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... by late stage researchers?!
Instability?
Subcritical instability?
Transition to turbulence?

What is turbulence?



Incompressible flow: Navier-Stokes equations

3D velocity field u(x, t):
V.ou=0

1
Ju+V - (uu)+ Vp = §V2u

R: Reynolds number



Simple geometries, simple flow?

Y

A

Pipe, Channel Plane Couette

u=(1-y?% u=yx
R < 2,000 R < 350



Channel flow for R = 2,000 ... not simple!

Side

Green, M. A, Rowley, C. W. & Haller, G.
Detection of Lagrangian coherent structures in three-dimensional turbulence,
J. Fluid Mech., 572, 2007, 111-120.
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Instability?

NSE: — =f(u; R
g = [(wR)
Equilibrium u, : 0=1f(u,;R)
. - d(u—u,) of
Linear stability: TO = (&')0 (u—u,)
= u—ug = ve, (81‘) vV =)v,
Ou ),

Instability if ®(A\) > 0, typically for R > R,



Linear instability

stable



= Nonlinear bifurcation

[lu = u]

stable R. unstable
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Bifurcations

jlk/ Supercritical, NL stabilizes
it >R dA

R R— R)A— A3
c pral c)
h Sso 1 Subcritical, NL de-stabilizes,
\
i >R dA
R R — R.)A+A3
/c dt ( ) -
\\\
N Higher order NL stabilization?
N
. >R
Re dA = (R— R)ATAS-A®..

dt
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or subcritical?
- l
\
(R— R)A+ A3



Supercritical  or  subcritical?
M . l
AY
-k e - - > -
o dA ;
Nonlinearity decides: i (R-R)ALA
d d
NSE: Y = f(u,R) — N _ L(v;u,, R) + N(v,v)

dt dt



Supercritical  or  subcritical?

dA
Nonlinearity decides:

du dv
NSE: P f(u,R) — i L(v;uy, R) + N(v,v)

= (L) = (v LT(v))
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Supercritical

Nonlinearity decides:

du dv
d{v,v)
N =
v, N(v,v)) =0 = 22
= sufficient

or subcritical?
-~ l
\
A
d—:(R—RC)AiA3

= <V7 L(V)> = <V7 LT(V)>

for supercritical: L = LT

= necessary for subcritical: L # LT
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Back to shear flows

Linear stability: L # LT ...

Hard! Confusing!
Need inflection point for inviscid (“R = o0") instability
(Rayleigh 1880)
Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

... but only in BL and Channel, not pipe and plane Couette
...and weak instability seems unrelated to ‘natural’ transition

Who said: “Subtle is the Lord, but malicious s/he is not.” 7!
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lu = u]

Shear turbulence

turbulence?!

-
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stable



Streaks in turbulent shear flows ...

R ~ 109? (OK, some convection too ...



Streaks in turbulent channel flow . ..

Skin friction (Kim, Moin, Moser JFM 2007)



Characteristic near-wall coherent structure

_ High stress patch

Low speed streak

High stress patch Tt

Derek Stretch, CTR Stanford, 1990

Streaks + staggered quasi-streamwise vortices: why?




Self-Sustaining Process (SSP)

Streaks

o)
advection of, instability of
mean she U(y,z)

Streamwise Streak wave
Rolls mode(3D)

O(1/R) . ~ oam)

nonlinear
self-interaction

WKH 1993, HKW 1995, W 1995, 1997



SSP theory — SSP method

F
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SSP theory — SSP method

(1) Add % forcing of streamwise rolls to NSE

= O(%) rolls, O(1) streaks
(2) Find F. subcritical bifurcation point (streak instability)
(3) Continue to F =0. Ta da/

(4) (optional) Recall:
“Subtle is the Lord, but malicious s/he is not.”

(‘Full' NSE, Newton's method) PRL 1998, JFM 2001, PoF 2003



Laminar Couette flow: u=0 &

Fr=0.000 Wx=0.000




SSP: Streamwise Rolls create Streaks
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SSP: Rolls create Streaks
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SSP in action: Subcritical Bifurcation from Streaks

Fr=5.000 Wx=0.000
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SSP in action: Subcritical Bifurcation from Streaks

Fr=4.984 ‘Wx=0.030
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SSP in action: Subcritical Bifurcation from Streaks
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SSP in action: Subcritical Bifurcation from Streaks
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SSP in action: Subcritical Bifurcation from Streaks

Fr=2.008 Wx=0.600




SSP: Self-Sustained! 3D Lower branch

Fr=0.000 Wx=0/772
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Fr=0.000 Wx=0/772




SSP: Bifurcation from Streaks

Fr=-0808 Wx=0.900




SSP: Bifurcation from Streaks

Fr=-0488 Wx=1.050




SSP: Self-Sustained! 3D Upper branch

Fr=0.000 Wx=1.118




SSP: Self-Sustained! 3D Upper branch

Fr=0.000 Wx=1.118




Homotopy
Free-Free Couette (FFC) — Rigid-Free Poiseuille (RFP)
uw=0—1

BC: (17u)—u+,uu:

1 2
Flow :  Ui(y)=y+ 1 < — y)



FFC — RFP

mu=0.0 R=142




FFC — RFP

mu=0.2 R=145




FFC — RFP

mu=04 R=152




FFC — RFP

mu=06 R=166




FFC — RFP

mu=0.8 R=182




Poiseuille traveling wave!

mu=1.0 R=263




Poiseuille traveling wave!

mu=1.0 R=263
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Optimum Traveling Wave: 1007 !

-2 -15 -1 05 0 05 1 15 2
z

N\
High stress patch

min R, = 2h™ =44 for L} =274, L} =105

just right!



‘OUt-Of—the-blue—sky’

35

251
DRAG

15¢

1 . . . .
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R

Lower branch does NOT bifurcate from laminar flow!

RRC (e, v) = (1, 2), (1.14, 2.5), up to R~ 60 000 + asymptotics



Vortex visualization

R=21% R=218

0.4

Wx 2Q: Vzp = QUQU — SUSU



Upper and Lower branches
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0.6 max(Q), (a,7v) = (1.14,2.5).




Upper and Lower branches
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Upper and Lower branches
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Upper and Lower branches
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Upper and Lower branches

R=400 R=1386

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=2938

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R-10454

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=20073

0.6 max(Q), (a,7v) = (1.14,2.5).



Upper and Lower branches

R=400 R=57250

0.6 max(Q), (a,7v) = (1.14,2.5).



Strecks
o()
cvection of

Structure of LBS, R — 60000

Streamwise ep(iax)
e p(i0X)

ols o
OWR) W~ OWR)
nonlinear

sf-interaction

u—ox=[u— o,v,wol(y,z) + euy,z)+--

y—-max z-rms
=
1S3




Streaks
o(1)

Structure of LBS, R =50171

Streamwise exp (i o )
P(Ax)

Rolls me
OWR) W~ OWR)

u = [uo, vo, wol(y, 2) + e [ur, i, wi](y, z) + -

| U0(¥7Z)7Y0(Yv;) ‘|W1|(‘y72)‘

=15 -1 -05 0 0.5 1 15 =15 -1 -0.5 0 0.5 1 15

critical layer!
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0.2

LB eigenvalues, (o, ~) = (1.14,2.5), (1,2), R = 1000

0.05

Only 1 unstable eig!



real(A)
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Stability of LBS
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Dissipation Rate

5 6 7 8 9 10 11 12 13 14
Energy Input Rate

Dissipation Rate
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Energy Input Rate

Dissipation Rate
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Dissipation Rate

LB < Transition (o, ) = (1.14, 2.5), (1,2), R = 1000
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Lower branch R = 1000

t= 300 t= 200

-1 T 7 T T T 0

-1 -0.5 0 0.5 1
z z

0.6 max(Q), R = 1000, («a, ) = (1.14,2.5).



Two states of fluid flow?

Turbulent



Separatrix, transition threshold

o ) =
Laminar

-~
-
- -
= o



Unstable Coherent States!

Laminar



PCF data (R = 400)

Dissipation Rate
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1
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N
o

3
Energy Input Rate

Periodic solutions in HKW (1.14, 1.67) by Viswanath, JFM 2007 & Gibson (TBA)



Visualizing State Space ( 10° dof's)

RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/0705.3957



Visualizing State Space (PCF, R=400)

a

RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/0705.3957
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Conclusions

Go nonlinear, young men and women!

Instabilities? = bifurcations! = coherent flows!
Laminar or turbulent? lots, and lots of coherent too!
Go coherent, young men and women!

‘Bypass transition’ = instability of streaks?
NO! instability of Lower Branch States!

Lower Branch = Gate to Turbulence!



Upper and Lower branches no-slip Couette

Dissipation Rate
w

3
Energy Input Rate

Steady State & ‘turbulent’ (by Jue Wang & John Gibson) in RRC, R = 400, («, v)=(0.95,1.67)



U

pper branches «— Turbulence

(no-slip Couette)

solid: Turbulent (avg t=2000), dash: fixed point
Mean and RMS velocity profiles
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