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Introduction 
• Real Solidification Structures 

Experimental capture of dendritic microstructure formation in Xenon 

systems (see, for example, Phys. Rev. E., 54:5309-5326, 1996) 
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•One of the most fundamental and important microstructures produced 

during solidification is the dendrite 

•In this work we seek to study these phenomena computationally using both 

two and three-dimensional models 



Introduction 
• Thermodynamic Background 

Pure Materials 

 

 

 

 

Temperature 

Alloys 

 

 

 

 

Concentration 

Driving force for Solidification 

Dilute Alloys 

Temperature + Concentration 
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Thermal-solute phase-field model (2-d) 
• Basic Idea of Phase-Field 

Phase-field variable describes microstructure 

with diffuse interface approach 
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Thermal-solute phase-field model (2-d) 
• Karma’s Phase-field model  
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Phase Equation 

Properties: 

▪ highly nonlinear 

▪ noise introduced by anisotropy function A(Ψ) 

▪ where  
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Thermal-solute phase-field model (2-d) 
• Karma’s Phase-field Model  
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Temperature Equation 

▪ highly nonlinear 
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Thermal-solute phase-field model (2-d) 
• Karma’s Phase-field Model (multiple time scales) 
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Temperature Equation 

▪ highly nonlinear 
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Thermal-solute phase-field model (2-d) 
• Multiscale Problem 

Cross-section of typical solution 

Large ratios of the diffusion coefficients lead to a 

multiscale problem that is highly stiff 
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Adaptive spatial discretization 
• Adaptive mesh refinement 

Further mesh 

refinement on 

coarser levels to 

represent the 

temperature field 

accurately !! 

The sharp interfaces of 

the phase and 

concentration fields lead 

to large gradients so fine 

mesh resolution is 

essential !!  

 

•Based upon quadrilateral meshes (non-uniform) 

•Have implemented serendipity finite elements (p=1,2,3) 

•Also implemented FD stencils (2nd order used here)  

•Adaptive remeshing is controlled by a gradient criterion 
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Implicit temporal discretization 
• Explicit time integration methods 

• Explicit methods are "easy" to apply                              

  but impose a time step restriction  

2

2h
Ct 

• Very fine mesh resolution is   

  needed to resolve the large  

  gradients in the interface region,  

  so the time steps become  

  excessively small (not viable). 
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Implicit temporal discretisation 
• Adaptive time step control 

• Fully implicit BDF2 method, combined with variable time stepping (based 

upon a local error estimator), is used to overcome time-step restrictions...  

The adaption of the time 

step leads to a much 

larger time step than the 

maximum stable time step 

for the explicit Euler 

method !! 
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Implicit temporal discretisation 
• Convergence of solution as maximum mesh level is increased 

• The BDF2 method allows sufficiently fine spatial meshes to be used: 
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Nonlinear multigrid solver 
• Nonlinear multigrid solver for adaptive meshes 

At each time step a large nonlinear algebraic system of equations must be 

solved for the new values:       ,          and       . 

Unless this can be done efficiently the method is worthless… 

• A fully coupled nonlinear Multigrid solver is used to achieve this: 

 based upon the FAS (full approximation scheme) approach to resolve 

the non-linearity 

 and the MultiLevel AdapTive (MLAT) scheme of Brandt to handle the 

adaptivity 

 a pointwise weighted nonlinear Gauss-Seidel iterative scheme is 

seen to be an adequate smoother. 

• Excellent, h-independent, convergence results are obtained. 
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Nonlinear multigrid solver 
• The FAS scheme 
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The FAS scheme, for solving A(U)=f, has the following features… 

•Smoother is nonlinear -- we use a pointwise weighted G-S scheme: 

 

 

 
 

•Based upon a standard V-cycle at each time step: 
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Nonlinear multigrid solver 
• The FAS scheme 
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•In this implementation: 

Interpolation from coarse to fine grids is bilinear 

Restriction from fine to coarse grids is simple injection  
 

 

•The correction step requires an approximation to the full coarse grid 

problem but with a modified right-hand-side: 
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Nonlinear multigrid solver 
• The MLAT scheme 
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For the MLAT scheme the nodes at the interface between refinement 

levels are treated as a Dirichlet boundary by the smoother… 



Nonlinear multigrid solver 
• Nonlinear multigrid solver for adaptive meshes 

• Here we see the optimal solution time for the nonlinear multigrid solver: 
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Results in 2-d 
• Dilute binary alloy solidification simulation with Lewis number 500 

Lewis number 500 
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Results in 2-d 
• Progression of the adaptive mesh 
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Parallel implementation in 3-d 
  

• Initial development for models of a (i) a pure melt, or (ii) isothermal alloy: 

equations generalize naturally to three dimensions, 

extension to fully coupled model discussed at the end. 

•The solution approach also generalises naturally to 3-d: 

adaptivity on hexahedral meshes, 

fully implicit time-stepping with 3-d nonlinear multigrid. 

• Unlike in 2-d it is not feasible to solve on a workstation – need to make 

use of parallel computing: 

impossible to get required level of refinement without this, 

cannot use parallelism instead of adaptivity and multigrid – it must 

be used in addition to these!  
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Parallel implementation in 3-d 
• Adaptivity 

• Examples of 3-d adaptivity with different refinement levels…  
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Parallel implementation in 3-d 
• The use of PARAMESH 

• The previous meshes were obtained using PARAMESH: 

an open source s/w library for adaptivity in parallel, 

uses hierarchical refinement and derefinement of blocks, 

guard cells ensure that the programmer need not be concerned about 

data location when implementing their discretization scheme, 

we use a cell-centred finite difference approach for convenience.  

• We have made numerous modifications to this library: 

implementation of the FAS multigrid scheme to support the solution of 

our nonlinear systems at each time step, 

 necessary modifications to support the MLAT scheme using the 

adaptive data structures. 
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Parallel implementation in 3-d 
• The use of PARAMESH 

• We validate the PARAMESH implementation by restricting to 2-d and 

making a comparison against our existing (fully-coupled) 2-d results: 
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Parallel implementation in 3-d 
• The use of PARAMESH 

• Similarly we can validate against 

published (fully-coupled) 2-d results, 

such as those at Le=100 in Ramirez 

and Beckermann (2005): 
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

• Successful 

validation against 

the 3-d thermal 

only results of 

Karma and 

Rappel (1998) et 

al.…  

•The graph of the 

tip radius tends to 

the same steady-

state value 

•Similar match for 

tip velocity. 
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

• An example of solidification with a six-fold symmetry…  
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

•A snap shot of a 

different 3-d dendrite. 

•This image shows 

the single isosurface 

Φ=0.…  
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

•A snap shot of the 

same 3-d dendrite as 

in the previous slide. 

•This image shows 

the isosurface along 

with the adapted 

mesh… 
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

•A snap shot of the 

same 3-d dendrite 

again. 

•This image shows 

only the adapted 

mesh… 
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Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

• Some parallel performance results using a fixed problem size… 

 Uniformly refined mesh. 

Rather small problem (just over two million cells). 

Speed-up and Efficiency shown relative to 8 core case. 
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Cores Time (s) Speed-Up Efficiency 

8 6611 

16 4298 1.54 77% 

32 2796 2.36 59% 

64 1734 3.81 48% 



Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

• The fixed problem size is not very realistic… 

 Aim of parallelism here is to allow larger problems to be solved. 

We now show a sequence of finer and finer grids. 

Again uniform mesh refinement is assumed. 
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Cores Cell count Time (Time per 

V-cycle) 

Efficiency 

1 262k 1453 (27.9) 

8 2,097k 1577 (20.5) 136% 

64 16,777k 3717 (30.5) 91% 



Parallel results in 3-d 
• For a model of a pure melt (thermal and phase fields only) 

• Justification for requiring both parallelism and adaptivity…  
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Cores Uniform Grid 

Level (Cells) 

Adapted Grid 

Level (Equiv Cells) 

1 7 (262k) 8 (2.1M) 

2 9 (16.8M) 

8 8 (2 097k) 10 (134.2M) 

20 11 (1073.7M) 

64 9 (16.8M) 

128 12 (8.59B) 

• This is for a typical sample problem and will vary for different cases… 



Parallel results in 3-d 
• For a model of an isothermal binary alloy (solute and phase fields only) 

• An example of 

solidification with a six-fold 

symmetry for an isothermal 

binary alloy…  

•We have been able to 

successfully validate 

against an existing explicit 

solver (Danzig) – though 

only for relatively coarse 

spatial grids: 

•Tip radius 

•Tip velocity   
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Discussion 
  

1. Second order finite differences for the spatial discretization of the highly 

nonlinear coupled system of parabolic PDEs. 

2. Hierarchical adaptivity to refine and coarsen the spatial mesh as the 

solution evolves in time. 

3. Fully implicit second order BDF time integration for the stiff ODE 

systems that arise after spatial discretization of high Lewis number 

problems. 

4. Fully coupled nonlinear Multigrid solver for the nonlinear algebraic 

systems that occur at each time step. 

5. Adaptive time step selection based upon local error estimation 

6. Parallel implementation to allow progress to three space dimensions. 

Numerical methods: 
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Discussion (cont) 
  

2D Results: 

1. First time a multiscale Phase-field solidification model has been solved 

fully implicitly. 

2. Has allowed 2-d simulation at physically realistic Lewis number (up to 

10000) for the first time (previous limit was O(100)): 

• Physical Review E, vol.79, 030601, 2009. 

3. This enhanced capability is leading to new scientific insight  - with the 

coupled thermal-solutal model behaving very differently from its pure 

solutal counterpart : 

• J. Cryst. Growth, vol.312, pp.1891--1897, 2010. 
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Discussion (cont) 
  

3D Results: 

1. Parallel version essential for 3D – sequential 2D runs take many days! 

2. Must retain adaptivity, implicit stiff solver & multigrid in the parallel version. 

3. Implemented via the PARAMESH library... 

• Able to validate parallel version against the fully-coupled 2D code; 

• Able to validate against pure thermal 3D results: 

Numerical Methods for PDEs, vol.27, pp.106--120, 2011. 

• Also able to validate against pure solutal 3D results. 

4. Now starting to produce fully-coupled 3D results for the first time... 

• Even for runs at moderate Lewis number each simulation is highly 

computationally  expensive. 
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Discussion (cont.) 
• Fully-coupled example in 3D 

• Snapshot of the start of dendrite formulation at Le = 40: 
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Discussion (cont.) 
• Fully-coupled example in 3D 

• Snapshot of the start of dendrite formulation at Le = 40 (finer grid and 

slightly earlier time): 
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Discussion (cont) 
  

Current work: 

1. Seek to improve parallel efficiency: 

• Currently emphasis has been to provide a capability; 

• Now focusing on improving the partitioning strategy used by 

PARAMESH – currently based upon Morton ordering... 

• Have ported to HECToR – running on ~1024 cores. 

2. Will then start to produce simulation results across a range of Lewis 

numbers. 

3. May also consider alternative multigrid approaches: 

• Could perform a quasi-Newton linearization at each time step and 

then use a linear MG solver; 

• Would allow library software (e.g. for algebraic multigrid) to be used! 
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Discussion (cont.) 
 

• Our initial attempts 

to improve the 

partitioning strategy 

are based upon 

balancing the load at 

each mesh level... 

•This plot shows the 

computation time per 

block per time step for 

a typical 32 core run. 
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Discussion (cont) 
  

Current work: 

1. Seek to improve parallel efficiency: 

• Currently emphasis has been to provide a capability; 

• Now focusing on improving the partitioning strategy used by 

PARAMESH – currently based upon Morton ordering... 

• Have ported to HECToR – running on ~1024 cores. 

2. Will then start to produce simulation results across a range of Lewis 

numbers. 

3. May also consider alternative multigrid approaches: 

• Could perform a quasi-Newton linearization at each time step and 

then use a linear MG solver; 

• Would allow library software (e.g. for algebraic multigrid) to be used! 
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