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Low Reynolds Numbers

Re =
inertial forces
viscous forces

=
ρUL

µ

ρ ∼ 1 gm/cm3

L ∼ 102 cm

µ ∼ 10−2 gm/cm− s

U ∼ 10 cm/s

Re ∼ 105

ρ ∼ 1 gm/cm3

L ∼ 10 µm

µ ∼ 10−2 gm/cm− s

U ∼ 10 µm/s

Re ∼ 10−4

1

Re ≈ 1.5

Re ≈ 10⁻⁴

Re ≈ 10⁵

“The smallest thing you can 
see with a microscope.”



Taxonomy of Microorganisms
continuous gradient between 
plantlike and animal-like 
organisms

Sharp boundary between 
prokaryotic (no membrane-bound 
organelles) and eukaryotic 
(membrane-bound nuclei and other 
organelles )

Uniflagellate vs biflagellate



Structure of Flagella and Cilia

• Eukaryotic cells (flagella and cilia)

• 9+2 microtubule structure 

• Diameter of tail ≈ 250-400 nm ≈ 
constant across ALL species!

• Organism can apply local 
bending moments along the tail 
➞ can select shape as a function 
of time (control kinematics)

http://sun.menloschool.org/~cweaver/cells/e/cilia_flagella/
http://cellbio.utmb.edu/cellbio/cilia.htm

http://www.rowland.harvard.edu/labs/bacteria/projects_filament.html
http://www.rowland.harvard.edu/labs/bacteria/projects_filament.html
http://cellbio.utmb.edu/cellbio/cilia.htm
http://cellbio.utmb.edu/cellbio/cilia.htm
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Simple Model System: 3-link Swimmer

Ve
lo

ci
ty

Can we do 
better?

• Purcell (1977): proposed design
• “In fact, I worked this one out just for fun and you can prove 

from symmetry that it goes along the direction shown in the 
figure. As an exercise for the student, what is it that 
distinguishes that direction?”

• Becker, Koehler and Stone (2003): optimized geometry (arm 
length/body length and stroke angle)



Fixed geometry
?
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FIG. 2: Stroke sequences of three-link swimmers in the (Ω1,Ω2)-phase plane for: (−) optimal

efficiency, (−) optimal velocity and (−) the optimal ‘Purcell stroke’ which corresponds to the

square. Small swimmer diagrams correspond to successive configurations of the swimmer during

the stroke. The swimmer moves to the left when the trajectory is followed counterclockwise and

to the right otherwise.

where V is the swimming speed averaged over one stroke and Φ is the average optimal

mechanical power associated with the stroke.

Optimization procedure.- Without lost of generality, the stroke can be parametrized by

two periodic functions Ω1 and Ω2 of period τ . These two periodic functions can be repre-

sented as a Fourier series. For regular and differentiable functions, the Fourier coefficients

decay rapidly and thus our optimization procedure is based on finding the optimal first k

coefficients of the Fourier series. In addition to the stroke pattern, the geometry of the

swimmer itself is optimized as well. This requires two additional design parameters: the

slenderness, 1/κ, and the relative size of the middle link, η = l2/l1. The swimmer is as-

sumed symmetric i.e. l1 = l3. The optimal solution is found via a gradient search on a finite

set of coefficients using the BFGS quasi-Newton algorithm [13]. Gradients are computed

numerically.

Discussion.- Several general observations can be made regarding optimal stroke sequences.

First, because of the linearity and time independence of Stokes equations (1), we expect

optimal strokes to be symmetric with respect to reflections across the axes Ω1 = Ω2 and

Ω1 = −Ω2. This can be seen by considering a geometrical configuration where Ω1 = Ω2
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Kanso and Marsden (2005) - 3-link fish 
Berman and Wang (2006) - insect flight

Optimising Kinematics



• Lowest order: resistive force theory

• Next order: can incorporate effects of 
slenderness and interactions between links

Vi = (ẋi, ẏi, Θ̇i)

Fi = (F x
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Solve linear system

Constraint: links are attached
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FIG. 1: Schematic of the three-link swimmer. The slice and corresponding notation on the left

refer to the local velocity, tangent vector and drag force per unit length. Notation on the right

refers to the velocity, tangent vector and force associated with an entire link.

represented by a single closed curve in this space. A stroke pattern in which only one arm

moves at a time appears as a square and will be referred to as the ‘Purcell stroke’ as it is the

original pattern proposed by Purcell (see Figure 2); it is also the only sequence considered

in the study by Becker et al [1].

The hydrodynamic forces and torques, Fi = (F x
i , F y

i , τi), on each link are calculated from

equations (3) and (4) integrated over each link

Fi =

∫

2li

(F · x,F · y,R× F)ds =
3∑

j=1

Aj
iVj . (7)

As expected from the linearity of Stokes equations (1), the force vectors take an Aristotelian

form and are linear functions of the velocity. The coefficients of the matrix Aj
i are integrated

analytically for i = j and numerically using Gauss quadrature for i "= j.

In the low Reynolds number regime, the swimmer is force- and torque-free. In our case,

the slender body only interacts with the surrounding flow and therefore, the integrals of all

hydrodynamical forces and torques vanish, thus

3∑

i=1

Fi =
3∑

j=1

( 3∑

i=1

Aj
i

)
Ẋj = 0 . (8)

Equations (5, 6 and 8) form a system of nine first order differential equations in the nine

unknowns, which is integrated using a fourth order Runge-Kutta scheme. It is solved in

non-dimensional form using the characteristic half-length of an arm link, l1, as a reference

length, lref , and the period of the stroke as a reference time, τ .

5

Swimming velocities 
and efficiencies

prescribe
kinematics

force
balance

Model Swimmer

R. Cox. J. Fluid Mech. 44 (4), 791 (1970).
J. Keller and S. Rubinow. J Fluid Mech. 75 705 (1976)

Broyden’s 
quasi-Newton
optimization



Biological 
systems

Effect of Slenderness

Biological systems
Tam and Hosoi stroke
Large amplitude strokes
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• Optimise kinematics for each value of slenderness      
more slender is better.

• Biological systems sit at the “knee” (trade-off 
between robustness and efficiency)

• Raz and Avron found more efficient large amplitude 
strokes
• only more efficient for very slender flagella (~3 OM 

larger than those found in nature)

from Becker et al.

Fully optimized stroke
’Purcell’ stroke
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Kinematics of uniflagellates

• Large N      snake
• Analytic solution (in Lighthill’s 

Mathematical Biofluiddynamics)
• 41 degree angle

• Flagellum: Slenderbody theory - find 
Stokeslet distribution (Keller and Rubinow, 
1976)

• Head: Exact singularity distribution 
(Chwang and Wu. 1974)

• Head flagellum interaction: Faxen’s laws 
(Happel and Brenner)

• Find optimal curvature along the tail

No head:



Kinematics of uniflagellates

• Travelling wave (~ one wavelength)

• Localized regions of high curvature 
connected by segments of ~ zero 
curvature

• Curvature decreases from head to tail



Optimal Tail Length

Goal: To move genetic material

Q: For a given head size, what 
is the optimal tail length?
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Optimal Tail Length

Goal: To move genetic material

Q: For a given head size, what 
is the optimal tail length?
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Structure of Flagella and Cilia

• Eukaryotic cells (flagella and cilia)

• 9+2 microtubule structure 

• Diameter of tail ≈ 250-400 nm ≈ 
constant across ALL species!

• Organism can apply local 
bending moments along the tail 
➞ can select shape as a function 
of time (control kinematics)

http://sun.menloschool.org/~cweaver/cells/e/cilia_flagella/
http://cellbio.utmb.edu/cellbio/cilia.htm

http://www.rowland.harvard.edu/labs/bacteria/projects_filament.html
http://www.rowland.harvard.edu/labs/bacteria/projects_filament.html
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• Eukaryotic cells (flagella and cilia)

• 9+2 microtubule structure 

• Diameter of tail ≈ 250-400 nm ≈ 
constant across ALL species!

The bandicoot spermatozoon: an electron microscope 

study of the tail 

BY K. W. CLELAND AND LORD ROTHSCHILD, F.R.S. 

Department of Histology and Embryology, University of Sydney, Australia, 

and Department of Zoology, University of Cambridge 

(Received 15 July 1958) 

[Plates 3 to 5] 

An electron microscope study has been made of the tail of the bandicoot spermatozoon 
(Perameles nasuta Geoffroi). The shape of the sperm head makes it possible to define dorsal, 
ventral, right and left surfaces on the head. The orientation of structures in the middle 

piece and tail relative to these head surfaces permits identification of the corresponding 
middle piece and tail surfaces. 

Dorso-ventral and transverse axes may be assigned to the spermatozoon. Major and 
minor axes are recognizable in transverse sections of the middle piece and tail. 

The tail contains two groups of fibrils, the axial filament complex and the peripheral 
fibrils. 

The axial filament complex consists of two central fibrils lying in the transverse axis of 
the head which are surrounded by an axial ring of nine fibrils not equidistant from each 
other. The axis of symmetry of the axial filament complex is in the dorso-ventral axis of 
the spermatozoon. 

The much thicker peripheral fibrils, of which there are nine, are found at varying but 
considerable distances from the axial ring of fibrils. They also are not equidistant from one 

another. Two of them differ from the other seven in shape and lie on the minor axis of the 

tail; four of the remaining seven lie on the dorsal half and three on the ventral half of the 
tail. 

Seven of the peripheral fibrils are connected with the homologous members of the axial 
filament complex by connecting laminae, which consist of laminar filaments passing 
between the two types of fibrils. One lamina has only one set of filaments. The other six have 

two sets of parallel filaments. 

The tail fibrils are enclosed by a spiral sheath which shows pronounced thickenings at 

both ends of the minor axis of the tail. Vacuoles, arranged in a characteristic way, are located 

within these thickenings. Thin processes connect the spiral sheath with two of the fibrils in the 

axial filament complex. 
A trilaminar membrane separates the spiral sheath from the tail sheath, which is an 

electron-transparent structure bounded by a single membrane. 
The possibility of establishing a functional relationship between the tail structures and 

sperm movement is discussed. The morphological evidence suggests that the tail beat is 

in the dorso-ventral plane. 

INTRODUCTION 

Waldeyer, in a survey of spermatogenesis and sperm structure (1887, p. 350), 
referred in the following words to Ballowitz's (1886) observation that the sperm 
tail consisted of a number of individual fibrils: 'It appears that these findings 
are not without importance for understanding the mechanism of movement of the 

spermatozoon, which has not yet been explained in any convincing manner.' 

Bradfield's review (1955), which was based on evidence obtained with the electron 

microscope, was the first serious attempt to confirm Waldeyer's prediction. 
One obstacle to the interpretation of ciliary and flagellar structure in terms of 

function is their morphological uniformity. As Porter (i957, p. 209) said: 'If 

[ 24 ] 

Bandicoot spermatozoon: an electron microscope study of the tail 27 

The dorsal and ventral halves of the tail may be recognized without continued 

reference to the sperm head because of the different number of fibrils in the two 

halves (figure 2). The two sides of the tail, though distinguishable, cannot be 

morphologically identified by the words left and right. In the following descrip- 
tion the left side of the tail is defined as the one on which the peripheral end of 

FIGURE 2. The bandicoot sperm tail in transverse section. The diagram shows the axial 

filament complex containing the central pair of fibrils and the axial ring of fibrils num- 

bered 1 to 9; the connecting laminae; the peripheral fibrils, numbered 1 to 9; the 

spiral sheath; and the spiral sheath thickenings containing vacuoles. The spiral sheath 

membrane and tail sheath are omitted. 

the line passing through the centres of the central pair of fibrils in the axial 

filament complex lies dorsal to the minor axis, i.e. dorsal to the line joining the 

apices of the spiral sheath thickenings. 

The right side may also be identified by the depression in the spiral sheath 

in which one peripheral fibril, number 7, partly lies (figure 2). The fibrils may 

conveniently be numbered in a clockwise direction, number 1 lying on the minor 

axis and on the left side. 

Cleland & Rothschild Proc. Roy. Soc. B, volume 150, plate 4 

c d e 

FICUIRE 8a. Transverse sections of the tail at higher magnification showing the arrangement 
of the fibrils of the axial filament. The dorsal halves are uppermost and the left-hand 
sides to the left. (Magn. x 33300.) 

b. Tangential section of the tail showing the structure of' the spiral sheath thickenings 
and the splitting of the gyres of the spiral sheath proper. (Magn. x 16 666.) 

c, d and e. Transverse sections of the terminal zone of the tail. Note reduction in 
size of the spiral sheath and peripheral fibrils when compared with figure 8a, and the 
approach of the peripheral fibrils to the homologous members of' the axial fila:ment 
complex. (Magn. x 33300.) 

a 

b 

Structure of Flagella and Cilia

Bandicoot
(www.scarysquirrel.org)

Diameter of tail is approximately 
constant across all species 
EXCEPT bandicoots.

http://www.scarysquirrel.com
http://www.scarysquirrel.com


Optimal Tail Length

Goal: To move genetic material

Q: For a given head size, what 
is the optimal tail length?
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Order Artiodactyla
(even-toed ungulates)

http://www.scarysquirrel.com
http://www.scarysquirrel.com


Biflagellate Kinematics

Escaping Feeding

• Same objective function as uniflagellates
• Traveling waves (two sperm tails) 

• More complex optimization space - multiple local maxima

• Breast stroke (effective/
recovery)

Goal: Enhance nutrient uptake
OR

Out-run predators  

Expect to see two gaits:
• “Normal”, feeding
• Escaping



• Two commonly observed beat patterns

• “Normal” swimming - effective/recovery stroke (breast stroke)

• Escape (shock response) - “hula” (traveling wave)

Compare with Biology

High-speed cinematography of 
chlamydomonas 

Ruffer and Nultsch (1985) 

From Ken Foster’s and Juree Saranak’s homepage

“Waves of bending, probably 
traveling from base to tip, 
pass along the flagella and 
exert a pushing force.” D. 
Ringo (1967)
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- Lowest order: resistive force theory

- Next order: can incorporate effects 
of slenderness and interactions 
between links
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Model Swimmer

Force per unit length (slender body theory):
 

J!"1

2

!Z s"2l!

0
#
Z 2l

s#2l!

"! I
j!j#

!!
j!j3

"!
I"1

2
"̂"̂

"
$ Ûdŝ;

(4)

I is the identity operator and ! % R" R̂.
The swimmer is modeled as an inextensible jointed

chain of three cylindrical slender rods of length 2li (where
i ! 1, 2, 3), whose motion is constrained to be planar. Each
link is associated with a position vector Xi corresponding
to 3 degrees of freedom: two translational displacements of
the center of the rod and one rotation angle, Xi !
&xi; yi; "i' (see Fig. 1). Thus the entire system is completely
described by a vector of nine variables: X ! &X1;X2;X3'.
The velocity vector of each link is defined as Vi ! _Xi and
the dynamics are subject to the constraint that at each
hinge, the velocities of the two neighboring links are equal

 

_xi
_yi

! "
# li _"i&ẑ("i' !

_xi#1

_yi#1

! "
" li#1

_"i#1&ẑ("i#1';

(5)

where ẑ is the unit vector out of the plane of motion.
The swimmer’s stroke pattern is controlled by imposing

the angles between two adjacent links at the hinges, !1 !
"2 " "1 and !2 ! "3 " "2, which is equivalent to impos-
ing a constraint on the rotational velocities

 

_! i ! _"i#1 " _"i: (6)

The slender body approximation used in this work does not
extend to overlapping arm segments; hence, we do not
consider self-intersecting stroke patterns.

All instantaneous configurations of the swimmer can be
represented by a point in the two-dimensional (!1, !2)-
phase space. Thus, all periodic stroke patterns of the
swimmer can be represented by a single closed curve in
this space. A stroke pattern in which only one arm moves at
a time appears as a square and will be referred to as the
‘‘Purcell stroke’’ as it is the original pattern proposed by
Purcell (see Fig. 2); it is also the only sequence considered
in the study by Becker et al. [1].

The hydrodynamic forces and torques, Fi ! &Fx
i ; F

y
i ; #i',

on each link are calculated from Eqs. (3) and (4) integrated
over each link

 F i !
Z
2li
&f $ x̂; f $ ŷ;R( f'ds !

X3

j!1

Aj
iVj: (7)

As expected from the linearity of Stokes equations, the
force vectors take an Aristotelian form and are linear
functions of the velocity. The coefficients of the matrix
Aj

i are integrated analytically for i ! j and numerically
using Gauss quadrature for i ! j.

In the low Reynolds number regime, the swimmer is
force- and torque-free. In our case, the slender body only
interacts with the surrounding flow and therefore, the in-
tegrals of all hydrodynamical forces and torques vanish;
thus,

 

(ẋ i , ẏi)

(F x
i , F y

i )

s = 0

s = 2 l

2b

Ω1
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R (s)
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ŷ

U (s)
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θ̇i

τi
ẑ
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ŷ

ẑ
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FIG. 1 (color online). Schematic of the swimmer. The slice
and corresponding notation on the left refer to the local velocity,
tangent vector, and drag force per unit length. Notation on the
right refers to the velocity, tangent vector, and force associated
with an entire link. Note that (Fx

i , Fy
i ) and ( _xi, _yi) lie in the x" y

plane while _"i and #i point out of the page in the ẑ direction.
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FIG. 2. Stroke sequences of three-link swimmers in the (!1,
!2)-phase plane for: (black line) optimal efficiency, (medium
gray line) optimal velocity, and (light gray line) the optimal
‘‘Purcell stroke’’ which corresponds to the square. Small
swimmer diagrams correspond to successive configurations of
the swimmer during the stroke. The swimmer moves to the left
when the trajectory is followed counterclockwise and to the right
otherwise.

TABLE I. Summary of the parameters optimized in previous work by Becker et al. [1] and in the present study.

Geometry Kinematics
Parameter (scalar) optimization Function optimization

Arm length ratio $ Slenderness 1=% Stroke amplitude Stroke pattern

Becker et al. [1] O!1=&ln%'2" ( (
Present study O!1=&ln%'3" ( ( ( (
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Force per link:


