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A brief biography 

Graduated as Valedictorian in Computer Science 
from Cardiff University in 1991 

Joined Inmos to work for David May as a 
microprocessor architect 

Moved to Pixelfusion in 1999 – a high-tech start-
up designing the first many-core general 
purpose graphics processor (GPGPU) 

Co-founded ClearSpeed in 2002 as Director of 
Architecture and Applications 

Joined the CS department at the University of 
Bristol in April 2009 to focus on High 
Performance Computing and architectures 
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Processor CV: Many-core GPUs 
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Pixelfusion F150: (2000) 

• 0.25u embedded DRAM 

• 76M transistors 

• 3 MBytes eDRAM 

 

Multi Threaded Array Processor 

• 1,536 PEs + redundancy 

• 4 parallel RAMBUS channels, 

6.4 GBytes/s 

 

The first true GPGPU 

• Fully programmable 



PE Array 

Control  SRAM 

Many-core HPC processors 
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ClearSpeed CS301 (2004) 

• 25 GFLOPS (32-bit), 3W @ 200MHz 

• 64 PEs, 4 KBytes SRAM each 

• IBM 130nm, 41 million transistors 

 

ClearSpeed CSX600 (2006) 

• 40 GFLOPS (64-bit), 12W @ 210 MHz 

• 96 PEs, 6 KBytes SRAM each 

• Integrated DDR2-ECC  

• IBM 130nm, 128 million transistors 

 

ClearSpeed CSX700 (2008) 
– 96 GFLOPS (64-bit), 10W @ 250MHz 

– Fully 64-bit architecture 

– 192 PEs (2x96) 

– 2x ECC DDR2 controllers 

– IBM 90nm, 256 million transistors 

 



First principles 

What are the issues driving the development 

of numerical libraries? 

 

 

Underlying hardware changes 
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The real Moore’s Law 

6 http://www.intel.com/technology/mooreslaw/ 

45 years ago, 

Gordon Moore 

observed that the 

number of transistors 

on a single chip was 

doubling rapidly 



Moore’s Law today 

7 http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf 



Moore’s Law today 

8 http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_ExecSum.pdf 

Average 

Moore’s Law 

= 2x/2yrs 

2x/3yrs 

2x/2yrs 

High-performance 

MPU, e.g. 

Intel Nehalem 

Cost-performance 

MPU, e.g. 

Nvidia Tegra 

2-3B transistors 

~1B transistors 

20-30B transistors 



Important technology trends 

9 
Herb Sutter, “The free lunch is over”, Dr. Dobb's Journal, 30(3), 

March 2005. On-line version, August 2009. 

http://www.gotw.ca/publications/concurrency-ddj.htm  

The real Moore’s Law 

The clock speed plateau 

The power ceiling 

Instruction level 

parallelism limit 

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm


How best to use billions of transistors? 

• Lots more cores on-chip (doubling every 2 years) 
• Core designs will stay roughly the same 

 

• Power consumption must be held in check 
• Chip voltages can’t be dialled down any more 

 Clock speeds may decrease 

Memory bandwidth per core likely to decrease 

Memory per core likely to decrease 

 

• Different types of core 
• Heterogeneous computing 

• E.g. a few heavyweight (x86) cores together with many 
more lightweight (GPU) cores 
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Relative hardware trends 
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Microprocessor performance 

~55% per annum 

Memory capacity 

~49% per annum 

(and slowing down?) 

Memory bandwidth 

~30% per annum 

(and slowing down?) 

Memory latency 

<<30% per annum 

We design 

codes for here 

We need to 

design codes 

for here! 

11 



Heterogeneous computing is not new 

• Most systems are already heterogeneous 

• PCs have CPU, GPU, network processor, I/O 
processor, … 

• Has been a common approach in embedded 
systems since the early `90s 

 

• But now heterogeneous systems are starting 
to include several different types of general-
purpose, programmable processors 

• Users have to programme more than one type of 
processor to get the most out of a system 
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5 core tablet at CES last week 
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NVIDIA Tegra 3: 

• Quad core ARM CPU 

• NVIDIA GPU 

• And a low-power ARM core 



Trends in processors 

AMD’s first “Fusion” chip, shipping since late 

2011 
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• Integrates a quad core 
x86 CPU with an OpenCL 
programmable GPU in the 
same chip 

• Also Intel (Ivy Bridge), 
Nvidia (Tegra, Denver), 
IBM (Cell), … 

 



Emerging standards 

• OpenCL, OpenACC, DirectCompute, 

C++ AMP, … 
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Heterogeneous systems in the Top500 

• Tokyo Tech’s TSUBAME was first in 2006 
• Started with ClearSpeed, now using GPUs 

 

• Now several systems in existence, more on their way: 
• #2 Tianhe-1A (China), 2.57 PFLOPS, Intel and NVIDIA 

• #4 Dawning (China), 1.27 PFLOPS, Intel and NVIDIA 

• #5 Tsubame 2 (Japan), 1.19 PFLOPS, Intel x86 and NVIDIA 

• #10 RoadRunner (USA), 1.04 PFLOPS, IBM Cell, AMD x86 

• Around 35 GPU-based systems in Top500 in Nov 2011 

 

• Most of the >10 PFLOP systems using many-core 
processors (GPUs or Intel’s MIC) – Titan (ORNL), 
Stampede (TACC), Blue Waters (UIUC/NCSA), … 
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http://www.top500.org 



Parallel numerical libraries: 

 

Past, present and future 
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ClearSpeed’s CSXL BLAS/LAPACK 
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Advance board
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• CSXL was a BLAS/LAPACK library that used run-time heuristics to load 
balance across heterogeneous compute resources 

• Transparently harnessed multiple host CPU cores and multiple 
accelerators simultaneously 

• Could also handle datasets larger than the memories of the accelerators 
 

• S. McIntosh-Smith, J. Irwin, “Delivering aggregated performance for high-performance math libraries in 
accelerated systems”, International SuperComputing, Dresden, June 2007 

Effect of n2 data vs. n3 compute 

on accelerator performance 
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PLASMA coverage 

24 



25 



MAGMA 

• Extends PLASMA to support 

heterogeneous systems (GPUs et al) 

• Host of extra considerations: 

• Where does the data live? 

• Data formats? (Natural, blocked, …) 

• Multiple accelerators 

• Streaming? 
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MAGMA 1.1 coverage 
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Big Issue: 

 

Composibility of Parallelism 
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“Who owns the parallelism?” 

• Multiple levels in the software stack: 

• Operating system / run-time 

• Libraries 

• Application 

 

• Who decides what runs where? 

• Who owns the resources? 

30 



Composibility 

Consider the following example using a modern dual 
socket, multi-core server (12 to 16 cores today): 

• Your application is written in OpenMP or MPI in 
order to use all these cores 

• Then you want to call a parallel version of a 
numerical library, such as BLAS, LAPACK etc. 

• Essentially have to “pass over” ownership of the 
hardware resources from the application to the 
library 

• This problem gets worse as the width and depth of 
the parallelism increase – GPUs with OpenCL etc 
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Composibility continued 

More issues: 

• What if you want varying widths of 

parallelism? (Elastic widths) 

• What effect do multiple users have on the 

available parallelism? Don’t know how 

much you have until execution time… 
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More future issues for NA libs 

From Dongarra et al, SIAM PP08: 

• Dynamic Data Driven Execution 

• Self Adapting 

• Mixed Precision in the Algorithm 

• Exploit Hybrid/Many-core Architectures 

• Fault Tolerant Methods 

• Communication Avoidance 
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Summary and Conclusions 

• Future hardware will see considerable increases in: 
• Width of parallelism (cores, vectors, …) 

• Depth of parallelism (heavyweight, lightweight, threads, 
SIMD, …) 

• Depth and complexity of memory hierarchy 

• Heterogeneity 

• Core counts will increase faster than bandwidth, 
memory capacity and latency 

• Future numerical libraries will need to adapt at run-
time to exploit available resources 

• Thus the very nature of software libraries will 
fundamentally change (ship as source?) 

• Major unresolved issue around parallel composibility 
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For an introduction to GPUs 

The GPU Computing Revolution – a 

Knowledge Transfer Report from the London 

Mathematical Society and the KTN for 

Industrial Mathematics 

• https://ktn.innovateuk.org/web/mathsktn/ar

ticles/-/blogs/the-gpu-computing-revolution  
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ASEArch CCP 

• New CCP just formed to help in this area: 

• Algorithms and Software for Emerging 

Architectures – ASEArch 

• Collaboration between Oxford, STFC, Bristol 

and Edinburgh 

 

• http://www.oerc.ox.ac.uk/research/asearch 
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