

The impact of many-core computer architectures on numerical

 libraries: past, present and futureSimon McIntosh-Smith simonm@cs.bris.ac.uk Head of Microelectronics Research

A brief biography

CARDIFF
UNIVERSITY
PRIFYSGOL
CAERDYD

ClearSpeed

整

Graduated as Valedictorian in Computer Science from Cardiff University in 1991
Joined Inmos to work for David May as a microprocessor architect
Moved to Pixelfusion in 1999 －a high－tech start－ up designing the first many－core general purpose graphics processor（GPGPU）
Co－founded ClearSpeed in 2002 as Director of Architecture and Applications
Joined the CS department at the University of Bristol in April 2009 to focus on High
Performance Computing and architectures

魀Processor CV: Many-core GPUs

Pixelfusion F150: (2000)

- $0.25 u$ embedded DRAM
- 76M transistors
- 3 MBytes eDRAM

Multi Threaded Array Processor

- 1,536 PEs + redundancy
- 4 parallel RAMBUS channels, 6.4 GBytes/s

The first true GPGPU

- Fully programmable

煺Many-core HPC processors

ClearSpeed CS301 (2004)

- 25 GFLOPS (32-bit), 3W @ 200MHz
- 64 PEs, 4 KBytes SRAM each
- IBM 130nm, 41 million transistors

ClearSpeed CSX600 (2006)

- 40 GFLOPS (64-bit), 12W @ 210 MHz
- 96 PEs, 6 KBytes SRAM each
- Integrated DDR2-ECC
- IBM 130nm, 128 million transistors

ClearSpeed CSX700 (2008)

- 96 GFLOPS (64-bit), 10W @ 250MHz
- Fully 64-bit architecture
- 192 PEs (2x96)
- 2x ECC DDR2 controllers
- IBM 90nm, 256 million transistors

腿First principles

What are the issues driving the development of numerical libraries?

Underlying hardware changes

退The real Moore’s Law

Moore＇s Law graph， 1965

45 years ago， Gordon Moore observed that the number of transistors on a single chip was doubling rapidly

Fig． 2 Number of components per Lntegrated
fanction for minimam cost per component extrapolated va time．

派Moore’s Law today

2009 ITRS - Functions/chip and Chip Size

断 Moore’s Law today

2009 ITRS－Functions／chip and Chip Size

溾 Important technology trends

The real Moore's Law

The clock speed plateau

The power ceiling
Instruction level parallelism limit

Herb Sutter, "The free lunch is over", Dr. Dobb's Journal, 30(3), March 2005. On-line version, August 2009.

㨁 How best to use billions of transistors？

－Lots more cores on－chip（doubling every 2 years）
－Core designs will stay roughly the same
－Power consumption must be held in check
－Chip voltages can＇t be dialled down any more
＞Clock speeds may decrease
$>$ Memory bandwidth per core likely to decrease
$>$ Memory per core likely to decrease
－Different types of core
－Heterogeneous computing
－E．g．a few heavyweight（ x 86 ）cores together with many more lightweight（GPU）cores

煺Relative hardware trends

We need to

煺 Heterogeneous computing is not new

- Most systems are already heterogeneous
- PCs have CPU, GPU, network processor, I/O processor, ...
- Has been a common approach in embedded systems since the early ${ }^{90}$ s

- But now heterogeneous systems are starting to include several different types of generalpurpose, programmable processors
- Users have to programme more than one type of processor to get the most out of a system

挀 5 core tablet at CES last week

NVIDIA Tegra 3：
－Quad core ARM CPU
－NVIDIA GPU
－And a low－power ARM core

诞 Trends in processors

AMD's first "Fusion" chip, shipping since late 2011

- Integrates a quad core x86 CPU with an OpenCl programmable GPU in th same chip
- Also Intel (Ivy Bridge), Nvidia (Tegra, Denver), IBM (Cell), ...

故Emerging standards

－OpenCL，OpenACC，DirectCompute， C＋＋AMP，．．．

Heterogeneous systems in the Top500

- Tokyo Tech's TSUBAME was first in 2006 - Started with ClearSpeed, now using GPUs
- Now several systems in existence, more on their way:
- \#2 Tianhe-1A (China), 2.57 PFLOPS, Intel and NVIDIA
- \#4 Dawning (China), 1.27 PFLOPS, Intel and NVIDIA
- \#5 Tsubame 2 (Japan), 1.19 PFLOPS, Intel x86 and NVIDIA
- \#10 RoadRunner (USA), 1.04 PFLOPS, IBM Cell, AMD x86
- Around 35 GPU-based systems in Top500 in Nov 2011
- Most of the >10 PFLOP systems using many-core processors (GPUs or Intel's MIC) - Titan (ORNL), Stampede (TACC), Blue Waters (UIUC/NCSA), ...

Parallel numerical libraries:

Past, present and future

第造
BRISTOL

© A New Generation of Software:
 Parallel Linear Algebra Software for Multicore Architectures (PLASMA)

Software/Algorithms follow hardware evolution in time

LINPACK (70's) (Vector operations)

Rely on

- Level-1 BLAS
operations

Rely on

- Level-3 BLAS
operations

Rely on

- PBLAS Mess Passing

Rely on

- a DAG/scheduler
- block data layout
- some extra kernels

Those new algorithms

- have a very low granularity, they scale very well (multicore, petascale computing, ...)
- removes a lots of dependencies among the tasks, (multicore, distributed computing)
- avoid latency (distributed computing, out-of-core)
- rely on fast kernels

Those new algorithms need new kernels and rely on efficient scheduling algorithms.

道ClearSpeed’s CSXL BLAS/LAPACK

- CSXL was a BLAS/LAPACK library that used run-time heuristics to load balance across heterogeneous compute resources
- Transparently harnessed multiple host CPU cores and multiple accelerators simultaneously
- Could also handle datasets larger than the memories of the accelerators
- S. McIntosh-Smith, J. Irwin, "Delivering aggregated performance for high-performance math libraries in accelerated systems", International SuperComputing, Dresden, June 2007

Steps in the LAPACK LU

\& Adaptive Lookahead - Dynamic

Event Driven Multithreading Ideas not new.

Many papers use the DAG approach.

```
while(1)
    fetch_task();
    switch(task.type) {
        case PANEL:
            dgetf2();
            update_progress();
        case COLUMN:
            dlaswp();
            dtrsm();
            dgemm();
            update_progress();
        case END:
            for()
                dlaswp();
                return;
    }
}
Reorganizing algorithms to use this approach

QR -- quad-socket, dual-core Opteron


\title{
kPLASMA coverage
}

\section*{FUNCTIONALITY}

\section*{COVERAGE}
Linear Systems of Equations
Matrix Inversion
Least Squares
Mixed Precision Iterative Refinement

Symmetric Eigenvalue Problem
Singular Value Problem
Level 3 Tile BLAS

In-Place Layout Translation

Cholesky, LDLT, LU with partial pivoting
Cholesky, LU with partial pivoting
QR and LO
linear systems using Cholesky or LU, least squares using QR or LO
eigenvalues only
singular values only
GEMM, HEMM, HER2K, HERK, SYMM, SYR2K, SYRK, TRMM, TRSM
CM, RM, CCRB, CRRB, RCRB, RRRB

Solving Linear System (DGESV)
48-core, 2.1 GHz AMD Magny-Cours System


Solving Least Squares Problem (DGELS)
48-core, 2.1 GHz AMD Magny-Cours System


Solving Symmetric EVP (DSYEV)
48-core, 2.1 GHz AMD Magny-Cours System


Solving Singular Value Problem (DGESVD) 48-core, 2.1 GHz AMD Magny-Cours System

- Extends PLASMA to support heterogeneous systems (GPUs et al)
- Host of extra considerations:
- Where does the data live?
- Data formats? (Natural, blocked, ...)
- Multiple accelerators
- Streaming?

\section*{退MAGMA 1.1 coverage}
\begin{tabular}{|c|c|c|c|c|}
\hline MAEMA 1.1 ROUTINES \& FUNCTIONALITIES & SINGLE GPU & \multicolumn{2}{|r|}{MULTI-GPU STATIC} & MULTI-GPU DYNAMIC \\
\hline One-sided Factorizations (LU, QR, Cholesky) &  & \multicolumn{3}{|c|}{\(\checkmark\)} \\
\hline Linear System Solvers & \(\checkmark\) & & & \\
\hline Linear Least Squares (LLS) Solvers & \(\checkmark\) & & & \(\checkmark\) \\
\hline Matrix Inversion &  & & &  \\
\hline Singular Value Problem (SVP) & & SINGLE GPU & \multicolumn{2}{|l|}{Hyorid LAPACK 青quotime with satic scheduling and LAPMCK data layout} \\
\hline Non-symmetric Eigenvalue Problem & & \multirow[t]{2}{*}{MULTI-GPU STATIC} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Hybrid LAPACK wlawithmes with 10 Hock cyclic statis shheding and LAPACK data Lyout}} \\
\hline Symmetric Eigenvalue Problem & & & & \\
\hline Generalized Symmetric Eigenvalue Problem &  & MULTI-GPU DYNAMIC & \multicolumn{2}{|l|}{Tile algorithms with StarPU scheduling and tile matrie lapout} \\
\hline
\end{tabular}


\section*{Keeneland system, using one node}

3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB)
\(2 \times 6\) Intel Cores (X5660 @ 2.8 GHz, 23 GB)

GPU Fermi C2050 (448 CUDA Cores @ 1.15 GHz ) + Intel 09300 ( 4 cores © 2.50 GHz ) DP peak \(515+40\) GFlop/s Power * ~220 W

AMD Istanbul
[ 8 sockets x 6 cores ( 48 cores) ©2.8GHz] DP peak 538 GFlop/s
Power * ~1,022 W
*Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

\section*{Big Issue:}

\section*{Composibility of Parallelism}


第娒 University of
BRISTOL

\section*{比"Who owns the parallelism?"}
- Multiple levels in the software stack:
- Operating system / run-time
- Libraries
- Application
- Who decides what runs where?
- Who owns the resources?

\section*{Composibility}

Consider the following example using a modern dual socket, multi-core server (12 to 16 cores today):
- Your application is written in OpenMP or MPI in order to use all these cores
- Then you want to call a parallel version of a numerical library, such as BLAS, LAPACK etc.
- Essentially have to "pass over" ownership of the hardware resources from the application to the library
- This problem gets worse as the width and depth of the parallelism increase - GPUs with OpenCL etc

\section*{Composibility continued}

More issues:
- What if you want varying widths of parallelism? (Elastic widths)
- What effect do multiple users have on the available parallelism? Don't know how much you have until execution time...

\section*{煺 More future issues for NA libs}

From Dongarra et al，SIAM PP08：
－Dynamic Data Driven Execution
－Self Adapting
－Mixed Precision in the Algorithm
－Exploit Hybrid／Many－core Architectures
－Fault Tolerant Methods
－Communication Avoidance

\section*{描Summary and Conclusions}
- Future hardware will see considerable increases in:
- Width of parallelism (cores, vectors, ...)
- Depth of parallelism (heavyweight, lightweight, threads, SIMD, ...)
- Depth and complexity of memory hierarchy
- Heterogeneity
- Core counts will increase faster than bandwidth, memory capacity and latency
- Future numerical libraries will need to adapt at runtime to exploit available resources
- Thus the very nature of software libraries will fundamentally change (ship as source?)
- Major unresolved issue around parallel composibility

\title{
送For an introduction to GPUs
}

The GPU Computing Revolution－a Knowledge Transfer Report from the London Mathematical Society and the KTN for Industrial Mathematics
－https：／／ktn．innovateuk．org／web／mathsktn／ar ticles／－／blogs／the－gpu－computing－revolution


\section*{畩ASEArch CCP}
－New CCP just formed to help in this area：
－Algorithms and Software for Emerging Architectures－ASEArch
－Collaboration between Oxford，STFC，Bristol and Edinburgh
－http：／／www．oerc．ox．ac．uk／research／asearch```

