
Selected Numerical Aspects

of Non-Derivative Optimization

Margaret H. Wright

Computer Science Department

Courant Institute of Mathematical Sciences (CIMS)

New York University

Advances in Numerical Computing:

A Workshop in Honor of Sven Hammarling

Manchester Institute for Mathematical Sciences (MIMS)

5 July 2011

Thank you for inviting me to deliver this

lecture.

It has two purposes:

1. To discuss numerical issues in

non-derivative optimization;

2. To honor our dear friend and colleague

Sven Hammarling.

Before turning to non-derivative

optimization, a few words about Sven... in

particular, about his remarkable BP

connection.

Not the company formerly known as

British Petroleum, but...

Beatrix Potter (1866–1943), famous

English writer, illustrator, mycologist, and

philanthropist.

What’s the connection between our Sven and Beatrix Potter?

Sven’s mother was one of the children of Annie Moore, who

was Beatrix Potter’s governess for a while.

The Tale of Peter Rabbit, Beatrix Potter’s first published

book, was originally written by her in 1893 as a picture letter

to Sven’s uncle Noel when he was ill.

The dedication of The Pie and the Patty Pan is “For Joan, to

read to Baby”—Joan is Sven’s aunt, and Baby is Sven’s

mother, also named Beatrix, the youngest of the Moore

children.

Very interesting, I’m sure you will agree—but how is it

relevant to advances in numerical computation, numerical

issues in non-derivative optimization, and Sven’s own

scientific contributions?

Sven’s work has covered many topics in numerical

computation. Focusing on just two of them,

• parallel and high-performance computing, and

• reliability and robustness,

we’ll consider how they, in the context of non-derivative

optimization, are related to themes in Beatrix Potter’s work.

To do this, we need some background about non-derivative

optimization.

Consider unconstrained∗∗ local minimization of a nonlinear

function:

minimize
x∈IRn

f(x)

And not just any old f .

∗∗ Extensions to constraints are possible, but will not be

discussed here.

As you all know, many real-world applications from science

and engineering involve optimization problems in which f has

one or more of the following properties:

• f is time-consuming or expensive to calculate, even on

the highest-end machines or because it involves data

collected from the real world (may take hours, days,

weeks, . . .)

• f is unpredictably non-nice (e.g., undefined at certain

points, discontinuous, non-smooth)

• f is evaluated by “black-box” software whose inner

workings are not under the current user’s control

• f is “noisy” because of

– adaptivity in calculations

– stochastic elements

– uncontrollable variations (e.g., inclusion of real-world

experimental data)

In cases like these, first derivatives are often difficult or

impossible to obtain, even with today’s most advanced

automatic differentiation.

Unless we give up immediately, our only choice is a

non-derivative method, i.e. a method that uses only function

values.

A few examples, among hundreds, of such problems:

• Design of heating, air-conditioning, and ventilation

(HVAC) systems;

• Modeling the population dynamics of the cannibalistic

flour beetle;

• Estimating the structure of transmembrane proteins;

• Circuit design;

• Design of wireless systems, inside and outside;

• Drug selection during cancer chemotherapy, based on the

patient’s measured responses.

At least two broad classes of non-derivative methods:

1. Model-based

• Iteratively create a model of f , usually linear or quadratic,

based on interpolation or least-squares, and minimize the

model (à la Newton’s method or quasi-Newton methods)

• Some smoothness assumed somewhere.

2. ∗∗ “Direct search” ∗∗ [my focus today]

• No explicit model of f , but sometimes used with

“surrogate” models

NB: Simulated annealing, genetic, evolutionary, and swarming

algorithms will not be considered.

A sketchy history of non-derivative methods:

• Started in 1950s (or before)—Fermi and

Metropolis applied coordinate search in a 1952

paper.

• Loved and widely used by practitioners from the

beginning, especially the direct search“simplex”

method of Nelder and Mead (1965).

• Often were simple and easy to understand,

based on low-dimensional intuition.

“Opportunistic” coordinate search (Fermi and

Metropolis); keep looking for a new best point by

searching along the coordinate directions.

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4

Nelder–Mead: iteratively update a simplex by

moving away from the worst vertex

−3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

4

An interesting part of the history of optimization. . .

Starting in the mid-1960s, non-derivative methods

became essentially invisible within the mainstream

optimization community.

There were at least two reasons for this:

1. Essentially no theory had been developed for

non-derivative methods, and optimization was

becoming “mathematicized”;

2. Non-derivative methods often experienced

difficulties in practice, even on problems viewed

as easy.

Nonetheless, despite a lack of theory and well known

occasional poor behavior, through the 1980s and into the

1990s, direct search methods (almost always Nelder-Mead)

were by far the most popular optimization routines in software

libraries.

This popularity probably arose because users did not want to

write code to evaluate derivatives. The biggest single error in

using optimization software was programming the derivatives

incorrectly.

But. . . this should no longer be an issue because we have

reliable and sophisticated software for automatic

differentiation.

What about today???

Non-derivative methods remain very popular with

practitioners, who have never stopped needing to solve nasty

problems.

And . . . non-derivative methods have undergone a major

renaissance within the optimization research community,

returning to grace and favor.

A significant factor in this sea change: Torczon’s (1989) PhD

thesis (Rice University), which presented a new direct search

method, multidirectional search, with a convergence proof.

Once an initial proof existed (acting like the smell of blood to

a shark), mathematicians began to generalize, producing new

classes of direct search methods.

Rigorous mathematical analysis has been and is important

and useful, providing understanding as well as added

confidence of success in practice.

Tools and approaches from convex analysis and approximation

have broadened the applicable class of functions to include

(for example) specific forms of discontinuity in f or its

derivatives.

Possibly inevitably, newer direct search methods are becoming

much more complicated and much less appealing to intuition.

No one could describe some of the recently defined direct

search methods as “simple and easy to understand”.

A broad-brush view of advances in theory:

Convergence proofs have been derived (with varying

definitions of “convergence”) for the following categories of

direct search methods, and more:

• pattern search and generalized pattern search,

• generating set search,

• adaptive pattern search,

• mesh-adaptive direct search (MADS),

• frame-based methods,

• grid-restrained methods,

• . . .

The proof techniques used are typically closely related to

derivative-based optimization.

But because this workshop is about advances in numerical

computation, let me now cite one of my all-time favorite

quotes, from Donald Knuth, renowned computer scientist:

My main conclusion after spending ten years of my life

working on the TEX project is that software is hard. It’s

harder than anything else I’ve ever had to do.

Given this evident truth, we can pat ourselves on the back

and concentrate henceforth on software-related topics in

direct search methods.

What many users care about, more than anything else, is

solving their problems efficiently.

Because this involves several imprecise and ambiguous terms

(“solving”, “efficiently”), there are many unresolved

numerical issues in direct search methods—and I can’t

discuss, or even mention, all of them today.

So I’ve selected two.

The first—parallel and high-performance computing—has

been a longstanding feature of Sven’s research.

How can direct search methods be implemented effectively on

evolving high-performance (parallel) machines?

Many people in scientific computing regard this question as

extremely urgent. According to Jim Demmel (2011),

A large change in the computing world has started in

the last few years: not only are the fastest computers

parallel, but nearly all computers will soon be

parallel. . . . So all programs that need to run faster

will have to become parallel programs.

And now we call on Beatrix Potter.

MANY THANKS TO PROJECT GUTENBERG for making

her works freely available.

There lived a tailor in Gloucester.. . . He lived alone with his

cat; it was called Simpkin.

Although he sewed fine silk for his neighbours, he himself was

very, very poor. He cut his coats without waste; they were

very small ends and snippets that lay about upon the table.

One bitter cold day near Christmas the tailor began to make a

coat. . . for the Mayor of Gloucester.

There were twelve pieces for the coat and four pieces for the

waistcoat; and there were pocket flaps and cuffs, and buttons

all in order. For the lining of the coat there was fine yellow

taffeta; and for the button-holes of the waistcoat, there was

cherry-coloured twist. And everything was ready to sew

together in the morning, all measured and sufficient.

The tailor was very tired and beginning to be ill.

All that day he was ill, and the next day, and the next; and

what should become of the cherry-coloured coat? In the

tailor’s shop in Westgate Street the embroidered silk and satin

lay cut out upon the table—one-and-twenty

button-holes—and who should come to sew them, when the

window was barred, and the door was fast locked?

The little mice came out again, and listened to the tailor;

they took notice of the pattern of that wonderful coat. They

whispered to one another about the taffeta lining, and about

little mouse tippets.

From the tailor’s shop in Westgate came a glow of light;

. . . there was a snippeting of scissors, and snappeting of

thread.

”Alack,” said the tailor, “I have . . . no more strength—nor

time—than will serve to make me one single button-hole; for

this is Christmas Day in the Morning! The Mayor of

Gloucester shall be married by noon—and where is his

cherry-coloured coat?”

He unlocked the door of the little shop in Westgate Street,

and Simpkin ran in. . . . But there was no one there! Not even

one little brown mouse! The boards were swept clean; the

little ends of thread and the little silk snippets were all tidied

away, and gone from off the floor.

But upon the table—oh joy! the tailor gave a shout—there,

where he had left plain cuttings of silk—there lay the most

beautifullest coat and embroidered satin waistcoat that ever

were worn by a Mayor of Gloucester.

And from then [NB: because of parallel computing] began the

luck of the Tailor of Gloucester; he grew quite stout, and he

grew quite rich.

Never were seen such ruffles, or such embroidered cuffs and

lappets! But his button-holes were the greatest triumph of it

all.

The stitches of those button-holes were so small–so

small–they looked as if they had been made by little mice!

And what about direct search methods and parallel

computing?

An interesting sidebar: the concept of using direct search

methods as a tool to do automatic performance tuning on

high-end machines. Direct search can be (sensibly) adapted

for the non-nice functions representing performance; accurate

solutions are not needed or possible.

See, for example,

Seymour, You, and Dongarra (2008);

Balaprakash, Wild, and Hovland (2011);

Karcher and Pankratius (2011).

NB: The idea is not to take advantage of parallelism to make

the direct search method efficient—it’s to use a direct search

method to improve/optimize parallel performance.

But how about creating parallel-efficient direct search

methods?

With apologies to anyone who is an expert in direct search

methods, here is a super-terse (and not entirely accurate)

overview of generalized pattern search methods.

Definition: A set D of vectors in Rn, {dℓ}, is a positive

spanning set if every v ∈ Rn can be written as a

nonnegative linear combination of its elements.

Standard examples in R2:

D =





1 0 −1 0

0 1 0 −1



 and D =





1 0 −1

0 1 −1





Ingredients in a generalized pattern search method:

• A fixed positive spanning set D that can be written as

D = GZ, where G is a fixed nonsingular matrix and the

elements of Z are integers.

• A rational mesh update parameter, τ > 1. (Usually, τ = 2.)

• A strategy for strictly decreasing a step control parameter

∆ when xk is mesh-locally optimal (defined in a moment),

and, optionally, for increasing ∆ when xk is better than

xk−1.

• A strategy for performing some optional “exploratory”

(sometimes confusingly called “search”) moves

• A strategy for choosing the “poll directions” from D at

every iteration.

In the polling step at xk, we choose a set of polling directions

Dk ⊆ D, whose columns form a positive spanning set, and we

evaluate f at some, possibly all, of the mesh-neighboring

points

xk + ∆kd(ℓ),

where d(ℓ) ∈ Dk.

If f at all of these points is not better than f(xk), xk is said to

be mesh-locally optimal and ∆k is reduced in a controlled

fashion.

Termination criteria—often based on the size of ∆k.

NB: Searches are made along a set of directions.

Steps of the standard Nelder–Mead algorithm:

Given: the n + 1 vertices xi, i = 1 . . . n + 1, of a nondegenerate

simplex in Rn and the associated values {fi} of f .

1. Order the vertices to satisfy f1 ≤ · · · ≤ fn ≤ fn+1, using an

appropriate tie-breaking rule.

2. Calculate x̄ =
∑n

i=1 xi (the average of all the points except

the worst).

3. Reflection. Compute xr = 2x̄ − xn+1 and evaluate

fr = f(xr). If f1 ≤ fr < fn, accept xr and terminate the

iteration. NB: xr is better than the worst vertex.

4. Expansion. If fr < f1, calculate xe = x̄ + 2(xr − x̄) and

evaluate fe = f(xe). If fe < fr, accept xe; otherwise,

accept xr. Terminate the iteration.

5. Contraction. If fr ≥ fn, perform a contraction.

a. Outside. If fn ≤ fr < fn+1, calculate xoc = x̄ + 1
2 (xr − x̄)

and evaluate foc = f(xoc). If foc ≤ fr, accept xoc and

terminate the iteration; otherwise, do a shrink.

b. Inside. If fr ≥ fn+1, calculate xic = x̄ − 1
2 (x̄ − xn+1) and

evaluate fic = f(xic). If fic ≤ fn+1, accept xic and

terminate the iteration; otherwise, do a shrink.

6. Shrink. Evaluate f at the n points vi = x1 + σ(xi − x1),

i = 2, . . . , n + 1. The vertices of the simplex at the next

iteration are x1, v2, . . . , vn+1.

NB: Except for shrinks (which hardly ever happen), all

“searches” are along a single line, joining the worst point to x̄.

Parallelism has been inherent in (and, in fact, was the

motivation for) pattern search methods ever since Torczon’s

1989 definition of multidirectional search, which was

developed at the Center for Research on Parallel Computing

(CRPC) at Rice University.

Asynchronous parallel pattern search (APPS) was first

proposed in 2001 by Hough, Kolda, and Torczon.

A newer version of APPS was published in 2006, and

HOPSPACK is now considered (by its Sandia authors) to have

replaced APPS; https://software.sandia.gov/trac/hopspack/

The idea for exploiting parallelism in all these instances is

based on separately performing the needed searches along the

set of search directions.

Nelder–Mead is much more problematic, since in its original

form it appears to be inherently sequential.

In recent years, however, there have been several proposals

that offer promise for an effective “parallel Nelder–Mead”,

although of course they are variants of the original algorithm.

Because of time limitations here, only one example (and its

application) will be (briefly) mentioned.

The reference: Lee and Wiswall (from NYU’s

Department of Economics), “A Parallel

Implementation of the Simplex Function

Minimization Routine”, Computational Economics

30 (2007).

Their strategy is to split up the Nelder–Mead

algorithm into separate searches that can be

assigned to p processors, assuming that n ≥ p.

1. Given p < n, a processor is assigned to each of the p

worst points.

2. Each processor i, i = 1, . . . , p, then calculates its own

“search direction” by reflecting its given “worst point”

through the centroid of the n − p + 1 points that have

better function values.

3. Each processor proceeds independently as in the

non-parallel NM algorithm, trying reflection, expansion,

contraction, and shrinkage.

4. The result is a set of p updated “worst points”, which are

then used, along with the best n − p + 1 points, to create

a new simplex.

Lee and Wiswall report the results of several hundred Monte

Carlo experiments, where the starting vertices are chosen at

random, to minimize sums of squares and sums of absolute

values up to dimension 200, for degrees of parallelism from

p = 1 to p = 0.9n.

Not surprisingly,

the performance varied substantially across

experiments and degrees of parallelization.

The authors conclude (and I agree) that their experiments

show the potentially large gains from parallelizing the

Nelder–Mead method—and that much more remains to be

done.

In a June 2011 final project, “Parallel Optimization and its

Application to Earnings Inequality”, in a parallel programming

class taught by John Gilbert at the University of California,

Santa Barbara, Klein and Neira show that parallel

Nelder–Mead (meaning the method of Lee and Wiswall) is

good for problems with a “cheap objective function but many

variables”.

Klein and Neira differ from Lee and Wiswall by processing k

points (k > 1) on p/k processors, rather than one point on

each of p processors. They also show how to implement

parallel Nelder–Mead with distributed memory.

Their application is to model human capital accumulation, in

a function with 400 variables.

Very encouraging results!

The second issue that (in my view) has not been sufficiently

well addressed in direct search methods involves reliability.

Ideally, optimization software will, with the highest possible

probability, produce a “correct” solution, using a reasonable

definition of “correct”. If this is not possible (e.g., the

tolerances are too small), the software should produce

information to guide the user to reformulate the problem,

change a parameter, and so on.

Before discussing how this property arises in direct search

methods, we invoke Beatrix Potter’s most famous tale.

Probably everyone knows the story, but just in case. . .

“Now my dears, you may go into the fields or down the lane,

but don’t go into Mr. McGregor’s garden: your father had an

accident there; he was put into a pie by Mrs. McGregor”.

Flopsy, Mopsy, and Cotton-tail, who were good little bunnies,

went down the lane to gather blackberries.

But Peter, who was very naughty, ran straight away to Mr.

McGregor’s garden and squeezed under the gate!

I am sorry to say that Peter was not very well during the

evening. His mother put him to bed and made some

camomile tea; and she gave a dose of it to Peter!

But Flopsy, Mopsy, and Cotton-tail had bread and milk and

blackberries for supper.

What’s the “takeaway” for numerical computing from The

Tale of Peter Rabbit?

Peter is, of course, the character that readers love, even

though he is disobedient, reckless, and not reliable at all.

His siblings Flopsy, Mopsy, and Cottontail are (perhaps

unfairly) perceived as annoyingly reliable, and readers tend to

dismiss them as a bit smug, a bit Goody Two-Shoes.

But The Tale of Peter Rabbit is fiction!

As Miss Prism comments in Oscar Wilde’s The

Importance of Being Earnest, “The good ended

happily and the bad unhappily. That is what fiction

means”.

If Peter, Flopsy, Mopsy, and Cotton-tail were

writing numerical software, we would have quite a

different story. Readers would not smile indulgently

and forgive Peter’s recklessness if his software failed

regularly.

What do we need to make direct search software

reliable?

Convergence proofs are important, but not nearly enough.

One reason: to prove anything, assumptions must be made

about f—but the alleged virtue of direct search methods is

supposed to be that they will optimize the proverbial “any

function”. And of course this is nonsense.

The already-mentioned January 2011 Argonne report by

Balaprakesh, Wild, and Hovland, “Can Search Algorithms

Save Large-scale Automatic Performance Tuning?”,

comments

Despite potentially sharp discontinuities and

disconnected feasible regions, our experience

suggests that there will almost always be some

structure in the objectives of interest.

To believe that direct search software is reliable, it helps to

know that it has correctly solved many problems!

There is a strong sense of déjà vu in thinking about testing

optimization software, which has been a recurring contentious

issue for more than 30 years.

The standards expected for mathematical exposition

are only rarely applied to the reporting of

computational experimentation. . . . Part of the

problem stems from the fact that there are no

standards for reporting computational experiments.

H. Crowder, R. Dembo, and J. Mulvey, On reporting

computational experiments with mathematical software, ACM

Transactions on Mathematical Software, 1979.

Engineers want to know which optimization

methods can be applied to their [simulation]

models, and under what circumstances.

This question is difficult to answer in a

satisfactory way. . . each design problem

poses different goals.

R. Barton, Testing strategies for simulation optimization,

Winter Simulation Conference, 1987.

Despite general agreement on the principles involved, many

open questions remain. Numerical experiments are needed:

1. To help us make informed judgments about which

methods tend to be most effective for problems in

general and specific problem classes in particular;

2. To reveal algorithmic strengths and weaknesses that may

not be obvious from theory, and to confirm (or deny)

expectations of performance derived from theory;

3. To suggest guidelines (aka rules of thumb) for choosing

optional algorithmic parameters.

The controversies begin as soon as one tries to

implement these principles. Should we:

1. Test problems that are difficult?

2. Test problems that are typical?

3. Test real applications, or problems that are

“like” real applications?

4. Test for reliability, speed, or . . . ?

5. Compare existing software?

All of these involve imprecise and ambiguous terms.

What’s the role of “difficult” problems?

Obviously it’s pointless to test methods on

problems that are known to be “easy” for all

methods.

Optimization researchers care a lot about extreme

and/or pathological situations, which can provide

insights into the modes of failure and poor

performance.

And all mathematicians love counterexamples!

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

The remarkable McKinnon counterexample to Nelder–Mead.

But how much do practitioners really care (and how

much should they care) about a few bad examples,

especially if the method works well for their

problems?

Sometimes, very little.

And Nelder-Mead works perfectly well on the

McKinnon example if the starting simplex is not the

pathological one. . .

−0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

Since problems from real-world applications are often

inordinately complicated, time-consuming, and/or proprietary,

we need “artificial” (“academic”) test problems that are

agreed to display the important features of the real-world

problems.

For example, several real-world applications are known in

which there are structural discontinuities in the gradient.

Hence the Dennis-Woods example (next) is extremely useful

because it illustrates a generic failure of pattern search

methods, including coordinate search, and has suggested

generalizations to overcome this form of failure.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

A further hazard of comparative numerical testing

is that the testers can upset their friends and

colleagues, based on the standard litany of issues

involving software authors:

• “You didn’t use the latest version”;

• “You didn’t use appropriate values for the

optional parameters”;

• “My software was never intended for problems

of the kind being tested”.

For those who are sufficiently brave, rigorous comparative

software testing invariably exposes room for improvement

and/or weaknesses and/or defects in the codes being

compared, even if it’s not clear that the results generalize.

As the 15-author paper “Comparison of derivative-free

optimization methods for groundwater supply and hydraulic

capture community problems”, by K. Fowler et al., 2008,

diplomatically states in its conclusions:

Algorithmic maturation is expected for all methods

and is already underway for some of the methods.

These algorithmic changes can reasonably be

expected to improve performance for this challenging

set of test problems.

Software is a moving target.

A major numerical issue related to reliability of direct search

methods: even though far from the optimum, they can

become stuck in a rut, stagnate, bog down,. . .

In these cases, something needs to be done to escape

stagnation.

But. . . direct search methods can also cease to make progress

when they are close to the optimum, in which case they really

should stop.

And it is often almost impossible to distinguish these two

situations numerically.

This dilemma has been known for a long time.

Powell (1964)a: “. . . a compromise has to be made between

stopping the iterative procedure too soon and calculating f an

unnecessarily large number of times”.

Swann (1974)b: “. . . [direct search methods] are more liable

[than gradient-based methods] to end prematurely or to

prolong the search unnecessarily”.

aAn efficient method for finding the minimum of a function of several

variables without calculating derivatives, Computer Journal.
bConstrained optimization by direct search, in Numerical Methods for

Constrained Optimization.

To escape stagnation, Brent (1973)a proposes adding a

random step when recent steps have not improved the current

approximation to the minimizer.

The idea is based on PARTAN (parallel tangents),b a strategy

for accelerating the slow convergence of steepest descent.

aAlgorithms for Minimization Without Derivatives, Prentice–Hall.
bShah, Buehler, and Kempthorne (1964), Some algorithms for minimiz-

ing a function of several variables, SIAM Journal on Applied Mathematics.

Recent work in this domain:

A very interesting May 2011 Argonne report by

Larson and Wild, “Non-intrusive termination of

noisy optimization”, proposes several families of

parameterized termination criteria, along with

extensive numerical tests that suggest guidelines for

use in practice.

MHW: trying to update the idea of adding

randomness to avoid stagnation and/or detect

when a direct search method should terminate.

A typical picture from many experiments, where the red blobs

show stagnation, the optimal point is magenta, and the

cerulean point is the “breakaway” point.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0.45

0.5

0.55

(Anodyne) concluding thoughts on numerical

advances in direct search methods: much remains

to be done about

1. Adapting direct search methods to take

advantage of evolving high-end computing

hardware, and

2. Defining procedures and criteria, based on

user-provided information as well as careful

sampling, that will increase the probability of

reasonable termination while avoiding

stagnation.

A much more difficult task:

Concluding thoughts about Sven. . . how to convey

his many contributions as a scientist and a person??

The only feasible solution—we can take his

scientific contributions as a self-evident

hypothesis with no need of proof.

And to represent Sven’s joie de vivre, we can turn

to one of the favorite images in Beatrix Potter, a

lively and lovable mouse dancing a jig.

Happy birthday, dear Sven!!

