SOME ESTIMATES

FOR NON SELF-ADJOINT OPERATORS

Michel Crouzeix

Université de Rennes

Manchester, May 2008

The self-adjoint case

Let us consider a linear operator $A \in \mathcal{L}(D(A), H)$ on a Hilbert space H. If this operator is self-adjoint, we can use all the power of spectral theory. In particular the spectrum $\sigma(A)$ is real, and we have the relation

$$
\|r(A)\|=\sup _{x \in \sigma(A)}|r(x)|
$$

which holds for all rational functions bounded on $\sigma(A)$.

The self-adjoint case

Let us consider a linear operator $A \in \mathcal{L}(D(A), H)$ on a Hilbert space H. If this operator is self-adjoint, we can use all the power of spectral theory. In particular the spectrum $\sigma(A)$ is real, and we have the relation

$$
\|r(A)\|=\sup _{x \in \sigma(A)}|r(x)|
$$

which holds for all rational functions bounded on $\sigma(A)$.

This relation allows to define, via a density argument, $f(A) \in$ $\mathcal{L}(H)$, for all continuous and bounded functions f on $\sigma(A)$, and the previous relation, with f instead of r, is still valid.

Example of application

If the linear operator $A \in \mathcal{L}(D(A), H)$ is self-adjoint and positive definite, we can in this way define $\cos (t \sqrt{A})$ and justify that

$$
u(t)=\cos (t \sqrt{A}) u_{0}, \quad \text { with } u_{0} \in D(A)
$$

is the unique solution in $C^{2}(\mathbb{R}, H) \cap C^{0}(\mathbb{R}, D(A))$ of

$$
\left\{\begin{array}{c}
u^{\prime \prime}(t)+A u(t)=0, \quad t \in \mathbb{R}, \\
u(0)=u_{0}, \quad u^{\prime}(0)=0
\end{array}\right.
$$

Spectral sets, J. von Neumann, 1951

A set $X \subset \mathbb{C}$, with $\sigma(A) \subset X$, is called a spectral set for the operator A if the following inequality

$$
\|r(A)\| \leq \sup _{z \in X}|r(z)|
$$

holds for all rational functions bounded on $X \subset \mathbb{C}$.

Spectral sets

A set $X \subset \mathbb{C}$, with $\sigma(A) \subset X$, is called a spectral set for the operator A if the following inequality

$$
\|r(A)\| \leq \sup _{z \in X}|r(z)|
$$

holds for all rational functions bounded on $X \subset \mathbb{C}$.

Remark. If the operator A is normal, then $\sigma(A)$ is a spectral set for A.

Spectral sets

A set $X \subset \mathbb{C}$, with $\sigma(A) \subset X$, is called a spectral set for the operator A if the following inequality

$$
\|r(A)\| \leq \sup _{z \in X}|r(z)|
$$

holds for all rational functions bounded on $X \subset \mathbb{C}$.
von Neumann results
The unit disk $\mathbb{D}=\{z ;|z| \leq 1\}$ is a spectral set for A iff $\|A\| \leq 1$.
The half-plane $\{z ; \operatorname{Re} z \geq 0\}$ is a spectral set for A if and only if

$$
\operatorname{Re}\langle A v, v\rangle \geq 0, \quad \text { for all } v \in D(A)
$$

K-spectral sets

A set $X \subset \mathbb{C}$, with $\sigma(A) \subset X$, is called a spectral set for the operator A if the following inequality

$$
\|r(A)\| \leq \sup _{z \in X}|r(z)|
$$

holds for all rational functions bounded on $X \subset \mathbb{C}$.
It is called a K-spectral set for the operator A if the following inequality holds

$$
\left.\|r(A)\| \leq K \sup _{z \in X}|r(z)|\right)
$$

K-spectral sets

A set $X \subset \mathbb{C}$, with $\sigma(A) \subset X$, is called a K-spectral set for the operator A if the following inequality

$$
\|r(A)\| \leq K \sup _{z \in X}|r(z)|
$$

holds for all rational functions bounded on $X \subset \mathbb{C}$.
Cauchy formula. Assume that the domain Ω contains $\sigma(A)(+$ suitable hypotheses), we have

$$
r(A)=\frac{1}{2 \pi i} \int_{\partial \Omega} r(\sigma)(\sigma-A)^{-1} d \sigma
$$

This shows that Ω is a K-spectral set for the operator A with

$$
K=\frac{1}{2 \pi} \int_{\partial \Omega}\left\|(\sigma-A)^{-1}\right\||d \sigma|
$$

TWO USEFUL LEMMATA

Lemma 1. We assume that
$d m(t) \quad$ is a bounded, complex-valued measure on E,
$M(t) \in \mathcal{L}(H), \quad M(t)=M^{*}(t) \geq 0, \quad$ in E,
$r \quad$ is a rational function bounded by 1 on E.
Then we have

$$
\left\|\int_{E} r(t) M(t) d m(t)\right\| \leq\left\|\int_{E} M(t)|d m(t)|\right\|
$$

Lemma 1. We assume that

$$
M(t) \in \mathcal{L}(H), \quad M(t)=M^{*}(t) \geq 0, \quad \text { in } E,
$$

r is a rational function bounded by 1 on E.
Then we have

$$
\left\|\int_{E} r(t) M(t) d m(t)\right\| \leq\left\|\int_{E} M(t)|d m(t)|\right\|
$$

Proof. We have

$$
|\langle M(t) u, v\rangle| \leq\langle M(t) u, u\rangle^{1 / 2}\langle M(t) v, v\rangle^{1 / 2}
$$

Lemma 1. We assume that

$$
M(t) \in \mathcal{L}(H), \quad M(t)=M^{*}(t) \geq 0, \quad \text { in } E,
$$

$$
r \text { is a rational function bounded by } 1 \text { on } E \text {. }
$$

Then we have

$$
\left\|\int_{E} r(t) M(t) d m(t)\right\| \leq\left\|\int_{E} M(t)|d m(t)|\right\|
$$

Proof. We have

$$
|\langle M(t) u, v\rangle| \leq\langle M(t) u, u\rangle^{1 / 2}\langle M(t) v, v\rangle^{1 / 2}
$$

Thus, with

$$
\begin{gathered}
\left.\mathcal{A}=\int_{E} r(t) M(t)\right) d m(t), \text { and } \mathcal{B}=\int_{E} M(t)|d m(t)|, \\
|\langle\mathcal{A} u, v\rangle| \leq\langle\mathcal{B} u, u\rangle^{1 / 2}\langle\mathcal{B} v, v\rangle^{1 / 2}
\end{gathered}
$$

Lemma 1. We assume that

$$
M(t) \in \mathcal{L}(H), \quad M(t)=M^{*}(t) \geq 0, \quad \text { in } E
$$

$$
r \text { is a rational function bounded by } 1 \text { on } E .
$$

Then we have

$$
\left\|\int_{E} r(t) M(t) d m(t)\right\| \leq\left\|\int_{E} M(t)|d m(t)|\right\|
$$

Proof. We have

$$
|\langle M(t) u, v\rangle| \leq\langle M(t) u, u\rangle^{1 / 2}\langle M(t) v, v\rangle^{1 / 2}
$$

Thus, with
. $\left.\mathcal{A}=\int_{E} r(t) M(t)\right) d m(t)$, and $\mathcal{B}=\int_{E} M(t)|d m(t)|$.

$$
|\langle\mathcal{A} u, v\rangle| \leq\langle\mathcal{B} u, u\rangle^{1 / 2}\langle\mathcal{B} v, v\rangle^{1 / 2}
$$

which yields $\|\mathcal{A}\| \leq\|\mathcal{B}\|$.

Lemma 2. We assume that
$d m(t) \quad$ is a bounded, complex-valued measure on E,
$M(t), N(t) \in \mathcal{L}(H), \quad N(t)=N^{*}(t), \quad$ in $E, \quad \alpha>0$
$\operatorname{Re} M(t)=\frac{1}{2}\left(M(t)+M(t)^{*}\right) \geq N(t) \geq \alpha, \quad$ in E,
$r \quad$ is a rational function bounded by 1 on E.
Then we have

$$
\left\|\int_{E} r(t)(M(t))^{-1} d m(t)\right\| \leq\left\|\int_{E}(N(t))^{-1}|d m(t)|\right\|
$$

Lemma 2. We assume that r is bounded by 1 ,

$$
\operatorname{Re} M(t)=\frac{1}{2}\left(M(t)+M(t)^{*}\right) \geq N(t) \geq \alpha, \quad \text { in } E
$$

Then we have

$$
\left\|\int_{E} r(t)(M(t))^{-1} d m(t)\right\| \leq\left\|\int_{E}(N(t))^{-1}|d m(t)|\right\|
$$

Proof.

The proof is similar by noticing that

$$
\left|\left\langle M(t)^{-1} u, v\right\rangle\right| \leq\left\langle N(t)^{-1} u, u\right\rangle^{1 / 2}\left\langle N(t)^{-1} v, v\right\rangle^{1 / 2}
$$

Application : a problem in an annulus $C=\left\{z ; \rho^{-1} \leq|z| \leq \rho\right\}$.
In 1974, Shields have shown that, if an operator A satisfies $\|A\| \leq \rho$ and $\left\|A^{-1}\right\| \leq \rho$, then for all rational functions r which is bounded by 1 on C, we have,

$$
\|r(A)\| \leq 2+\sqrt{\frac{\rho^{2}+1}{\rho^{2}-1}}
$$

Application : a problem in an annulus $C=\left\{z ; \rho^{-1} \leq|z| \leq \rho\right\}$.
In 1974, Shields have shown that, if an operator A satisfies $\|A\| \leq \rho$ and $\left\|A^{-1}\right\| \leq \rho$, then for all rational functions r which is bounded by 1 on C, we have,

$$
\|r(A)\| \leq 2+\sqrt{\frac{\rho^{2}+1}{\rho^{2}-1}}
$$

But, if $\rho=1$, then A is a unitary operator, and then $\|r(A)\| \leq 1$.

Application: a problem in an annulus $C=\left\{z ; \rho^{-1} \leq|z| \leq \rho\right\}$.
We now want to explain how the two previous lemmata allow to show that, if an operator A satisfies $\|A\|<\rho$ and $\left\|A^{-1}\right\|<\rho$, then for all rational functions r which is bounded by 1 on C, we have,

$$
\|r(A)\| \leq 2+\sqrt{\frac{\rho^{2}+2 \rho+1}{\rho^{2}+\rho+1}} \leq 2+2 / \sqrt{3} .
$$

Application : a problem in an annulus $C=\left\{z ; \rho^{-1} \leq|z| \leq \rho\right\}$. Let us consider an operator A with $\|A\|<\rho$ and $\left\|A^{-1}\right\|<\rho$, and a rational function r which is bounded on C. We have, from the Cauchy formula,

$$
r(A)=\frac{1}{2 \pi i} \int_{\partial C} r(\sigma)(\sigma-A)^{-1} d \sigma .
$$

Application : a problem in an annulus $C=\left\{z ; \rho^{-1} \leq|z| \leq \rho\right\}$. Let us consider an operator A with $\|A\|<\rho$ and $\left\|A^{-1}\right\|<\rho$, and a rational function r which is bounded on C. We have, from the Cauchy formula,

$$
r(A)=\frac{1}{2 \pi i} \int_{\partial C} r(\sigma)(\sigma-A)^{-1} d \sigma=R_{1}+R_{2}+R_{3}+R_{4}
$$

with

$$
\begin{aligned}
R_{1} & =\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right) \\
R_{2} & =\int_{|\sigma|=\rho^{-1}} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right) \\
R_{3} & =\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left(\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}+\sigma^{-1} d \sigma\right) \\
R_{4} & =\int_{|\sigma|=\rho^{-1}} r(\sigma) \frac{1}{2 \pi i}\left(\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}+\sigma^{-1} d \sigma\right)
\end{aligned}
$$

Estimate of R_{1}.

$$
R_{1}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)
$$

We write $\sigma=\rho e^{i \theta}$, thus $d \sigma=i \sigma d \theta$, and note that

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)= \\
& =\frac{1}{2 \pi}(\sigma-A)^{-1}\left(\rho^{2}-A A^{*}\right)\left(\bar{\sigma}-A^{*}\right)^{-1} d \theta
\end{aligned}
$$

Estimate of R_{1}.

$$
R_{1}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)
$$

We write $\sigma=\rho e^{i \theta}$ and note that

$$
\begin{aligned}
& \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)= \\
& \quad=\frac{1}{2 \pi}(\sigma-A)^{-1}\left(\rho^{2}-A A^{*}\right)\left(\bar{\sigma}-A^{*}\right)^{-1} d \theta \geq 0
\end{aligned}
$$

Indeed $\|A\| \leq \rho$ implies $\rho^{2}-A A^{*} \geq 0$.

Estimate of R_{1}.

$$
R_{1}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)
$$

We write $\sigma=\rho e^{i \theta}$ and note that

$$
\begin{aligned}
\frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\right. & \left.\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)= \\
& =\frac{1}{2 \pi}(\sigma-A)^{-1}\left(\rho^{2}-A A^{*}\right)\left(\bar{\sigma}-A^{*}\right)^{-1} d \theta \geq 0
\end{aligned}
$$

We can apply Lemma 1 and we get, if $|r| \leq 1$ on C,

$$
\begin{aligned}
\left\|R_{1}\right\| & \leq\left\|\int_{|\sigma|=\rho} \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)\right\| \\
& \leq\|1+1-1\|=1
\end{aligned}
$$

Estimate of R_{1}.

$$
R_{1}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right) .
$$

We write $\sigma=\rho e^{i \theta}$ and note that

$$
\begin{aligned}
\frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\right. & \left.\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)= \\
& =\frac{1}{2 \pi}(\sigma-A)^{-1}\left(\rho^{2}-A A^{*}\right)\left(\bar{\sigma}-A^{*}\right)^{-1} d \theta \geq 0 .
\end{aligned}
$$

We can apply Lemma 1 and we get, if $|r| \leq 1$ on C,

$$
\begin{aligned}
\left\|R_{1}\right\| & \leq\left\|\int_{|\sigma|=\rho} \frac{1}{2 \pi i}\left((\sigma-A)^{-1} d \sigma-\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}-\sigma^{-1} d \sigma\right)\right\| \\
& \leq\|1+1-1\|=1 .
\end{aligned}
$$

We similarly get the estimate $\left\|R_{2}\right\| \leq 1$.

Estimate of $R_{3}+R_{4}$.

We have

$$
R_{3}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left(\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}+\sigma^{-1} d \sigma\right) .
$$

We use $\bar{\sigma}=\rho^{2} / \sigma$, thus $d \bar{\sigma}=-\rho^{2} / \sigma^{2} d \sigma$, and get

$$
R_{3}=-\frac{1}{2 \pi i} \int_{|\sigma|=\rho} r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1} d \sigma
$$

Estimate of $R_{3}+R_{4}$.
We have

$$
R_{3}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left(\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}+\sigma^{-1} d \sigma\right) .
$$

We use $\bar{\sigma}=\rho^{2} / \sigma$, thus $d \bar{\sigma}=-\rho^{2} / \sigma^{2} d \sigma$, and get

$$
\begin{aligned}
R_{3} & =-\frac{1}{2 \pi i} \int_{|\sigma|=\rho} r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1} d \sigma \\
& =-\frac{1}{2 \pi i} \int_{|\sigma|=1} r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1} d \sigma .
\end{aligned}
$$

Indeed $r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1}$ is holomorphic in σ, for $\rho^{-1} \leq|\sigma| \leq \rho$, which allows to replace the path $|\sigma|=\rho$ by the path $|\sigma|=1$.

Estimate of $R_{3}+R_{4}$.
We have

$$
R_{3}=\int_{|\sigma|=\rho} r(\sigma) \frac{1}{2 \pi i}\left(\left(\bar{\sigma}-A^{*}\right)^{-1} d \bar{\sigma}+\sigma^{-1} d \sigma\right) .
$$

We use $\bar{\sigma}=\rho^{2} / \sigma$, thus $d \bar{\sigma}=-\rho^{2} / \sigma^{2} d \sigma$, and get

$$
\begin{aligned}
R_{3} & =-\frac{1}{2 \pi i} \int_{|\sigma|=\rho} r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1} d \sigma \\
& =-\frac{1}{2 \pi i} \int_{|\sigma|=1} r(\sigma) A^{*}\left(\rho^{2}-\sigma A^{*}\right)^{-1} d \sigma .
\end{aligned}
$$

Similarly we obtain

$$
R_{4}=\frac{1}{2 \pi i} \int_{|\sigma|=1} r(\sigma) A^{*}\left(\rho^{-2}-\sigma A^{*}\right)^{-1} d \sigma .
$$

Estimate of $R_{3}+R_{4}$.

We have obtained

$$
R_{3}+R_{4}=-\frac{1}{2 \pi i} \int_{|\sigma|=1} r(\sigma) A^{*}\left(\left(\rho^{2}-\sigma A^{*}\right)^{-1}-\left(\rho^{-2}-\sigma A^{*}\right)^{-1}\right) d \sigma
$$

Estimate of $R_{3}+R_{4}$.
We have obtained

$$
\begin{aligned}
R_{3}+R_{4} & =-\frac{1}{2 \pi i} \int_{|\sigma|=1} r(\sigma) A^{*}\left(\left(\rho^{2}-\sigma A^{*}\right)^{-1}-\left(\rho^{-2}-\sigma A^{*}\right)^{-1}\right) d \sigma \\
& =-\frac{\rho^{2}-\rho^{-2}}{2 \pi} \int_{0}^{2 \pi} r\left(e^{i \theta}\right) M\left(\theta, A^{*}\right)^{-1} d \theta,
\end{aligned}
$$

with

$$
M\left(\theta, A^{*}\right)=\rho^{2}+\rho^{-2}-e^{i \theta} A^{*}-e^{-i \theta} A^{-*} .
$$

Estimate of $R_{3}+R_{4}$.

We set $A^{*}=U G$, with unitary U and self-adjoint $G \geq 0$, and note that $\|A\| \leq \rho$ and $\left\|A^{-1}\right\| \leq \rho$ imply $\rho^{-1} \leq G \leq \rho$. Thus

$$
2 \leq G+G^{-1} \leq \rho+\rho^{-1}=2 \tau
$$

by setting $\tau=\left(\rho+\rho^{-1}\right) / 2$.

Estimate of $R_{3}+R_{4}$.
We set $A^{*}=U G$, with unitary U and self-adjoint $G \geq 0$, and note that $\|A\| \leq \rho$ and $\left\|A^{-1}\right\| \leq \rho$ imply $\rho^{-1} \leq G \leq \rho$. Thus

$$
2 \leq G+G^{-1} \leq \rho+\rho^{-1}=2 \tau
$$

by setting $\tau=\left(\rho+\rho^{-1}\right) / 2$, and then

$$
\left\|G+G^{-1}-1-\tau\right\| \leq \tau-1
$$

Estimate of $R_{3}+R_{4}$.
We note that
$\operatorname{Re} M\left(\theta, A^{*}\right)=\rho^{2}+\rho^{-2}-(1+\tau) \operatorname{Re}\left(e^{i \theta} U\right)-\operatorname{Re}\left(e^{i \theta} U\left(G+G^{-1}-1-\tau\right)\right)$, and we have obtained

$$
\left\|G+G^{-1}-1-\tau\right\| \leq \tau-1, \quad \tau=\left(\rho+\rho^{-1}\right) / 2
$$

Estimate of $R_{3}+R_{4}$.

We note that
$\operatorname{Re} M\left(\theta, A^{*}\right)=\rho^{2}+\rho^{-2}-(1+\tau) \operatorname{Re}\left(e^{i \theta} U\right)-\operatorname{Re}\left(e^{i \theta} U\left(G+G^{-1}-1-\tau\right)\right)$,
and we have obtained

$$
\left\|G+G^{-1}-1-\tau\right\| \leq \tau-1, \quad \tau=\left(\rho+\rho^{-1}\right) / 2
$$

This yields to $\operatorname{Re} M\left(\theta, A^{*}\right) \geq N(\theta, U)$ with

$$
N(\theta, U):=\rho^{2}+\rho^{-2}-(1+\tau) \operatorname{Re}\left(e^{i \theta} U\right)+1-\tau
$$

Estimate of $R_{3}+R_{4}$.

We note that
$\operatorname{Re} M\left(\theta, A^{*}\right)=\rho^{2}+\rho^{-2}-(1+\tau) \operatorname{Re}\left(e^{i \theta} U\right)-\operatorname{Re}\left(e^{i \theta} U\left(G+G^{-1}-1-\tau\right)\right)$,
and we have obtained

$$
\left\|G+G^{-1}-1-\tau\right\| \leq \tau-1, \quad \tau=\left(\rho+\rho^{-1}\right) / 2
$$

This yields to $\operatorname{Re} M\left(\theta, A^{*}\right) \geq N(\theta, U)$ with

$$
\begin{aligned}
N(\theta, U) & :=\rho^{2}+\rho^{-2}-(1+\tau) \operatorname{Re}\left(e^{i \theta} U\right)+1-\tau \\
& \geq \rho^{2}+\rho^{-2}-2 \tau>0
\end{aligned}
$$

Estimate of $R_{3}+R_{4}$.

Thus we may apply Lemma 2 and obtain

$$
\left\|R_{3}+R_{4}\right\| \leq \frac{\rho^{2}-\rho^{-2}}{2 \pi}\left\|\int_{0}^{2 \pi} N(\theta, U)^{-1} d \theta\right\|
$$

Estimate of $R_{3}+R_{4}$.
Thus we may apply Lemma 2 and obtain

$$
\left\|R_{3}+R_{4}\right\| \leq \frac{\rho^{2}-\rho^{-2}}{2 \pi}\left\|\int_{0}^{2 \pi} N(\theta, U)^{-1} d \theta\right\|
$$

But the integral may be computed, and we get

$$
\left\|R_{3}+R_{4}\right\| \leq \sqrt{\frac{\rho^{2}+2 \rho+1}{\rho^{2}+\rho+1}} \leq \frac{2}{\sqrt{3}} .
$$

But the integral may be computed, and we get

$$
\left\|R_{3}+R_{4}\right\| \leq \sqrt{\frac{\rho^{2}+2 \rho+1}{\rho^{2}+\rho+1}} \leq \frac{2}{\sqrt{3}}
$$

Finally, we have obtained

$$
\|r(A)\| \leq\left\|R_{1}\right\|+\left\|R_{2}\right\|+\left\|R_{3}+R_{4}\right\| \leq 2+\frac{2}{\sqrt{3}}
$$

But the integral may be computed, and we get

$$
\left\|R_{3}+R_{4}\right\| \leq \sqrt{\frac{\rho^{2}+2 \rho+1}{\rho^{2}+\rho+1}} \leq \frac{2}{\sqrt{3}}
$$

Finally, we have obtained

$$
\|r(A)\| \leq\left\|R_{1}\right\|+\left\|R_{2}\right\|+\left\|R_{3}+R_{4}\right\| \leq 2+\frac{2}{\sqrt{3}}
$$

Let us consider $D_{1}=\{z ;|z| \leq \rho\}$ and $D_{2}=\left\{z ;|z| \geq \rho^{-1}\right\}$.

We have shown that, if D_{1} and D_{2} are spectral sets for an operator A, then $C=D_{1} \cap D_{2}$ is a $2+2 / \sqrt{3}$-spectral set for A.

The previous result is a particular case of a more general one, obtained with C. Badea and B. Beckermann

If $D_{1}, D_{2}, \ldots, D_{n}$ are n disks of the Riemann sphere, and if $D_{1}, D_{2}, \ldots, D_{n}$ are spectral sets for an operator A, then $X=D_{1} \cap D_{2} \cap \cdots \cap D_{n}$ is a (complete) K-spectral set for A, with $K \leq n+n(n-1) / \sqrt{3}$.

A similar proof allows to show that

If the numerical range of an operator A

$$
W(A):=\{\langle A v, v\rangle ; v \in D(A),\|v\|=1\}
$$

is contained in a conic domain X, then X is a (complete) K-spectral set for A, with $K \leq 2+2 / \sqrt{3}$.

A more intricate proof allows to show that

The numerical range of an operator A

$$
W(A):=\{\langle A v, v\rangle ; v \in D(A),\|v\|=1\}
$$

is a (complete) K-spectral set for A, with $K \leq 11.08$.
B. Beckermann and M. Crouzeix, A lenticular version of a von Neumann inequality, Arch. Math.(Basel), 86 (2006), 352-355.
M. Crouzeix, Numerical range and functional calculus in Hilbert space, J. Funct. Anal., 244 (2007), 668-690.
M. Crouzeix, A functional calculus based on the numerical range. Applications, Linear and Multil. Algebra, 56, 1, (2008), 81-107.
B.\&F. Delyon, Generalization of Von Neumann's spectral sets and integral representation of operators, Bull. Soc. Math. France, 1, (1999), 25-42.
J. von Neumann, Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr. 4 (1951), 258-281.

