Solving L arge Scale Nonlinear Eigenvalue Problems
In Next-Generation Accelerator Design

Ben-Shan Liao, Zhaojun Bai

University of California, Davis
Rich Lee and Kwok Ko

Stanford Linear Accelerator Center

The Third Berlin-Manchester Workshop on Nonlinear Eigenvalue Problems, Manchester, March 22-23, 2007



SciDAC ESS Team

Advanced Computations Department

Accelerator Modeling Computational Mathematics Computing Technologies

A. Kabel, K. Ko L.Lee, L. Ge, V. Akcelik N. Folwell, A. Guetz,
Z.Li, C. Ng, C. Sheng, H. Jiang, G. Schussman,
A. Candel E. Prudencio R. Uplenchwar

ISICs — TSTT, TOPS, PERC; SAPP- Stanford, LBNL, UCD

LBNL LLNL SNL
E. Ng, W. Gao, P. L. Diachin, D. Brown, K. Chand, P. Knupp, T. Tautges,
Husbands, X. Li, B. Henshaw, D. Quinlan K. Devine
C. Yang
cMU Columbia UCD Stanford RPI
. Ghattas D. Keyes B. Liao, Z. Bai, G. Golub M. Shephard, Av
K. Ma, H. Yu, Bauer, E. Seol ™

BERKELEY LAR]



ternational Linear Collider (ILC)

http://www.linearcollider.org/

The ILC is a proposed new electron-positron collider that
would allow physicists to answer compelling questions on
identity of dark matter to the existence of extra dimensions.
In the ILC's design, two facing linear accelerators, each 20
kilometers long, accelerate electrons and positrons to TeV
energy using superconducting accelerating cavities.

The Global Design Effort
will establish the design of smaee s | (=
the ILC, focusing the efforts EERNE=EN §
of hundreds of accelerator ‘
scientists and particle
physicists in North
America, Europe and Asia.
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Various ILC Cavities
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ILC Cyromodule and RF Unit

For a single three-cryomodule rf unlt of the ILC Main Llnac =
and by assuming realistic 3-D dimensions and misalignments,
Iate multi-bunch beam dynamics effects, including wakefields and HOM excitations.




Outline of thistalk

1. THE NEP
2. Initial approximations and ordering
3. NRRIT (Nonlinear Arnoldi Method)

4. Numerical experiments
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THE NEP

o I'(\)x =0, where

T(\) = K — AM +i ﬁl (A —o2) W,
j:
and /i, M and W; are N x N real symmetric,
K >0and M > 0.
o; are given nonnegative scalars — cutoff values, i = v/ —1.

e derived from a Nedelec-type FE discretization of the frequency domain
Maxwell’s equation with waveguide BCSs [I1SH95, KFG+06, Lee05a, Lee05b]

e Future: cavitiy with waveguide coupling for multiple waveguide modes

p p A
T\ = K — MM +1i — o) W g IM
(\) h) +1j§1,/<A o) W, +1jz W
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Desired eigenvalues

o Let k = V), .
resonant frequency = f(k) = o Re(k)
s
and I Re(s)
C\K
external Q.-value = Q.(x) = > (k)

c = 3 x 10°m/s, the speed of light in vacuum

e The external ().-values measure the electromagnetic coupling between the
cavity and waveguide, characterize the energy loss.

e Seek eigenvalues ) satisfying

k = v/ )\ is close to the shift value oy = 2%Tfo and
AeD={X\| A=kr% Re(k) > 0p, Im(k) > 0and Qc(x) > Q.},

where f; and Q. > 1 are prescribed.



Desired eigenvalues
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Initial approximation/ordering

e The first order truncation:
T(A) = T(Ao) + (A= 20)T"(No)

K(Xo) — AM(X),

Q

e Initial approximations:

selected eigenpairs (6, v,) of (K (02), M(c?))
e Ordering:

017 — o] <1057 — o] <+ < |01 — .

e Example:

K —AM +i/(A —o?) Wi]z = 0.

Waveguide
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NRRIT

Nonlinear Rayleigh-Ritz ITerative subspace projection technique

1. Select a proper projection subspace V.
2. Compute a pair (6, z) to satisfy the Galerkin condition:

T@O)z LY for zeV.

3. Expand or restart the projection subspace V

[Betcke and Voss,’04], [Voss,’ 04], [Mehrmann and H. Voss, 04]



NRRIT —matrix version

1. Select an orthonormal basis () of the proper subspace V and inintial
approximations (¢, v*)

2. Compute a pair (6, ¢g) with initials (6, Q7v") to satisfy
To(0)g =0,
where
To(0) = Q"T(0)Q
3. Expand or restart ()

Ritz pairs: (6,Qg)
Residual: » = T(0)Qg

Two critical issues:
(a) what are proper initial approximations (and )) and ordering?

(b) how to expand or restart )?



Main features of our implementation of NRRIT

e Proper initial approximations and ordering (6°, v*)

e Preserving real symmetry
@ = orth(| Re(V) Im(V) |),
The reduced nonlinear eigenvalue problem
To(0)y =0,
where ) 1
To(0) = Q'T(0)Q = Ko — 0Mq +1 3 (0 — 07)° Wy,
=
with Ko = QEKQ, Mgy = QT MQ and Wy, ; = QTW;Q.



Example

The NEP with two cutoff values

T(Na = K — AM +i/(A = o)W1 +1/(A — 03)Wy| 2 = 0,

N = 9956, nnz(K) = nnz(M) = 148, 318. nnz(W1) = 57, nnz(Ws) = 293.
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Performance data

Convergence threshold:

IT(0)Qqg"||
<e fort=1,2,...,10
IO |Qg"l
CPU in second:
T MSLP NRRIT
e |lters| E-Time | Iters| E-Time | Iters | E-Time
1078 15 | 71.98 | 12 | 79.48 | 46 | 22.95
10719 18 | 85.92 | 16 | 96.19 | 69 | 32.91
10712| 22 1104.47 | 20 | 115.33 | 87 | 42.08
107 24 |113.97 | 21 |120.22 | 114 | 57.59

IIT = Inverse I Teration

MSLP = Method of Successive Linear Problem



Ongoing wor k

e Understanding of NRRIT: subspace expansion, restarting, convergence analysis
e Accuracy of computed eigenvalues (external ().-values)

e \erification (missing ones?)

e Software development (Omega3P package)

e Large-scale NEP (p = 8 ~ 24, DOFs = 10° ~ 107)





