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What’s it all about?

From Wikipedia, 2011

“Sequential quadratic programming (SQP) is one of the
most popular and robust algorithms for nonlinear
continuous optimization. The method is based on solving
a series of subproblems designed to minimize a quadratic
model of the objective subject to a linearization of the
constraints . . . ”
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Continuous nonlinear optimization

Given functions that define f (x) and c(x) (and their derivatives)
at any x , solve

minimize
x∈Rn

f (x)

subject to ` ≤


x

c(x)
Ax

 ≤ u

The ground rules:

• f and c are arbitrary, but smooth functions

• Large number of variables

• Local solutions
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A trick learned from LP—add slack variables

minimize
x , sA, sC

f (x)

subject to c(x)− sC = 0, Ax − sA = 0

` ≤


x
sC

sA

 ≤ u

The slacks sA, sC provide a constraint Jacobian of full rank.
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Prototype problem

Without loss of generality, we consider the problem

minimize
x

f (x)

subject to c(x) = 0, x ≥ 0

The m × n constraint Jacobian has rank m.
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Some events in the development of SQP methods

1963 Wilson

1972 MINOS, Murtagh & Saunders

1975 Han & Powell ’76

1975–84 the SQP “salad days”

1982 NPSOL, G, Murray, Saunders & Wright (and Sven!)

1984 Karmarkar and the interior-point (IP) “revolution”

1985– barrier methods, G, Murray, Saunders, Tomlin & Wright ’86

1992– SNOPT, G, Murray & Saunders ’97

1997– AMPL, GAMS introduce automatic differentiation

2008– the SQP renaissance
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Overview of SQP methods

UCSD Center for Computational Mathematics Slide 8/54, July 5, 2011



Overview of SQP methods SQP decline SQP renaissance Modern SQP methods

First, consider the equality constrained problem:

minimize
x∈Rn

f (x) subject to c(x) = 0

The objective gradient and Hessian:
g(x) 4= ∇f (x), H(x) 4= ∇2f (x)

The m × n constraint Jacobian: A(x) 4= c ′(x)

The Lagrangian L(x , π) = f (x)− c(x)Tπ

The Lagrangian gradient and Hessian:
∇xL(x , π), H(x , π) 4= ∇2

xxL(x , π)

A local optimal solution (x∗, π∗)
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The gradient of the Lagrangian with respect to both x and π is:

∇L(x , π) =

(
g(x)− A(x)Tπ

−c(x)

)

An optimal solution (x∗, π∗) is a stationary point of L(x , π), i.e.,

∇L(x∗, π∗) = 0
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The vector (x∗, π∗) solves the nonlinear equations

∇L(x , π) =

(
g(x)− A(x)Tπ

−c(x)

)
= 0

n + m nonlinear equations in the n + m variables x and π.

Apply Newton’s method to find a solution of ∇L(x , π) = 0.

Newton’s method converges at a second-order rate.
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(
“Jacobian”

)(“Change in
variables”

)
= −

(
“Residual”

)
The (n + m)× (n + m) Jacobian is(

H(x , π) −A(x)T

−A(x) 0

)

with H(x , π) = ∇2f (x)−
m∑

i=1

πi∇2ci (x), the Lagrangian Hessian.
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Suppose we are given a primal-dual estimate (x0, π0).

The Newton equations for (p, q), the change to (x0, π0), are:(
H(x0, π0) −A(x0)T

−A(x0) 0

)(
p
q

)
= −

(
g(x0)− A(x0)Tπ0

−c(x0)

)

These are just the Karush-Kuhn-Tucker KKT equations(
H0 AT

0

A0 0

)(
p
−q

)
= −

(
g0 − AT

0 π0

c0

)

Set x1 = x0 + p, and π1 = π0 + q.
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Wilson’s light-bulb moment!

(x0 + p, π0 + q) is the primal-dual solution of the quadratic
subproblem:

minimize
x

gT
0 (x − x0) + 1

2(x − x0)TH0(x − x0)

subject to c0 + A0(x − x0) = 0

The sequence {(xk , πk)} converges at a second-order rate.
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Now consider the inequality constrained problem

Given (x0, π0), the “Wikipedia” SQP subproblem is:

minimize
x

gT
0 (x − x0) + 1

2(x − x0)TH0(x − x0)

subject to c0 + A0(x − x0) = 0, x ≥ 0

The QP must be solved by iteration.

⇒ inner/outer iteration structure.

QP solution (x∗k , π
∗
k).
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Given any x (x ≥ 0), the active set is A(x) = { i : xi = 0 }.

The ε-active set is Aε(x) = { i : xi ≤ ε }.

If xk → x∗, then

Aε(xk) = A(x∗) for k sufficiently large

Define the free variables as those with indices not in Aε(x).
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If Aε(xk) = A(x∗), the QP optimality conditions imply(
HF AT

F

AF 0

)(
pF

−π∗k

)
= −

(
gF

ck

)

where

pF is the vector of free components of x∗k − xk

AF is the matrix of free columns of A(xk)

HF is the matrix of free rows and columns of H(xk , πk)

gF is the vector of free components of g(xk)
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If x∗ is nondegenerate, then AF has full row rank.

If (x∗, π∗) satisfies the second-order sufficient conditions, then(
HF AT

F

AF 0

)(
pF

−π∗k

)
= −

(
gF

ck

)
is nonsingular

⇒ eventually, “Wikipedia SQP” is Newton’s method applied to
the problem in the free variables.
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Two-phase active-set methods

A sequence of equality-constraint QPs is solved, each defined by
fixing a subset of the variables on their bounds.

Sequence of related KKT systems with matrix

K =

(
HF AT

F

AF

)

AF has column as added , or column at deleted

HF has a row and column added or deleted

These changes are reflected in some factorization of K .
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If the fixed set from one QP is used to start the next QP, the
subproblems usually require one QP iteration near the solution.

With a good starting point, SQP requires few QP iterations
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Four fundamental issues associated with “Wikipedia SQP”:

Global convergence

Is (xk+1, πk+1) “better” than (xk , πk) ?

Ill-posed QP subproblems near (x∗, π∗)

QP subproblem may be infeasible
Ill-conditioned or singular equations

Computational efficiency

Sequence of linear equations with changing structure
Need to use efficient software for linear equations

Nonconvex QP subproblems

Indefinite QP is difficult!
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Global convergence

Line-search and trust-region methods force convergence by
ensuring that M(xk+1, πk+1) <M(xk , πk) for some merit function
M(x , π).

Two popular merit functions are:

the `1 penalty function:

M(x) = f (x) +
1

µ

m∑
i=1

|ci (x)|

the augmented Lagrangian merit function

M(x , π) = f (x)− πTc(x) +
1

2µ

m∑
i=1

ci (x)2

µ is the penalty parameter .
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Ill-Conditioning and Singularity

At a degenerate QP solution, the rows of AF are linearly dependent

⇒

(
HF AT

F

AF 0

)(
pk

−π∗k

)
= −

(
gF

ck

)
is singular

Almost all practical optimization problems are degenerate

Options:

Identify an AF with linearly independent rows
e.g., SNOPT. G, Murray & Saunders ’05.

Regularize the KKT system. Hager ’99, Wright ’05.
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Where does SNOPT fit in this discussion?

Positive-definite H ⇒ the subproblem is a convex program

H is approximated by a limited-memory quasi-Newton method

A two-phase active-set method is used for the convex QP

Elastic mode is entered if the QP is infeasible or the
multipliers are large

The KKT equations are solved by updating factors of AF and
the reduced Hessian
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Interest in SQP methods declines. . .

UCSD Center for Computational Mathematics Slide 25/54, July 5, 2011



Overview of SQP methods SQP decline SQP renaissance Modern SQP methods

In the late 1980s/early 1990’s, research on SQP methods declined.

Three reasons (but interconnected):

The rise of interior-point methods

The rise of automatic differentiation packages

modeling languages such as AMPL and GAMS started to
provide second derivatives automatically.

Computer architecture evolved
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The “Wikipedia” QP

minimize
x

gT
k (x − xk) + 1

2(x − xk)THk(x − xk)

subject to ck + Ak(x − xk) = 0, x ≥ 0

is NP hard when Hk is indefinite.

Methods based on solving indefinite QP’s are problematic.
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Efficient software for linear equations
Computer hardware is changing

Moore’s Law is fading

“The number of transistors on a microchip will double every
18 months”

Moore’s Law has been “updated”:

“the number of cores (cpus) on a processor will double every
18 months”

it’s already happening. . .

2008 Mac G5: 4 quad-core processors = 16 cpus
2011 Mac Book: dual 16-core processors = 32 cpus
2013 dual 132-core = 264 cpus

> 2008 potentially hundreds of cpus using GPUs
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20 years of progress
Linear programming with MINOS

PILOT 1442 rows, 3652 columns, 43220 nonzeros

Year Itns Cpu secs Architecture

1987 – 8.7× 104 DEC Vaxstation II
...

...
...

...

2005 17738 22.2 dual-core Xeon

2006 16865 9.7 dual-core Opteron 2.4Ghz

2007 16865 8.1 dual-core Opteron 3.1Ghz

2008 16865 8.7 quad-core Opteron 3.1Ghz
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The nice features of IP methods

IP methods . . .

work best when second derivatives are provided

solve a sequence of systems with fixed structure

they can exploit solvers designed for modern computer
architectures

IP methods are blazingly fast on one-off problems
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The SQP renaissance
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Then, things started to change. . .

Many important applications require the solution of a sequence of
related optimization problems

ODE and PDE-based optimization with mesh refinement

Mixed-integer nonlinear programming

infeasible constraints are likely to occur

The common feature is that we would like to benefit from good
approximate solutions.
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The not-so-nice features of IP methods

IP methods . . .

have difficulty exploiting a good solution

have difficulty certifying infeasible constraints

have difficulty exploiting linear constraints

factor a KKT matrix with every constraint present

IP methods are fast on one-off problems that aren’t too hard

SQP vs IP Ying vs Yang? or is it Yang vs Ying?
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Modern SQP methods

(Joint work with Daniel Robinson)
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Modern SQP Methods

Aims:

to define an SQP method that exploits second derivatives.

to provide a globally convergent method that is provably
effective for degenerate problems

perform stabilized SQP near a solution

allow the use of modern sparse matrix packages

“black-box” linear equation solvers

Do all of the above as seamlessly as possible!
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When formulating methods, how may we best exploit modern
computer architectures?

Methods based on sparse updating are hard to speed up

Reformulate methods to shift the emphasis from sparse matrix
updating to sparse matrix factorization

Thereby exploit state-of-the-art linear algebra software
Less reliance on specialized “home grown” software
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Shifting from updating to factorization
An SQP example

Given K =

(
H AT

F

AF

)
, quantities for the next QP iteration may

be found by solving a bordered system with matrices: H AT
F ht

AF at

hT
t aT

t htt

 (add column at)

 H AT
F es

AF 0

eT
s 0 0

 (delete column as)
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Schur complement QP method
G, Murray, Saunders & Wright 1990

In general,

Kjv = f ≡
(

K0 W
W T D

) (
v1

v2

)
=

(
f1
f2

)

1 solve with dense Schur-complement C = D −W T K−1
0 W

2 solves with K0

Used in GALAHAD’s QPA, Gould & Toint ’04

Block-LU updates G, Murray, Saunders & Wright ’84, Huynh ’08
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Infeasibility, ill-conditioning and all
that. . .
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Given fixed πE ≈ π∗, and fixed µ > 0, consider the generalized
augmented Lagrangian

M(x , π;πE , µ) = f (x)− c(x)TπE +
1

2µ
‖c(x)‖22

+
1

2µ
‖c(x) + µ(π − πE )‖22

G & Robinson ’10.
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M involves n + m variables and has gradient

∇M(x , π;πE , µ) =

(
g(x)− A(x)T

(
πA − (π − πA)

)
µ
(
π − πA

) )

where πA ≡ πA(x) = πE − c(x)/µ.

The Hessian of M is

∇2M(x , π;πE , µ) =

(
H + 2

µAT A AT

A µI

)

with H = H
(
x , πA − (π − πA)

)
.
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Result I

Theorem

Consider the bound constrained problem

minimize
x ,π

M(x , π ;π∗, µ) subject to x ≥ 0 (BC)

where π∗ is a Lagrange multiplier vector.

If (x∗, π∗) satisfies the second-order sufficient conditions for the
problem:

minimize
x∈Rn

f (x) subject to c(x) = 0, x ≥ 0

then there is a µ̄ > 0 such that (x∗, π∗) is a minimizer of (BC) for
all 0 < µ < µ̄.
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[0]. Choose initial µ and πE , an estimate of π∗;

[1]. Find an approximate solution of

minimize
x ,π

M(x , π ;πE , µ) subject to x ≥ 0

[2]. Update πE and µ; Repeat at [1].
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The problem

minimize
x ,π

M(x , π ;πE , µ) subject to x ≥ 0

is solved using a line-search method that minimizes a sequence of
quadratic models:

QM(x , π ;πE , µ) ≈M(x , π ;πE , µ)

Two different values of µ are maintained:

For the line search on M: µ = µk with “large” µk

For the QP subproblem with QM: µ = µR with µR � µk
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We solve a sequence of convex QPs:

minimize
v=(x ,π)

QM(v) = gT
M(v − vk) + 1

2(v − vk)T HM(v − vk)

subject to x ≥ 0

where vk = (xk , πk), and

gM = ∇M(xk , πk ;µR), HM ≈ ∇2M(xk , πk ;µR)
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We define

HM =

(
H̄k + 2

µAT
k Ak AT

k

Ak µI

)
where

H̄k = H(xk , πk) + Dk , where Dk is a sparse diagonal.

Dk is chosen so that H̄k + 1
µAT

k Ak positive definite.

UCSD Center for Computational Mathematics Slide 46/54, July 5, 2011



Overview of SQP methods SQP decline SQP renaissance Modern SQP methods

Result II

Theorem (G & Robinson ’11)

The bound constrained QP

minimize
∆v=(p,q)

gT
M∆v + 1

2∆vT HM∆v subject to x + p ≥ 0

is equivalent to the QP problem

minimize
p,q

gTp + 1
2pTH̄p + 1

2µ‖π + q‖2

subject to c + Ap + µ(π + q − πE ) = 0, x + p ≥ 0.

(known as the “stabilized” SQP subproblem).
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At QP iteration j , a direction (∆pj , ∆qj) is found satisfying(
H̄F −AT

F

AF µI

)(
∆pF

∆qj

)
= −

(
(ĝ(xj)− AT

kπj)F

ĉ(xj) + µ(πj − πE )

)
,

with ĝ(x) = gk + H̄k(x − xk) and ĉ(x) = ck + Ak(x − xk)

This system is nonsingular for µ > 0

If µ = µR (small), then this is a “stabilized” SQP step

“Black-box” symmetric indefinite solvers may be used
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No “phase-one” procedure is needed for the QP

The QP subproblem is always feasible

As the outer iterations converge, the directions (pk , qk) satisfy(
H̄F −AT

F

AF µI

)(
pF

qk

)
= −

(
(gk − AT

kπk)F

ck + µ(πk − πE )

)

These equations define πk + qk as an O(µ) estimate of the
unique least-length Lagrange multipliers.

A fixed sparse matrix is can be factored.
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Properties of the modification

If the QP does not change the active set, then the final KKT
system satisfies(

H̄F AT
F

AF −µI

)
=

(
HF + DF AT

F

AF −µI

)
=

(
HF AT

F

AF −µI

)

⇒ the QP step is computed using HF (unmodified) and AF .

⇒ in the limit, this is Newton’s method wrt the free variables.

⇒ potential second-order convergence rate.
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Summary and comments

Recent developments in MINLP and PDE- and
ODE-constrained optimization has sparked renewed interest in
second-derivative SQP methods

Multi-core architectures require new ways of looking at how
optimization algorithms are formulated

Reliance on state-of-the-art linear algebra software

The method . . .

involves a convex QP for which the dual variables may be
bounded explicitly

is based on sparse matrix factorization

allows the use of some “black-box” indefinite solvers

is “global” but reduces to stabilized SQP near a solution
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Happy Birthday Sven!
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