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Hyperbolic QEPs

Consider quadratic e-value problem (QEP)

Q(λ)u = (λ2M +λC +K )u = 0.

with M,C,K symmetric, positive definite n×n.
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Consider quadratic e-value problem (QEP)

Q(λ)u = (λ2M +λC +K )u = 0.

with M,C,K symmetric, positive definite n×n.

QEP is hyperbolic if

(xT Cx)2−4(xT Mx)(xT Kx)> 0

for all x 6= 0.
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Hyperbolic QEPs

Consider quadratic e-value problem (QEP)

Q(λ)u = (λ2M +λC +K )u = 0.

with M,C,K symmetric, positive definite n×n.

QEP is hyperbolic if

(xT Cx)2−4(xT Mx)(xT Kx)> 0

for all x 6= 0.

Nice properties of hyperbolic QEPs:

– 2n real and semisimple e-values

– e-values can be obtained by bisection
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The frequency isolation problem

When e-values of
Q(λ) =λ2M +λC +K

fall in certain regions, vibrational system experiences dangerous
vibrations (resonance). M,C,K should be chosen in such a way that
these spectral regions are avoided
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The frequency isolation problem

When e-values of
Q(λ) =λ2M +λC +K

fall in certain regions, vibrational system experiences dangerous
vibrations (resonance). M,C,K should be chosen in such a way that
these spectral regions are avoided

Typically, dangerous region modelled as resonance band

Ir = (β− r ,β+ r)⊂R,

to be avoided by e-values λj of Q(λ).

( )

β −r

λ iλ i-2 λ i-1λ i-3 λ i+1

><
resonance

band
β +r
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fall in certain regions, vibrational system experiences dangerous
vibrations (resonance). M,C,K should be chosen in such a way that
these spectral regions are avoided

Typically, dangerous region modelled as resonance band

Ir = (β− r ,β+ r)⊂R,

to be avoided by e-values λj of Q(λ). Once no eigenvalue is in Ir , we say
that spectrum has been isolated
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The frequency isolation problem

When e-values of
Q(λ) =λ2M +λC +K

fall in certain regions, vibrational system experiences dangerous
vibrations (resonance). M,C,K should be chosen in such a way that
these spectral regions are avoided

Typically, dangerous region modelled as resonance band

Ir = (β− r ,β+ r)⊂R,

to be avoided by e-values λj of Q(λ). Once no eigenvalue is in Ir , we say
that spectrum has been isolated

Frequency isolation problem: Given a resonance band Ir = (β− r ,β+ r)
and a vibrational system (M,C,K ) with some eigenvalue in (β− r ,β+ r),
redesign the system in such a way that the new system (M∗,C∗,K ∗)

has no eigenvalue in the resonance band, and

is close to (M,C,K ) in some sense.
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Frequency isolation algorithms: the undamped case

Egaña, Kuhl & Santos ’02: Tridiagonal QEP with C = 0 (no damping). Given
initial, resonant spectrum

( )

β −r

λ iλ i-2 λ i-1λ i-3 λ i+1

><
resonance

band
β +r

fix target spectrum, e.g.

( )
λ iλ i-2 λ i-1λ i-3 λ i+1>

β −r β +r

and reconstruct matrices M∗ and K ∗ with that spectrum, i.e., solve tridiagonal
inverse eigenvalue problem
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Frequency isolation algorithms: the undamped case

Egaña, Kuhl & Santos ’02: Tridiagonal QEP with C = 0 (no damping). Given
initial, resonant spectrum

( )

β −r

λ iλ i-2 λ i-1λ i-3 λ i+1

><
resonance

band
β +r

fix target spectrum, e.g.

( )
λ iλ i-2 λ i-1λ i-3 λ i+1>

β −r β +r

and reconstruct matrices M∗ and K ∗ with that spectrum, i.e., solve tridiagonal
inverse eigenvalue problem

Very expensive: cost well over O(n4) + quite restrictive
conditions.
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How to improve it?

Fixing a target spectrum is unnatural, since “good" eigenvalues are not allowed
to change at all

( )
λ iλ i-2 λ i-1λ i-3 λ i+1>

β −r β +r
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How to improve it?

Should allow “good" eigenvalues to move around (maybe not too much)

( )
β −r β +r

λ iλ i-2 λ i-1λ i-3 λ i+1
>< > >>
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How to improve it?

Should allow “good" eigenvalues to move around (maybe not too much)

( )
β −r β +r

λ iλ i-2 λ i-1λ i-3 λ i+1
>< > >>

Idea of new algorithm: Identify a direction in (M,C,K ) space along which:

variation of “bad" eigenvalues is maximal, and

variation of “good" eigenvalues is minimal.

Then, modify (M,C,K ) along this direction up to isolation.
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A simple situation

As an example, consider hyperbolic QEP

Q(λ) =λ2M +λC +K

with

M = diag(m) = diag(m1, . . . ,mn), mi > 0,

C = diag(c) = diag(c1, . . . ,cn), ci > 0,

K =


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




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

k1 +k2 −k2
−k2 k2 +k3 −k3

. . .
. . .
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, ki > 0
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with
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, ki > 0

λj =λj(m,c,k) for (m,c,k) = (m1, . . . ,mn,c1, . . . ,cn,k1, . . . ,kn)∈R3n.
Thus,

Work in parameter space (m,c,k) instead of in matrix space (M,C,K )
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How to choose directions in (m,c,k) space?

Consider initial configuration
(m,c,k) = (m1, . . . ,mn,c1, . . . ,cn,k1, . . . ,kn)∈R3n, and call

good e-values those s.t. λj(m,c,k) 6∈ (β− r ,β+ r)

bad e-values those s.t. λj(m,c,k)∈ (β− r ,β+ r)

Want to move bad e-values out of resonance band as fast as possible,
without any good e-value entering the band.

Assume we are close to isolation. Let ∆ = (δm,δc,δk)∈R3n, and write
perturbed e-values as

λj((m,c,k)+∆) =λj(m,c,k)+<∇λj(m,c,k),∆>+ . . .

First order term <∇λj(m,c,k),∆> should be:

1) as large as possible for bad λj

2) as small as possible for good λj
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How to choose directions in (m,c,k) space?

Consider initial configuration
(m,c,k) = (m1, . . . ,mn,c1, . . . ,cn,k1, . . . ,kn)∈R3n, and call

good e-values those s.t. λj(m,c,k) 6∈ (β− r ,β+ r)

bad e-values those s.t. λj(m,c,k)∈ (β− r ,β+ r)

Want to move bad e-values out of resonance band as fast as possible,
without any good e-value entering the band.
Assume we are close to isolation. Let ∆ = (δm,δc,δk)∈R3n, and write
perturbed e-values as

λj((m,c,k)+∆) =λj(m,c,k)+<∇λj(m,c,k),∆>+ . . .

First order term <∇λj(m,c,k),∆> should be:

1) as large as possible for bad λj

2) as small as possible for good λj → zero for good λj i.e.,

∆ ⊥ ∇λj(m,c,k) for all good λj .

Julio Moro, Juan Egaña & Fernando de Terán Frequency isolation algorithms for hyperbolic QEPs



The frequency isolation problem
The algorithms

Numerical results

The basic isolation algorithm
A continuation algorithm

The basic isolation algorithm

Since
∆ = (δm,δc,δk) ⊥ ∇λj(m,c,k) for all good λj ,

denote

V⊥good = {w ∈R3n :<∇λj(m,c,k),w >= 0 for all good λj}.

Basic isolation algorithm organized in two stages:

1) Find a direction wmax ∈ V⊥good s.t. velocities

<∇λj(m,c,k),wmax > for bad λj

are maximal among w ∈ V⊥good .

2) Given wmax from Stage 1), find smallest α∗ ∈R s.t. e-values corresp. to

(m∗,c∗,k∗) = (m,c,k)+α∗wmax

are all outside the resonance band.
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Implementation of Stage 1): finding wmax

Stage 1) Find optimal direction wmax in V⊥good .

Need to compute:

Directional derivatives of e-values −→
−→ requires all eigenvectors of initial QEP

Orthonormal basis of V⊥good (e.g., via QR factorization)

wmax ≡ singular vector corresp. to σmax of scalar product matrix

OVERALL COST: O(n3)
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Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction wmax ∈ V⊥good , find smallest α∗ ∈R such that
spectrum of

(m,c,k)+α∗wmax

has been isolated
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Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction wmax ∈ V⊥good , find smallest α∗ ∈R such that
spectrum of

(m,c,k)+α∗wmax

has been isolated

QEP is hyperbolic −→ can use bisection on α to find how many e-values
of

(m,c,k)+αwmax

are inside the resonance band (β− r ,β+ r). Stop as soon as that number
becomes zero.
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Implementation of Stage 2): detecting isolation

Stage 2) Given optimal direction wmax ∈ V⊥good , find smallest α∗ ∈R such that
spectrum of

(m,c,k)+α∗wmax

has been isolated

QEP is hyperbolic −→ can use bisection on α to find how many e-values
of

(m,c,k)+αwmax

are inside the resonance band (β− r ,β+ r). Stop as soon as that number
becomes zero.

COST: O(n) per bisection step
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Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

Entries of m+α∗δm, k +α∗δk , c +α∗δc must remain positive: −→
positivity constraints on α.

New system (M∗,C∗,K ∗) must stay hyperbolic: hyperbolicity constraints
on α: use results on distance to nearest non-hyperbolic QEP

Higham, Tisseur & Van Dooren ’02

easiest case: fix M and K , only change C
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Preservation of structure

BUT all this can only be done provided the relevant structure is preserved:

Entries of m+α∗δm, k +α∗δk , c +α∗δc must remain positive: −→
positivity constraints on α.

New system (M∗,C∗,K ∗) must stay hyperbolic: hyperbolicity constraints
on α: use results on distance to nearest non-hyperbolic QEP

Higham, Tisseur & Van Dooren ’02

easiest case: fix M and K , only change C

All these constraints lead to a maximal range for α

−τ− ≤α≤τ+

for appropriate thresholds τ−,τ+ > 0.

Algorithm only works if there are no e-values in (β− r ,β+ r) either for
α=−τ− or for α=τ+ −→ provides starting interval for bisection.
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The basic isolation algorithm: Shortcomings

Summarizing: the O(n3) basic isolation algorithm is

Likely to give good solutions only if Taylor approximation sufficiently
accurate, i.e., if (M∗,C∗,K ∗) sufficiently close to (M,C,K ).
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The basic isolation algorithm: Shortcomings

Summarizing: the O(n3) basic isolation algorithm is

Likely to give good solutions only if Taylor approximation sufficiently
accurate, i.e., if (M∗,C∗,K ∗) sufficiently close to (M,C,K ).

May not work at all if constraints prevent the algorithm from going all the
way to isolation, e.g., positivity constraints:

(M,C,K)
Set of
(M,C,K)
with
isolated
spectrum
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Summarizing: the O(n3) basic isolation algorithm is
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The basic isolation algorithm: Shortcomings

Summarizing: the O(n3) basic isolation algorithm is

Likely to give good solutions only if Taylor approximation sufficiently
accurate, i.e., if (M∗,C∗,K ∗) sufficiently close to (M,C,K ).

May not work at all if constraints prevent the algorithm from going all the
way to isolation, e.g., positivity constraints:

Both difficulties may be overcome
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A continuation algorithm:

Instead of trying to isolate in one single run, repeat basic isolation procedure
over and over, setting (M0,C0,K0) = (M,C,K ) and updating

(Mi+1,Ci+1,Ki+1) = (Mi ,Ci ,Ki)+hi w
(i)
max,

with some appropriate, small step size hi , where w
(i)
max is the optimal direction

at step i . Graphically,
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at step i . Graphically,

(M,C,K)
Set of
admissible
(M,C,K)
with
isolated
spectrum
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How to choose hi?

(Mi+1,Ki+1) = (Mi ,Ki)+hi w
(i)
max, (M0,K0) = (M,K )

Several possible choices for hi . Best performance so far:

Greedy version: Try to isolate at each step. If not possible, then advance as far
as possible in the optimal direction and repeat.

Compute thresholds τ+
i ,τ−i and optimal direction w

(i)
max at step i .

If possible, compute α∗i isolating the spectrum, take hi =α
∗
i and stop.

If not, take hi equal either to τ+
i or −τ−i and continue.
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Numerical experiments: comparison with EKS

Both basic and continuation algorithm implemented for tridiagonal
undamped case (C = 0) in FORTRAN POWER STATION 4.0 on a PC with
IEEE arithmetic

Generate 1000 random 10×10 QEPs with one single e-value in the
resonance band. Radius r of resonance band inversely proportional to
δ< 1:

the smaller the parameter δ, the smaller the radius r

Compare obtained solutions with solutions provided by ‘Box’ algorithm by
Egaña, Kuhl & Santos ’02 (EKS) whenever possible:

Box algorithm works only for low dimension (too expensive).

Box algorithm works only for uniform distributions of initial e-values.
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Numerical experiments: Box vs. basic isolation

Generate 1000 random 10×10 mass-spring systems for each value of δ.

Set

m∗box , k∗box ≡ solutions computed by the ‘Box’ algorithm of Egaña, et al.

m∗β , k∗β : solutions computed by the basic isolation algorithm.

Dist
(�)
m,k =

‖(m,k)−(m∗,k∗)�‖
‖(m,k)‖

,

where � is either ‘box´ or ‘β ’. Define the quotients

Q
(β)
m,k =

Dist
(box)
m,k

Dist
(β)
m,k

, Q
(β)
T =

CPU time for Box alg.

CPU time for basic isolation alg.

and the percentage pm,k of cases with Q
(β)
m,k < 1.
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Numerical experiments: Box vs. basic isolation

Generate 1000 random 10×10 mass-spring systems for each value of δ.

Dist
(�)
m,k =

‖(m,k)−(m∗,k∗)�‖
‖(m,k)‖

,

where � is either ‘box´ or ‘β ’. Define the quotients

Q
(β)
m,k =

Dist
(box)
m,k

Dist
(β)
m,k

, Q
(β)
T =

CPU time for Box alg.

CPU time for basic isolation alg.

and the percentage pm,k of cases with Q
(β)
m,k < 1.

Q
(β)
m,k Q

(β)
T

δ Average Min pm,k Average Min isolated
0.1 0.74 0.09 53.1% 514 61 97.8%

0.15 0.9 0.1 66.4% 420 53 96.9%
0.2 1.31 0.15 82.2% 359 51 89.1%
0.4 2.38 0.39 97.3% 228 48 59.6%
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Numerical experiments: Box vs. continuation

Generate 1000 random 10×10 mass-spring systems for each value of δ.

Set

m∗box , k∗box ≡ solutions computed by the ‘Box’ algorithm of Egaña, et al.

m∗cont , k∗cont : solutions computed by the continuation algorithm (greedy
version).

Dist
(�)
m,k =

‖(m,k)−(m∗,k∗)�‖
‖(m,k)‖

,

where � is either ‘box´ or ‘cont ’. Define the quotients

Q
(cont)
m,k =

Dist
(box)
m,k

Dist
(cont)
m,k

, Q
(cont)
T =

CPU time for Box alg.

CPU time for continuation alg.

and the percentage pm,k of cases with Q
(cont)
m,k < 1.
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Numerical experiments: Box vs. continuation

Generate 1000 random 10×10 mass-spring systems for each value of δ.

Dist
(�)
m,k =

‖(m,k)−(m∗,k∗)�‖
‖(m,k)‖

,

where � is either ‘box´ or ‘cont ’. Define the quotients

Q
(cont)
m,k =

Dist
(box)
m,k

Dist
(cont)
m,k

, Q
(cont)
T =

CPU time for Box alg.

CPU time for continuation alg.

and the percentage pm,k of cases with Q
(cont)
m,k < 1.

Q
(cont)
m,k Q

(cont)
T

δ Average Min pm,k Average Min
0.2 0.66 0.04 61.2% 532 67
0.3 0.67 0.009 65.3% 398 65
0.4 0.83 0.016 69.3% 276 50
0.6 1.06 0.04 77.4% 218 36
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Summary:

New, directional algorithm for the frequency isolation problem proposed for
hyperbolic QEPs.

Tested only for tridiagonal undamped case.

Basic algorithm: O(n3), but isolation guaranteed only for systems close
to non-resonance.

Continuation algorithm:

Cost O(n3) per step.

Much faster than ‘Box’ algorithm.

Same quality of approximations as Box alg.

More robust: works irrespective of spectral distribution or distance to
non-resonance.
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