn.
(
g → (ga1, . . . , gan)

)
Def. A fan ∆ of dimR n is a collection of rational poly-
hedral cones in Hom(C∗, T ) ⊗ R = Rn satisfying

(1) each face of a cone in ∆ is a also a cone in ∆;
(2) the intersection of two cones in ∆ is a face of each.

Fundamental theorem on toric varieties

category of toric varieties
equivalent←→ category of fans

X ∆(X)

In particular,

X ∼=wT X ′ ⇐⇒ ∆(X) ∼= ∆(X ′)

• X ∼=wT X ′ means that ∃f : X → X ′ (isomorphism)
together with ρ : T → T (group iso) s.t.

f (tx) = ρ(t)f (x) (t ∈ T, x ∈ X).

• ∆(X) ∼= ∆(X ′) menas that ∃g ∈ GL(n; Z) s.t.
g(∆(X)) = ∆(X ′).
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toric manifold = compact smooth toric variety

Fact. X ∼= X ′ as varieties ⇐⇒ X ∼=wT X ′.

Proof. Aut(X) = the group of automorphisms of X
(an algebraic group with T as a maximal torus).
An isomorphism f : X → X ′ induces

f ∗ : Aut(X ′) → Aut(X)

by f ∗(h) = f−1hf . Since f ∗(T ) is a maximal torus of
Aut(X), ∃σ ∈ Aut(X) s.t.

σTσ−1 = f ∗(T ) = f−1Tf, so (fσ)T (fσ)−1 = T

Therefore fσ : X → X ′ is a weakly equiv. iso. ¤

Fact implies

Classification of toric manifolds as varieties
= Classification of fans up to isomorphism

Exam. a ∈ Z
Ha = P (γa ⊕ C) → CP 1 (Hirzebruch surface)
Ha

∼= Ha′ as varieties ⇐⇒ |a| = |a′|.
(−1, a)

(a = 2)



4

Equivariant cohomology

We have a fibration

X −→ ET ×T X
π−→ BT

and
H∗

T (X) := H∗(ET ×T X)

is not only a ring but also an algebra over H∗(BT )
via π∗.

Def. H∗
T (X) ∼= H∗

T (X ′) (weakly isomorphic)
⇐⇒

∃ψ : H∗
T (X) → H∗

T (X ′) (ring iso) together with
ρ : T → T (group iso) such that

ψ(uξ) = ρ∗(u)ψ(ξ) for u ∈ H∗(BT ), ξ ∈ H∗
T (X)

Thm. X ∼= X ′ as varieties ⇐⇒ H∗
T (X) ∼= H∗

T (X ′).

Sketch of Proof

(=⇒) follows from Fact mentioned before. In fact,

∃ϕ : X ′ → X (iso.) and ∃ρ : T → T (group iso) s.t.

ϕ(tx) = ρ(t)ϕ(x) (t ∈ T, x ∈ X ′).

So ψ = (ρ, ϕ)∗.
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(⇐=) follows from the following three observations.

Xi (i = 1, . . . ,m) : invariant divisors

Xi
P.D.←→ τi ∈ H2

T (X)

Lem. As a ring

H∗
T (X) = Z[τ1, . . . , τm]

/( ∏
i∈I

τi |
∩
i∈I

Xi = ∅
)

i.e., H∗
T (X) is the face ring of a simplicial complex

KX := {I ⊂ {1, . . . ,m} |
∩
i∈I

Xi 6= ∅}

Recall H∗
T (X) is an algebra over H∗(BT ) via π∗

where X −→ ET ×T X
π−→ BT.

Lem. ∃1 vi ∈ H2(BT ) (i = 1, . . . ,m) s.t.

π∗(u) =

m∑
i=1

〈u, vi〉τi for ∀u ∈ H2(BT )

Note H2(BT ) = [BC∗, BT ] = Hom(C∗, T ).

Span a cone in H2(BT )⊗R = Rn by {vi}i∈I whenever
I ∈ KX . This produces the fan of X .

Lem. An algebra iso ψ : H∗
T (X) → H∗

T (X ′) maps
{τi} in H2

T (X) to {τ ′
i} in H2

T (X ′) bijectively up to
sign.



6

2. Diffeomorphism classification and
cohomology

H∗
T (X) determines X as a variety. So it is natural

to ask how much information H∗(X) has.

Cohomological Rigidity Problem (CRP) for

Toric Manifolds. Let X,X ′ be toric manifolds.

H∗(X) ∼= H∗(X ′) as graded rings
=⇒
X ∼= X ′ diffeo (or homeo) ?

Exam. Recall Ha = P (γa ⊕ C)
CP 1

−→ CP 1 (a ∈ Z).

• Ha
∼= Ha′ as varieties ⇐⇒ |a| = |a′|.

• Ha
∼= Ha′ diffeo ⇐⇒ a ≡ a′ (mod 2)

⇐⇒ H∗(Ha) ∼= H∗(Ha′)

CRP is affirmative for Hirzebruch surfaces Ha’s.

Exam (with Choi and Suh).
CRP is affirmative for P (E⊕C)’s where E is a sum

of line bundles over CP d1.

P (E ⊕ C)
CP d2−→ CP d1
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Generalized Bott (or Dobrinskaya) tower of height n

Xn
CP dn

−→ Xn−1
CP dn−1
−→ · · · CP d3−→ X2

CP d2−→ X1
CP d1−→ {∗}

where Xk+1 = P (Ek ⊕ C) → Xk and Ek is a sum of
line bundles. We call Xn a generalized Bott manifold.

The tower is called a Bott tower when di = 1 for ∀i.

Thm (with Panov, with Choi and Suh).

Let X be a toric manifold. Then

H∗(X) ∼= H∗(
∏n

i=1 CP di) as graded rings
=⇒
X ∼=

∏n
i=1 CP di (diffeo)

Sketch of Proof

(1) If H∗(X) ∼= H∗(X ′) where X ′ is a generalized
Bott manifold, then KX

∼= KX ′ (the underlying sim-
plicial complexes of the fans); so X is also a generalized
Bott manifold.

(2) By (1) we may assume that X is a generalized
Bott manifold.

H∗(X) ∼= H∗(
∏n

i=1 CP di) =⇒ c(Ek ⊕ C) = 1

=⇒ Ek⊕C is trivial =⇒ X ∼=
∏n

i=1 CP di ¤
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Another affirmative partial solution to CRP is

Exam (with Choi and Suh). CRP is affirmative for
Bott manifolds of dimC 3.

Sketch of Proof. Let X,X ′ be Bott manifolds of dimC 3.
Then one can show any isomorphism ψ : H∗(X) →
H∗(X ′) preserves their Pontrjagin classes (and Stiefel-
Whitney classes as well). So the classification results
on 6-manifolds by Wall (spin case) and Jupp (non-spin
case) imply our theorem. ¤

This leads us to ask

Question. Let X,X ′ be toric mfds. If ψ : H∗(X) →
H∗(X ′) is an isomorphism, then ψ(p(X)) = p(X ′)?

c.f.

Petrie’s conjecture (1972). Let M be a homotopy
CP n and f : M → CP n be a homotopy equivalence.
If M supports a non-trivial smooth S1-action, then
f ∗(p(CP n)) = p(M), i.e. p(M) = (1 + x2)n+1 where
x ∈ H2(M) is a generator.

Surgery Theory =⇒
∃ ∞ many homotopy CP n when n ≥ 3 and they are
distinguished by their Pontrjagin classes up to finite
ambiguity.
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3. Real toric manifolds

Toric manifold X admits a “complex conjugation”
and its fixed point set X(R) is called a real toric man-
ifold.

(Z2)
n ⊂ (R∗)n y X(R)

Exam. X = CP n, X(R) = RP n.

(Similarity to the complex case)

• H∗(X(R); Z/2) ∼= H2∗(X ; Z) ⊗ Z/2.

(Non-similarity to the complex case)

• π1(X) = {1}, but π1(X(R)) 6= {1} and X(R)’s
provide many examples of aspherical manifolds.

Cohomological Rigidity Problem (CRP) for

Real Toric Manifolds.

Let M,M ′ be real toric manifolds.

H∗(M ; Z/2) ∼= H∗(M ′; Z/2) as graded rings
=⇒
M ∼= M ′ diffeo (or homeo) ?
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Exam. Real Bott tower of height n

Mn
RP 1

−→ Mn−1
RP 1

−→ · · · RP 1

−→ M2
RP 1

−→ M1
RP 1

−→ {∗}

Here Mk+1 = P (Lk ⊕ R) → Mk and Lk is a real line
bundle. We call Mn a real Bott manifold.

Choices of Lk ←→ H1(Mk; Z/2) ∼= (Z/2)k.

An upper triangular (0, 1) matrix A = (Ai
j) is associ-

ated to the real Bott tower, and

Mn = Rn/Γ(A) (= M(A))

where Γ(A) is generated by s1, . . . , sn and

si(u1, . . . , un) = (u1, . . . , ui−1, ui+
1

2
, (−1)A

i
i+1ui+1, . . . , (−1)A

i
nun)

1 → 〈s2
1, . . . , s

2
n〉 = Zn → Γ(A) → (Z2)

n → 1

The real Bott manifold Mn = M(A) admits a rie-
mannian flat metric invariant under the (Z2)

n-action.

(Conversely a real toric manifold which admits an in-
variant riemannian flat metric is a real Bott manifold.)
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Thm (with Kamishima).

H∗(M(A); Z/2) ∼= H∗(M(B); Z/2) as graded rings
=⇒

M(A) ∼= M(B) (diffeo)

Sketch of Proof. Remember M(A) = Rn/Γ(A) and

Γ(A) = π1(M(A)) is generated by s1, . . . , sn

si(u1, . . . , un) = (u1, . . . , ui−1, ui+
1

2
, (−1)A

i
i+1ui+1, . . . , (−1)A

i
nun)

1 → 〈s2
1, . . . , s

2
n〉 = Zn → Γ(A) → (Z2)

n → 1

(1) H∗(M(A); Z/2) = Z/2[x1, . . . , xn]/(x2
j = xj

j−1∑
i=1

Ai
jxi | 1 ≤ j ≤ n)

(2) Let ψ : H∗(M(A); Z/2) → H∗(M(B); Z/2) iso.

ψ restricted to H1 induces a matrix P ∈ GL(n; Z/2).

P satisfies some conditions which involve A and B.

(3) Define ρ : Γ(B) → Γ(A) by

ρ(tr) = s
P r

1
1 s

P r
2

2 . . . sP r
n

n (r = 1, . . . , n).

Well-defined and homomorphism by (3).

(4) ρ : Γ(B) → Γ(A) is injective and

ρ(Γ(B)) ⊂ Γ(A) odd index.
group ext

=⇒ Γ(B) ∼= Γ(A)
Bieberbach

=⇒ M(B) ∼= M(A) ¤
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Exam. Dn = # of diffeomorphism classes in real
Bott manifolds of dim n.

D2 = 2, D3 = 4, D4 = 12, D5 = 54(?),

Dn > 2(n−2)(n−3)/2 for any n.

(cf. # of real Bott towers of height n is 2n(n−1)/2)

Using the previous theorem, one can prove

Thm. Decomposition of a real Bott manifold into
a product of indecomposable real Bott manifolds is
unique (up to a permutation of factors).

In particular, if S1 ×M ∼= S1 ×M ′ where M,M ′

are real Bott manifolds, then M ∼= M ′ (i.e. can-
cellation property holds).

Not true for general riemannian flat manifolds.

We may ask

Question. Is a decomposition of a (real) toric mani-
fold into a product of indecomposable (real) toric man-
ifolds unique?
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Thm. Any isomorphism

ψ : H∗(M(A); Z/2) → H∗(M(B); Z/2)

is induced from a diffeomorphism M(B) → M(A).

Sketch of Proof. Remember

H∗(M(A); Z/2) = Z/2[x1, . . . , xn]/(x2
j = xj

j−1∑
i=1

Ai
jxi | 1 ≤ j ≤ n)

Set αj =

j−1∑
i=1

Ai
jxi (1 ≤ j ≤ n). Then x2

j = αjxj.

(1) • If x2 = αx for 0 6= x 6= α ∈ H1(M(A); Z/2),
then α = αj for some j.

• The solutions of x2 = αx are a vector space V (α)
generated by xj, xj + αj with αj = α.

(2) ψ(V (αj)) = V (βσ(j)) with some permutation σ,
so ψ decomposes into a composition of three types of
isomorphisms:
[1] {x1, . . . , xn} → {y1, . . . , yn} (may permute)
[2] xj → yj + βj and xj + αj → yj for some j
[3] linear transformation V (αj) → V (βj).

(3) Each of [1], [2], [3] above is induced by an (affine)
diffeomorphism. ¤
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4. Addendum

We may ask the previous problems for a more general
family of manifolds.

Def. A quasitoric manifold M is a closed smooth
manifold of dim 2n with smooth T n = (S1)n-action
s.t.

(1) the action is locally standard, i.e., locally same
as Cn with the T -action defined by

(z1, . . . , zn) → (t1z1, . . . , tnzn).

(Note Cn/T n = (R≥0)
n)

(2) M/T n is a simple convex polytope of dim n.

Exam. CP 2#CP 2 is quasitoric but not toric.

{toric manifolds}
(?)

( {quasitoric manifolds}

Remark (by S. Kuroki). Let γ → S2 be a canonical
line bundle and M = S(γ ⊕ C ⊕ R), M ′ = S2 × S4.
Then M and M ′ have locally standard T 3-actions (so
that the orbits spaces are manifolds with corners) and
H∗(M) ∼= H∗(M ′), but they are not diffeomorphic.
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