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Incompressible flow: Navier-Stokes equations

3D velocity field u(x, t):

∇ · u = 0

∂tu + ∇ · (uu) + ∇p =
1

R
∇2u

R: Reynolds number



Simple geometries, simple flow?

Pipe, Channel

u = (1− y2) x̂

R . 2, 000

Plane Couette

u = y x̂

R . 350



Channel flow for R & 2, 000 . . . not simple!

Front

Side

Top

Green, M. A., Rowley, C. W. & Haller, G.

Detection of Lagrangian coherent structures in three-dimensional turbulence,

J. Fluid Mech., 572, 2007, 111-120.



Instability?

NSE:
du

dt
= f (u;R)

Equilibrium u0 : 0 = f (u0 ;R)

Linear stability:
d(u− u0)

dt
=

(
∂f

∂u

)
0

(u− u0)

⇒ u− u0 = veλt ,

(
∂f

∂u

)
0

v = λv,

Instability if <(λ) > 0, typically for R > Rc
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Linear instability

stable unstableRc

R



⇒ Nonlinear bifurcation

stable unstable

‖u− u0‖

Rc

R



Bifurcations

Rc
R

Supercritical, NL stabilizes

dA

dt
= (R − Rc)A− A3

Rc
R

Subcritical, NL de -stabilizes,

dA

dt
= (R − Rc)A+A3

Rc
R

Higher order NL stabilization?

dA

dt
= (R − Rc)A+A3−A5 · · ·
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Supercritical or subcritical?

Nonlinearity decides:
dA

dt
= (R − Rc)A±A3

NSE:
du

dt
= f (u;R)→ dv

dt
= L(v;u0 ,R) + N(v, v)

〈v,N(v, v)〉 = 0 ⇒ d〈v, v〉
dt

= 〈v, L(v)〉 = 〈v, LT (v)〉

⇒ sufficient for supercritical: L = LT

⇒ necessary for subcritical: L 6= LT
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Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Back to shear flows

• Linear stability: L 6= LT . . .

Hard! Confusing!

• Need inflection point for inviscid (“R =∞”) instability
(Rayleigh 1880)

• Viscosity can lead to instability!
(Prandtl, Heisenberg, Tollmien, Lin)

. . . but only in BL and Channel, not pipe and plane Couette

. . . and weak instability seems unrelated to ‘natural’ transition

• Who said: “Subtle is the Lord, but malicious s/he is not.” ?!



Shear turbulence

stable stable ?!

‖u− u0‖

Rc

R

turbulence?!



Shear turbulence

stable stable ?!

‖u− u0‖

Rc

R

turbulence?!
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Streaks in turbulent shear flows . . .

R ≈ 109? (OK, some convection too . . . )



Streaks in turbulent channel flow . . .

Skin friction (Kim, Moin, Moser JFM 2007)



Characteristic near-wall coherent structure

Derek Stretch, CTR Stanford, 1990

Streaks + staggered quasi-streamwise vortices: why?



Self-Sustaining Process (SSP)

O(1/R) O(1/R)

O(1)

Streaks

Streak wave
mode (3D)

Streamwise

self−interaction
nonlinear

U(y,z)
instability of

Rolls

advection of
mean shear

WKH 1993, HKW 1995, W 1995, 1997



SSP theory −→ SSP method

(1) Add
F

R2
forcing of streamwise rolls to NSE

⇒ O( 1
R ) rolls, O(1) streaks

(2) Find Fc subcritical bifurcation point (streak instability)

(3) Continue to F = 0. Ta da!

(4) (optional) Recall:
“Subtle is the Lord, but malicious s/he is not.”

(‘Full’ NSE, Newton’s method) PRL 1998, JFM 2001, PoF 2003
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Laminar Couette flow: u=0 & u=-0.5
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SSP: Streamwise Rolls create Streaks
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SSP in action: Subcritical Bifurcation from Streaks
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SSP: Self-Sustained! 3D Lower branch
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SSP: Self-Sustained! 3D Upper branch
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SSP: Self-Sustained! 3D Upper branch

−1 0 1 2 3 4 5
0

0.5

1

1.5

Fr

Wx



Homotopy

Free-Free Couette (FFC) → Rigid-Free Poiseuille (RFP)

µ = 0→ 1

BC : (1− µ)
du

dy
+ µu = 0

Flow : UL(y) = y + µ

(
1

6
− y2

2

)



FFC −→ RFP
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Poiseuille traveling wave!



Poiseuille traveling wave!



Optimum Traveling Wave: 100+ !

min Rτ = 2h+ = 44 for L+
x = 274, L+

z = 105 just right!



‘Out-of-the-blue-sky’

0 500 1000 1500 2000 2500
1

1.5

2

2.5

3

3.5

R

DRAG

Lower branch does NOT bifurcate from laminar flow!
RRC (α, γ) = (1, 2), (1.14, 2.5), up to R≈ 60 000 + asymptotics



Vortex visualization

ωx 2Q= ∇2p = ΩijΩij − SijSij



Upper and Lower branches

0.6 max(Q), (α, γ) = (1.14, 2.5).
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Structure of LBS, R → 60 000

Streaks

exp ( x)Streamwise
mode

self-interaction
nonlinear

αi

advection of
mean shear U(y,z)

instability of

Rolls
O(1/R) O(1/R)

O(1)

u− ū x̂ = [u0 − ū, v0,w0](y , z) + e iαx u1(y , z) + · · ·
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Structure of LBS, R = 50 171

Streaks

exp ( x)Streamwise
mode

self-interaction
nonlinear

αi

advection of
mean shear U(y,z)

instability of

Rolls
O(1/R) O(1/R)

O(1)

u = [u0, v0,w0](y , z) + e iαx [u1, v1,w1](y , z) + · · ·

u0(y , z), v0(y , z) |w1|(y , z)
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LB eigenvalues, (α, γ) = (1.14, 2.5), (1, 2), R = 1000

−0.2 −0.15 −0.1 −0.05 0 0.05
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Only 1 unstable eig!



Stability of LBS
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LB ←→ Transition (α, γ) = (1.14, 2.5), (1, 2), R = 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Energy Input Rate

D
is

si
pa

tio
n 

R
at

e

1 1.1 1.2 1.3 1.4 1.5 1.6
1

1.1

1.2

1.3

1.4

1.5

1.6

Energy Input Rate

D
is

si
pa

tio
n 

R
at

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1

2

3

4

5

6

7

8

9

10

11

12

13

14

Energy Input Rate

D
is

si
pa

tio
n 

R
at

e

1 1.1 1.2 1.3 1.4 1.5 1.6
1

1.1

1.2

1.3

1.4

1.5

1.6

Energy Input Rate

D
is

si
pa

tio
n 

R
at

e



Lower branch R = 1000

0.6 max(Q), R = 1000 , (α, γ) = (1.14, 2.5).



Two states of fluid flow?

Laminar

Turbulent



Separatrix, transition threshold

Laminar

Turbulent



Unstable Coherent States!

Laminar

Turbulent



PCF data (R = 400)
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Periodic solutions in HKW (1.14, 1.67) by Viswanath, JFM 2007 & Gibson (TBA)



Visualizing State Space ( 105 dof’s)
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RRC, R=400, Gibson, Halcrow, Cvitanovic, JFM to appear arxiv.org/0705.3957



Visualizing State Space (PCF, R=400)
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Conclusions

• Go nonlinear, young men and women!

• Instabilities? ⇒ bifurcations! ⇒ coherent flows!

• Laminar or turbulent? lots, and lots of coherent too!

• Go coherent, young men and women!

• ‘Bypass transition’ = instability of streaks?
NO! instability of Lower Branch States!

• Lower Branch = Gate to Turbulence!
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Upper and Lower branches no-slip Couette
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Steady State & ‘turbulent’ (by Jue Wang & John Gibson) in RRC, R = 400, (α, γ)=(0.95,1.67)



Upper branches ←→ Turbulence (no-slip Couette)
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Mean and RMS velocity profiles


