What's New in Active-Set Methods for Nonlinear Optimization?

Philip E. Gill

Advances in Numerical Computation, Manchester University, July 5, 2011

A Workshop in Honor of Sven Hammarling

What's it all about?

From Wikipedia, 2011
"Sequential quadratic programming (SQP) is one of the most popular and robust algorithms for nonlinear continuous optimization. The method is based on solving a series of subproblems designed to minimize a quadratic model of the objective subject to a linearization of the constraints ..."

Continuous nonlinear optimization

Given functions that define $f(x)$ and $c(x)$ (and their derivatives) at any x, solve

$$
\begin{gathered}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} \\
\text { subject to } \quad \ell \leq\left\{\begin{array}{c}
x \\
c(x) \\
A x
\end{array}\right\} \leq u
\end{gathered}
$$

The ground rules:

- f and c are arbitrary, but smooth functions
- Large number of variables
- Local solutions

A trick learned from LP—add slack variables

$$
\begin{array}{cc}
\left.\underset{\substack{x, s_{A}, s_{C} \\
\text { subject to }}}{ } \begin{array}{c}
f(x) \\
\\
\text { man }
\end{array}\right)-s_{C}=0, \quad A x-s_{A}=0 \\
\ell \leq\left\{\begin{array}{c}
x \\
s_{C} \\
s_{A}
\end{array}\right\} \leq u
\end{array}
$$

The slacks s_{A}, s_{C} provide a constraint Jacobian of full rank.

Prototype problem

Without loss of generality, we consider the problem

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c(x)=0, \quad x \geq 0
\end{array}
$$

The $m \times n$ constraint Jacobian has rank m.

Some events in the development of SQP methods
1963 Wilson

1972 MINOS, Murtagh \& Saunders
1975 Han \& Powell '76
1975-84 the SQP "salad days"
1982 NPSOL, G, Murray, Saunders \& Wright (and Sven!)
1984 Karmarkar and the interior-point (IP) "revolution"
1985- barrier methods, G, Murray, Saunders, Tomlin \& Wright '86
1992- SNOPT, G, Murray \& Saunders '97
1997- AMPL, GAMS introduce automatic differentiation
2008- the SQP renaissance

Outline

(1) Overview of SQP methods
(2) The SQP decline
(3) The SQP renaissance

4 Modern SQP methods

Overview of SQP methods

First, consider the equality constrained problem:

```
minimize f(x) subject to c(x)=0
```

- The objective gradient and Hessian:

$$
g(x) \triangleq \nabla f(x), \quad H(x) \triangleq \nabla^{2} f(x)
$$

- The $m \times n$ constraint Jacobian: $A(x) \triangleq c^{\prime}(x)$
- The Lagrangian $\mathcal{L}(x, \pi)=f(x)-c(x)^{T} \pi$
- The Lagrangian gradient and Hessian:

$$
\nabla_{x} \mathcal{L}(x, \pi), \quad H(x, \pi) \triangleq \nabla^{2}{ }_{x x} \mathcal{L}(x, \pi)
$$

- A local optimal solution $\left(x^{*}, \pi^{*}\right)$

The gradient of the Lagrangian with respect to both x and π is:

$$
\nabla \mathcal{L}(x, \pi)=\binom{g(x)-A(x)^{T} \pi}{-c(x)}
$$

An optimal solution $\left(x^{*}, \pi^{*}\right)$ is a stationary point of $\mathcal{L}(x, \pi)$, i.e.,

$$
\nabla \mathcal{L}\left(x^{*}, \pi^{*}\right)=0
$$

The vector $\left(x^{*}, \pi^{*}\right)$ solves the nonlinear equations

$$
\nabla \mathcal{L}(x, \pi)=\binom{g(x)-A(x)^{T} \pi}{-c(x)}=0
$$

$n+m$ nonlinear equations in the $n+m$ variables x and π.
Apply Newton's method to find a solution of $\nabla \mathcal{L}(x, \pi)=0$.
Newton's method converges at a second-order rate.

$$
(\text { "Jacobian" })\binom{\text { "Change in }}{\text { variables" }}=-(\text { "Residual" })
$$

The $(n+m) \times(n+m)$ Jacobian is

$$
\left(\begin{array}{cc}
H(x, \pi) & -A(x)^{T} \\
-A(x) & 0
\end{array}\right)
$$

with $H(x, \pi)=\nabla^{2} f(x)-\sum_{i=1}^{m} \pi_{i} \nabla^{2} c_{i}(x)$, the Lagrangian Hessian.

Suppose we are given a primal-dual estimate $\left(x_{0}, \pi_{0}\right)$.
The Newton equations for (p, q), the change to $\left(x_{0}, \pi_{0}\right)$, are:

$$
\left(\begin{array}{cc}
H\left(x_{0}, \pi_{0}\right) & -A\left(x_{0}\right)^{T} \\
-A\left(x_{0}\right) & 0
\end{array}\right)\binom{p}{q}=-\binom{g\left(x_{0}\right)-A\left(x_{0}\right)^{T} \pi_{0}}{-c\left(x_{0}\right)}
$$

These are just the Karush-Kuhn-Tucker KKT equations

$$
\left(\begin{array}{cc}
H_{0} & A_{0}^{T} \\
A_{0} & 0
\end{array}\right)\binom{p}{-q}=-\binom{g_{0}-A_{0}^{T} \pi_{0}}{c_{0}}
$$

Set $x_{1}=x_{0}+p$, and $\pi_{1}=\pi_{0}+q$.

Wilson's light-bulb moment!

$\left(x_{0}+p, \pi_{0}+q\right)$ is the primal-dual solution of the quadratic subproblem:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & g_{0}^{\top}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} H_{0}\left(x-x_{0}\right) \\
\text { subject to } & c_{0}+A_{0}\left(x-x_{0}\right)=0
\end{array}
$$

The sequence $\left\{\left(x_{k}, \pi_{k}\right)\right\}$ converges at a second-order rate.

Now consider the inequality constrained problem Given $\left(x_{0}, \pi_{0}\right)$, the "Wikipedia" SQP subproblem is:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & g_{0}^{\top}\left(x-x_{0}\right)+\frac{1}{2}\left(x-x_{0}\right)^{T} H_{0}\left(x-x_{0}\right) \\
\text { subject to } & c_{0}+A_{0}\left(x-x_{0}\right)=0, \quad x \geq 0
\end{array}
$$

The QP must be solved by iteration.
\Rightarrow inner/outer iteration structure. QP solution $\left(x_{k}^{*}, \pi_{k}^{*}\right)$.

Given any $x(x \geq 0)$, the active set is $\mathcal{A}(x)=\left\{i: x_{i}=0\right\}$.
The ϵ-active set is $\mathcal{A}_{\epsilon}(x)=\left\{i: x_{i} \leq \epsilon\right\}$.
If $x_{k} \rightarrow x^{*}$, then

$$
\mathcal{A}_{\epsilon}\left(x_{k}\right)=\mathcal{A}\left(x^{*}\right) \quad \text { for } k \text { sufficiently large }
$$

Define the free variables as those with indices not in $\mathcal{A}_{\epsilon}(x)$.

If $\mathcal{A}_{\epsilon}\left(x_{k}\right)=\mathcal{A}\left(x^{*}\right)$, the QP optimality conditions imply

$$
\left(\begin{array}{cc}
H_{F} & A_{F}^{T} \\
A_{F} & 0
\end{array}\right)\binom{p_{F}}{-\pi_{k}^{*}}=-\binom{g_{F}}{c_{k}}
$$

where

- p_{F} is the vector of free components of $x_{k}^{*}-x_{k}$
- A_{F} is the matrix of free columns of $A\left(x_{k}\right)$
- H_{F} is the matrix of free rows and columns of $H\left(x_{k}, \pi_{k}\right)$
- g_{F} is the vector of free components of $g\left(x_{k}\right)$

If x^{*} is nondegenerate, then A_{F} has full row rank.
If $\left(x^{*}, \pi^{*}\right)$ satisfies the second-order sufficient conditions, then

$$
\left(\begin{array}{cc}
H_{F} & A_{F}^{T} \\
A_{F} & 0
\end{array}\right)\binom{p_{F}}{-\pi_{k}^{*}}=-\binom{g_{F}}{c_{k}} \text { is nonsingular }
$$

\Rightarrow eventually, "Wikipedia SQP" is Newton's method applied to the problem in the free variables.

Two-phase active-set methods

A sequence of equality-constraint QPs is solved, each defined by fixing a subset of the variables on their bounds.

Sequence of related KKT systems with matrix

$$
K=\left(\begin{array}{ll}
H_{F} & A_{F}^{T} \\
A_{F} &
\end{array}\right)
$$

- A_{F} has column a_{s} added, or column a_{t} deleted
- H_{F} has a row and column added or deleted

These changes are reflected in some factorization of K.

If the fixed set from one QP is used to start the next QP, the subproblems usually require one QP iteration near the solution.

With a good starting point, SQP requires few QP iterations

Four fundamental issues associated with "Wikipedia SQP":

- Global convergence
- Is $\left(x_{k+1}, \pi_{k+1}\right)$ "better" than $\left(x_{k}, \pi_{k}\right)$?
- III-posed QP subproblems near $\left(x^{*}, \pi^{*}\right)$
- QP subproblem may be infeasible
- III-conditioned or singular equations
- Computational efficiency
- Sequence of linear equations with changing structure
- Need to use efficient software for linear equations
- Nonconvex QP subproblems
- Indefinite QP is difficult!

Global convergence

Line-search and trust-region methods force convergence by ensuring that $\mathcal{M}\left(x_{k+1}, \pi_{k+1}\right)<\mathcal{M}\left(x_{k}, \pi_{k}\right)$ for some merit function $\mathcal{M}(x, \pi)$.

Two popular merit functions are:

- the ℓ_{1} penalty function:

$$
\mathcal{M}(x)=f(x)+\frac{1}{\mu} \sum_{i=1}^{m}\left|c_{i}(x)\right|
$$

- the augmented Lagrangian merit function

$$
\mathcal{M}(x, \pi)=f(x)-\pi^{T} c(x)+\frac{1}{2 \mu} \sum_{i=1}^{m} c_{i}(x)^{2}
$$

μ is the penalty parameter.

III-Conditioning and Singularity

At a degenerate QP solution, the rows of A_{\digamma} are linearly dependent

$$
\Rightarrow \quad\left(\begin{array}{cc}
H_{F} & A_{F}^{T} \\
A_{F} & 0
\end{array}\right)\binom{p_{k}}{-\pi_{k}^{*}}=-\binom{g_{F}}{c_{k}} \quad \text { is singular }
$$

Almost all practical optimization problems are degenerate
Options:

- Identify an A_{F} with linearly independent rows e.g., SNOPT. G, Murray \& Saunders '05.
- Regularize the KKT system. Hager '99, Wright '05.

Where does SNOPT fit in this discussion?

- Positive-definite $H \Rightarrow$ the subproblem is a convex program
- H is approximated by a limited-memory quasi-Newton method
- A two-phase active-set method is used for the convex QP
- Elastic mode is entered if the QP is infeasible or the multipliers are large
- The KKT equations are solved by updating factors of A_{F} and the reduced Hessian

Interest in SQP methods declines. . .

In the late 1980s/early 1990's, research on SQP methods declined.
Three reasons (but interconnected):

- The rise of interior-point methods
- The rise of automatic differentiation packages
- modeling languages such as AMPL and GAMS started to provide second derivatives automatically.
- Computer architecture evolved

The "Wikipedia" QP

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & g_{k}^{T}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{T} H_{k}\left(x-x_{k}\right) \\
\text { subject to } & c_{k}+A_{k}\left(x-x_{k}\right)=0, \quad x \geq 0
\end{array}
$$

is NP hard when H_{k} is indefinite.
Methods based on solving indefinite QP's are problematic.

Efficient software for linear equations

Computer hardware is changing

- Moore's Law is fading
"The number of transistors on a microchip will double every 18 months"
- Moore's Law has been "updated":
"the number of cores (cpus) on a processor will double every 18 months"
- it's already happening. . .
- 2008 Mac G5: 4 quad-core processors $=16$ cpus
- 2011 Mac Book: dual 16-core processors $=32$ cpus
- 2013 dual 132-core $=264$ cpus
- > 2008 potentially hundreds of cpus using GPUs

20 years of progress

Linear programming with MINOS

PILOT 1442 rows, 3652 columns, 43220 nonzeros

Year	Itns	Cpu secs	Architecture
1987	-	8.7×10^{4}	DEC Vaxstation II
\vdots	\vdots	\vdots	\vdots
2005	17738	22.2	dual-core Xeon
2006	16865	9.7	dual-core Opteron 2.4 Ghz
2007	16865	8.1	dual-core Opteron 3.1 Ghz
2008	16865	8.7	quad-core Opteron 3.1Ghz

The nice features of IP methods

IP methods...

- work best when second derivatives are provided
- solve a sequence of systems with fixed structure
- they can exploit solvers designed for modern computer architectures
- IP methods are blazingly fast on one-off problems

The SQP renaissance

Then, things started to change. . .

Many important applications require the solution of a sequence of related optimization problems

- ODE and PDE-based optimization with mesh refinement
- Mixed-integer nonlinear programming
- infeasible constraints are likely to occur

The common feature is that we would like to benefit from good approximate solutions.

The not-so-nice features of IP methods

IP methods...

- have difficulty exploiting a good solution
- have difficulty certifying infeasible constraints
- have difficulty exploiting linear constraints
- factor a KKT matrix with every constraint present

IP methods are fast on one-off problems that aren't too hard

SQP vs IP Ying vs Yang? or is it Yang vs Ying?

Modern SQP methods

(Joint work with Daniel Robinson)

Modern SQP Methods

Aims:

- to define an SQP method that exploits second derivatives.
- to provide a globally convergent method that is provably effective for degenerate problems
- perform stabilized SQP near a solution
- allow the use of modern sparse matrix packages
- "black-box" linear equation solvers
- Do all of the above as seamlessly as possible!

When formulating methods, how may we best exploit modern computer architectures?

- Methods based on sparse updating are hard to speed up
- Reformulate methods to shift the emphasis from sparse matrix updating to sparse matrix factorization
- Thereby exploit state-of-the-art linear algebra software
- Less reliance on specialized "home grown" software

Shifting from updating to factorization
 An SQP example

Given $K=\left(\begin{array}{cc}H & A_{F}^{T} \\ A_{F} & \end{array}\right)$, quantities for the next QP iteration may be found by solving a bordered system with matrices:

$$
\begin{array}{ll}
\left(\begin{array}{cc|c}
H & A_{F}^{T} & h_{t} \\
A_{F} & & a_{t} \\
\hline h_{t}^{T} & a_{t}^{T} & h_{t t}
\end{array}\right) \quad \text { (add column } a_{t} \text {) } \\
\left(\begin{array}{cc|c}
H & A_{F}^{T} & e_{s} \\
A_{F} & & 0 \\
\hline e_{s}^{T} & 0 & 0
\end{array}\right) & \text { (delete column } \left.a_{s}\right)
\end{array}
$$

Schur complement QP method

G, Murray, Saunders \& Wright 1990

In general,

$$
K_{j} v=f \quad \equiv \quad\left(\begin{array}{cc}
K_{0} & W \\
W^{T} & D
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{f_{1}}{f_{2}}
$$

1 solve with dense Schur-complement $C=D-W^{\top} K_{0}^{-1} W$
2 solves with K_{0}
Used in GALAHAD's QPA, Gould \& Toint '04
Block-LU updates G, Murray, Saunders \& Wright '84, Huynh '08

Infeasibility, ill-conditioning and all that. . .

Given fixed $\pi_{E} \approx \pi^{*}$, and fixed $\mu>0$, consider the generalized augmented Lagrangian

$$
\begin{aligned}
& \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right)=f(x)-c(x)^{T} \pi_{E}+\frac{1}{2 \mu}\|c(x)\|_{2}^{2} \\
&+\frac{1}{2 \mu}\left\|c(x)+\mu\left(\pi-\pi_{E}\right)\right\|_{2}^{2}
\end{aligned}
$$

G \& Robinson '10.
\mathcal{M} involves $n+m$ variables and has gradient

$$
\nabla \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right)=\binom{g(x)-A(x)^{T}\left(\pi_{A}-\left(\pi-\pi_{A}\right)\right)}{\mu\left(\pi-\pi_{A}\right)}
$$

where $\pi_{A} \equiv \pi_{A}(x)=\pi_{E}-c(x) / \mu$.
The Hessian of \mathcal{M} is

$$
\nabla^{2} \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right)=\left(\begin{array}{cc}
H+\frac{2}{\mu} A^{T} A & A^{T} \\
A & \mu l
\end{array}\right)
$$

with $H=H\left(x, \pi_{A}-\left(\pi-\pi_{A}\right)\right)$.

Result I

Theorem

Consider the bound constrained problem

$$
\underset{x, \pi}{\operatorname{minimize}} \mathcal{M}\left(x, \pi ; \pi^{*}, \mu\right) \quad \text { subject to } x \geq 0 \quad \text { (BC) }
$$

where π^{*} is a Lagrange multiplier vector.
If $\left(x^{*}, \pi^{*}\right)$ satisfies the second-order sufficient conditions for the problem:

$$
\operatorname{minimize}_{x \in \mathbb{R}^{n}}^{\min } f(x) \text { subject to } c(x)=0, x \geq 0
$$

then there is a $\bar{\mu}>0$ such that $\left(x^{*}, \pi^{*}\right)$ is a minimizer of $(B C)$ for all $0<\mu<\bar{\mu}$.
[0]. Choose initial μ and π_{E}, an estimate of π^{*};
[1]. Find an approximate solution of

$$
\underset{x, \pi}{\operatorname{minimize}} \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right) \quad \text { subject to } \quad x \geq 0
$$

[2]. Update π_{E} and μ; Repeat at [1].

The problem

$$
\underset{x, \pi}{\operatorname{minimize}} \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right) \quad \text { subject to } x \geq 0
$$

is solved using a line-search method that minimizes a sequence of quadratic models:

$$
Q_{\mathcal{M}}\left(x, \pi ; \pi_{E}, \mu\right) \approx \mathcal{M}\left(x, \pi ; \pi_{E}, \mu\right)
$$

Two different values of μ are maintained:

- For the line search on $\mathcal{M}: \quad \mu=\mu_{k}$ with "large" μ_{k}
- For the QP subproblem with $Q_{\mathcal{M}}: \mu=\mu_{R}$ with $\mu_{R} \ll \mu_{k}$

We solve a sequence of convex QPs:

$$
\begin{array}{ll}
\underset{v=(x, \pi)}{\operatorname{minimize}} & Q_{\mathcal{M}}(v)=g_{\mathcal{M}}^{T}\left(v-v_{k}\right)+\frac{1}{2}\left(v-v_{k}\right)^{T} H_{\mathcal{M}}\left(v-v_{k}\right) \\
\text { subject to } & x \geq 0
\end{array}
$$

where $v_{k}=\left(x_{k}, \pi_{k}\right)$, and

$$
g_{\mathcal{M}}=\nabla \mathcal{M}\left(x_{k}, \pi_{k} ; \mu_{R}\right), \quad H_{\mathcal{M}} \approx \nabla^{2} \mathcal{M}\left(x_{k}, \pi_{k} ; \mu_{R}\right)
$$

We define

$$
H_{\mathcal{M}}=\left(\begin{array}{cc}
\bar{H}_{k}+\frac{2}{\mu} A_{k}^{T} A_{k} & A_{k}^{T} \\
A_{k} & \mu l
\end{array}\right)
$$

where

- $\bar{H}_{k}=H\left(x_{k}, \pi_{k}\right)+D_{k}$, where D_{k} is a sparse diagonal.
- D_{k} is chosen so that $\bar{H}_{k}+\frac{1}{\mu} A_{k}^{T} A_{k}$ positive definite.

Result II

Theorem (G \& Robinson '11)

The bound constrained QP

$$
\operatorname{minimize}_{\Delta v=(p, q)} g_{\mathcal{M}}^{T} \Delta v+\frac{1}{2} \Delta v^{\top} H_{\mathcal{M}} \Delta v \text { subject to } x+p \geq 0
$$

is equivalent to the QP problem

$$
\begin{array}{ll}
\underset{p, q}{\operatorname{minimize}} & g^{T} p+\frac{1}{2} p^{T} \bar{H} p+\frac{1}{2} \mu\|\pi+q\|^{2} \\
\text { subject to } & c+A p+\mu\left(\pi+q-\pi_{E}\right)=0, \quad x+p \geq 0
\end{array}
$$

(known as the "stabilized" SQP subproblem).

At QP iteration j, a direction $\left(\Delta p_{j}, \Delta q_{j}\right)$ is found satisfying

$$
\left(\begin{array}{cc}
\bar{H}_{F} & -A_{F}^{T} \\
A_{F} & \mu l
\end{array}\right)\binom{\Delta p_{F}}{\Delta q_{j}}=-\binom{\left(\widehat{g}\left(x_{j}\right)-A_{k}^{T} \pi_{j}\right)_{F}}{\widehat{c}\left(x_{j}\right)+\mu\left(\pi_{j}-\pi_{E}\right)},
$$

with $\widehat{g}(x)=g_{k}+\bar{H}_{k}\left(x-x_{k}\right)$ and $\widehat{c}(x)=c_{k}+A_{k}\left(x-x_{k}\right)$

- This system is nonsingular for $\mu>0$
- If $\mu=\mu_{R}$ (small), then this is a "stabilized" SQP step
- "Black-box" symmetric indefinite solvers may be used
- No "phase-one" procedure is needed for the QP
- The QP subproblem is always feasible
- As the outer iterations converge, the directions $\left(p_{k}, q_{k}\right)$ satisfy

$$
\left(\begin{array}{cc}
\bar{H}_{F} & -A_{F}^{T} \\
A_{F} & \mu l
\end{array}\right)\binom{p_{F}}{q_{k}}=-\binom{\left(g_{k}-A_{k}^{T} \pi_{k}\right)_{F}}{c_{k}+\mu\left(\pi_{k}-\pi_{E}\right)}
$$

These equations define $\pi_{k}+q_{k}$ as an $O(\mu)$ estimate of the unique least-length Lagrange multipliers.

- A fixed sparse matrix is can be factored.

Properties of the modification

If the QP does not change the active set, then the final KKT system satisfies

$$
\left(\begin{array}{cc}
\bar{H}_{F} & A_{F}^{T} \\
A_{F} & -\mu \mathrm{I}
\end{array}\right)=\left(\begin{array}{cc}
H_{F}+D_{F} & A_{F}^{T} \\
A_{F} & -\mu \mathrm{l}
\end{array}\right)=\left(\begin{array}{cc}
H_{F} & A_{F}^{T} \\
A_{F} & -\mu \mathrm{l}
\end{array}\right)
$$

\Rightarrow the QP step is computed using H_{F} (unmodified) and A_{F}.
\Rightarrow in the limit, this is Newton's method wrt the free variables.
\Rightarrow potential second-order convergence rate.

Summary and comments

- Recent developments in MINLP and PDE- and ODE-constrained optimization has sparked renewed interest in second-derivative SQP methods
- Multi-core architectures require new ways of looking at how optimization algorithms are formulated
- Reliance on state-of-the-art linear algebra software

The method...

- involves a convex QP for which the dual variables may be bounded explicitly
- is based on sparse matrix factorization
- allows the use of some "black-box" indefinite solvers
- is "global" but reduces to stabilized SQP near a solution

Happy Birthday Sven!

References

Philip E. Gill \& Daniel Robinson, A primal-dual augmented Lagrangian, Computational Optimization and Applications, 47 (2010), 1-25.
Philip E. Gill \& Elizabeth Wong, Methods for convex and general quadratic programming, Report NA 10-1, Department of Mathematics, University of California, San Diego, 2010.
Philip E. Gill \& Elizabeth Wong, Sequential quadratic programming methods, in J. Lee \& S. Leyffer (eds.), Mixed-Integer Nonlinear Optimization: Algorithmic Advances and Applications, The IMA Volumes in Mathematics and its Applications, Springer Verlag,Berlin, Heidelberg and New York, 2011.

Philip E. Gill \& Daniel Robinson, Regularized primal-dual sequential quadratic programming methods, Report NA 11-1, Department of Mathematics, University of California, San Diego, 2011.

