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The self-adjoint case

Let us consider a linear operator A ∈ L(D(A), H) on a Hilbert

space H. If this operator is self-adjoint, we can use all the power

of spectral theory. In particular the spectrum σ(A) is real, and we

have the relation

‖r(A)‖ = sup
x∈σ(A)

|r(x)|,

which holds for all rational functions bounded on σ(A).



The self-adjoint case

Let us consider a linear operator A ∈ L(D(A), H) on a Hilbert

space H. If this operator is self-adjoint, we can use all the power

of spectral theory. In particular the spectrum σ(A) is real, and we

have the relation

‖r(A)‖ = sup
x∈σ(A)

|r(x)|,

which holds for all rational functions bounded on σ(A).

This relation allows to define, via a density argument, f(A) ∈
L(H), for all continuous and bounded functions f on σ(A), and

the previous relation, with f instead of r, is still valid.



Example of application

If the linear operator A ∈ L(D(A), H) is self-adjoint and positive

definite, we can in this way define cos(t
√

A) and justify that

u(t) = cos(t
√

A)u0, with u0 ∈ D(A),

is the unique solution in C2(R, H) ∩ C0(R, D(A)) of






u′′(t) + A u(t) = 0, t ∈ R,

u(0) = u0, u′(0) = 0.



Spectral sets, J. von Neumann, 1951

A set X ⊂ C, with σ(A) ⊂ X, is called a spectral set for the operator

A if the following inequality

‖r(A)‖ ≤ sup
z∈X

|r(z)|

holds for all rational functions bounded on X ⊂ C.



Spectral sets

A set X ⊂ C, with σ(A) ⊂ X, is called a spectral set for the operator

A if the following inequality

‖r(A)‖ ≤ sup
z∈X

|r(z)|

holds for all rational functions bounded on X ⊂ C.

Remark. If the operator A is normal, then σ(A) is a spectral set

for A.



Spectral sets

A set X ⊂ C, with σ(A) ⊂ X, is called a spectral set for the operator

A if the following inequality

‖r(A)‖ ≤ sup
z∈X

|r(z)|

holds for all rational functions bounded on X ⊂ C.

von Neumann results

The unit disk D = {z; |z|≤1} is a spectral set for A iff ‖A‖ ≤ 1.

The half-plane {z;Re z ≥ 0} is a spectral set for A if and only if

Re〈Av, v〉 ≥ 0, for all v ∈ D(A).



K-spectral sets

A set X ⊂ C, with σ(A) ⊂ X, is called a spectral set for the operator

A if the following inequality

‖r(A)‖ ≤ sup
z∈X

|r(z)|

holds for all rational functions bounded on X ⊂ C.

It is called a K-spectral set for the operator A if the following

inequality holds

‖r(A)‖ ≤ K sup
z∈X

|r(z)|).



K-spectral sets

A set X ⊂ C, with σ(A) ⊂ X, is called a K-spectral set for the

operator A if the following inequality

‖r(A)‖ ≤ K sup
z∈X

|r(z)|

holds for all rational functions bounded on X ⊂ C.

Cauchy formula. Assume that the domain Ω contains σ(A) (+

suitable hypotheses), we have

r(A) = 1
2πi

∫

∂Ω
r(σ)(σ−A)−1dσ,

This shows that Ω is a K-spectral set for the operator A with

K = 1
2π

∫

∂Ω
‖(σ−A)−1‖ |dσ|.



TWO USEFUL LEMMATA



Lemma 1. We assume that

dm(t) is a bounded, complex-valued measure on E,

M(t) ∈ L(H), M(t) = M∗(t) ≥ 0, in E,

r is a rational function bounded by 1 on E.

Then we have
∥

∥

∥

∥

∫

E
r(t)M(t) dm(t)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

E
M(t) |dm(t)|

∥

∥

∥

∥

.
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∥
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∥

∥
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∥
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∥

∥
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∥
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Proof. We have

|〈M(t)u, v〉| ≤ 〈M(t)u, u〉1/2〈M(t)v, v〉1/2



Lemma 1. We assume that

M(t) ∈ L(H), M(t) = M∗(t) ≥ 0, in E,

r is a rational function bounded by 1 on E.

Then we have
∥

∥

∥

∥

∫

E
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∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

E
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∥

∥

∥

∥

.

Proof. We have

|〈M(t)u, v〉| ≤ 〈M(t)u, u〉1/2〈M(t)v, v〉1/2,

Thus, with

. A =
∫

E r(t)M(t)) dm(t), and B =
∫

E M(t) |dm(t)| ,

|〈Au, v〉| ≤ 〈Bu, u〉1/2〈Bv, v〉1/2



Lemma 1. We assume that

M(t) ∈ L(H), M(t) = M∗(t) ≥ 0, in E,

r is a rational function bounded by 1 on E.

Then we have
∥

∥

∥

∥

∫

E
r(t)M(t) dm(t)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

E
M(t) |dm(t)|

∥

∥

∥

∥

.

Proof. We have

|〈M(t)u, v〉| ≤ 〈M(t)u, u〉1/2〈M(t)v, v〉1/2,

Thus, with

. A =
∫

E r(t)M(t)) dm(t), and B =
∫

E M(t) |dm(t)| .

|〈Au, v〉| ≤ 〈Bu, u〉1/2〈Bv, v〉1/2,

which yields ‖A‖ ≤ ‖B‖.



Lemma 2. We assume that

dm(t) is a bounded, complex-valued measure on E,

M(t), N(t) ∈ L(H), N(t) = N∗(t), in E, α > 0

ReM(t) = 1
2(M(t) + M(t)∗) ≥ N(t) ≥ α, in E,

r is a rational function bounded by 1 on E.

Then we have
∥

∥

∥

∥

∫

E
r(t)(M(t))−1 dm(t)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

E
(N(t))−1 |dm(t)|

∥

∥

∥

∥

.



Lemma 2. We assume that r is bounded by 1,

ReM(t) = 1
2(M(t) + M(t)∗) ≥ N(t) ≥ α, in E.

Then we have
∥

∥

∥

∥

∫

E
r(t)(M(t))−1 dm(t)

∥

∥

∥

∥

≤
∥

∥

∥

∥

∫

E
(N(t))−1 |dm(t)|

∥

∥

∥

∥

.

Proof.

The proof is similar by noticing that

|〈M(t)−1u, v〉| ≤ 〈N(t)−1u, u〉1/2〈N(t)−1v, v〉1/2.



Application : a problem in an annulus C = {z ; ρ−1 ≤ |z| ≤ ρ}.

In 1974, Shields have shown that, if an operator A satisfies ‖A‖ ≤ ρ
and ‖A−1‖ ≤ ρ, then for all rational functions r which is bounded

by 1 on C, we have,

‖r(A)‖ ≤ 2 +

√

√

√

√

ρ2 + 1

ρ2 − 1
.



Application : a problem in an annulus C = {z ; ρ−1 ≤ |z| ≤ ρ}.

In 1974, Shields have shown that, if an operator A satisfies ‖A‖ ≤ ρ

and ‖A−1‖ ≤ ρ, then for all rational functions r which is bounded

by 1 on C, we have,

‖r(A)‖ ≤ 2 +

√

√

√

√

ρ2 + 1

ρ2 − 1
.

But, if ρ = 1, then A is a unitary operator, and then ‖r(A)‖ ≤ 1.



Application : a problem in an annulus C = {z ; ρ−1 ≤ |z| ≤ ρ}.

We now want to explain how the two previous lemmata allow to

show that, if an operator A satisfies ‖A‖ < ρ and ‖A−1‖ < ρ, then

for all rational functions r which is bounded by 1 on C, we have,

‖r(A)‖ ≤ 2 +

√

√

√

√

ρ2 + 2ρ + 1

ρ2 + ρ + 1
≤ 2 + 2/

√
3.



Application : a problem in an annulus C = {z ; ρ−1 ≤ |z| ≤ ρ}.
Let us consider an operator A with ‖A‖ < ρ and ‖A−1‖ < ρ, and

a rational function r which is bounded on C. We have, from the

Cauchy formula,

r(A) =
1

2πi

∫

∂C
r(σ)(σ−A)−1 dσ.



Application : a problem in an annulus C = {z ; ρ−1 ≤ |z| ≤ ρ}.
Let us consider an operator A with ‖A‖ < ρ and ‖A−1‖ < ρ, and

a rational function r which is bounded on C. We have, from the

Cauchy formula,

r(A) =
1

2πi

∫

∂C
r(σ)(σ−A)−1dσ = R1 + R2 + R3 + R4,

with

R1 =
∫

|σ|=ρ
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

,

R2 =

∫

|σ|=ρ−1
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

,

R3 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ̄−A∗)−1dσ̄ + σ−1dσ
)

,

R4 =
∫

|σ|=ρ−1
r(σ) 1

2πi

(

(σ̄−A∗)−1dσ̄ + σ−1dσ
)

.



Estimate of R1.

R1 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

.

We write σ = ρeiθ, thus dσ = iσdθ, and note that

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

=

= 1
2π(σ−A)−1(ρ2−AA∗)(σ̄−A∗)−1dθ



Estimate of R1.

R1 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

.

We write σ = ρeiθ and note that

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

=

= 1
2π(σ−A)−1(ρ2−AA∗)(σ̄−A∗)−1dθ≥0.

Indeed ‖A‖ ≤ ρ implies ρ2−AA∗ ≥ 0.



Estimate of R1.

R1 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

.

We write σ = ρeiθ and note that

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

=

= 1
2π(σ−A)−1(ρ2−AA∗)(σ̄−A∗)−1dθ ≥ 0.

We can apply Lemma 1 and we get, if |r| ≤ 1 on C,

‖R1‖ ≤
∥

∥

∥

∥

∫

|σ|=ρ

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

∥

∥

∥

∥

≤ ‖1 + 1 − 1‖ = 1.



Estimate of R1.

R1 =
∫

|σ|=ρ
r(σ) 1

2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

.

We write σ = ρeiθ and note that

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

=

= 1
2π(σ−A)−1(ρ2−AA∗)(σ̄−A∗)−1dθ ≥ 0.

We can apply Lemma 1 and we get, if |r| ≤ 1 on C,

‖R1‖ ≤
∥

∥

∥

∥

∫

|σ|=ρ

1
2πi

(

(σ−A)−1dσ − (σ̄−A∗)−1dσ̄ − σ−1dσ
)

∥

∥

∥

∥

≤ ‖1 + 1 − 1‖ = 1.

We similarly get the estimate ‖R2‖ ≤ 1.



Estimate of R3 + R4.

We have

R3 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ̄−A∗)−1dσ̄ + σ−1dσ
)

.

We use σ̄ = ρ2/σ, thus dσ̄ = −ρ2/σ2dσ, and get

R3 = − 1
2πi

∫

|σ|=ρ
r(σ)A∗(ρ2−σA∗)−1dσ



Estimate of R3 + R4.

We have

R3 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ̄−A∗)−1dσ̄ + σ−1dσ
)

.

We use σ̄ = ρ2/σ, thus dσ̄ = −ρ2/σ2dσ, and get

R3 = − 1
2πi

∫

|σ|=ρ
r(σ)A∗(ρ2−σA∗)−1dσ

= − 1
2πi

∫

|σ|=1
r(σ)A∗(ρ2−σA∗)−1dσ.

Indeed r(σ)A∗(ρ2−σA∗)−1 is holomorphic in σ, for ρ−1 ≤ |σ| ≤ ρ,

which allows to replace the path |σ| = ρ by the path |σ| = 1.



Estimate of R3 + R4.

We have

R3 =

∫

|σ|=ρ
r(σ) 1

2πi

(

(σ̄−A∗)−1dσ̄ + σ−1dσ
)

.

We use σ̄ = ρ2/σ, thus dσ̄ = −ρ2/σ2dσ, and get

R3 = − 1
2πi

∫

|σ|=ρ
r(σ)A∗(ρ2−σA∗)−1dσ

= − 1
2πi

∫

|σ|=1
r(σ)A∗(ρ2−σA∗)−1dσ.

Similarly we obtain

R4 = 1
2πi

∫

|σ|=1
r(σ)A∗(ρ−2−σA∗)−1dσ.



Estimate of R3 + R4.

We have obtained

R3 + R4 = − 1
2πi

∫

|σ|=1
r(σ)A∗((ρ2−σA∗)−1 − (ρ−2−σA∗)−1) dσ



Estimate of R3 + R4.

We have obtained

R3 + R4 = − 1
2πi

∫

|σ|=1
r(σ)A∗((ρ2−σA∗)−1 − (ρ−2−σA∗)−1) dσ

= −ρ2 − ρ−2

2π

∫ 2π

0
r(eiθ)M(θ, A∗)−1 dθ,

with

M(θ, A∗) = ρ2 + ρ−2 − eiθA∗ − e−iθA−∗.



Estimate of R3 + R4.

We set A∗ = UG, with unitary U and self-adjoint G ≥ 0, and note

that ‖A‖ ≤ ρ and ‖A−1‖ ≤ ρ imply ρ−1 ≤ G ≤ ρ. Thus

2 ≤ G+G−1 ≤ ρ+ ρ−1 = 2τ,

by setting τ = (ρ+ρ−1)/2.



Estimate of R3 + R4.

We set A∗ = UG, with unitary U and self-adjoint G ≥ 0, and note

that ‖A‖ ≤ ρ and ‖A−1‖ ≤ ρ imply ρ−1 ≤ G ≤ ρ. Thus

2 ≤ G+G−1 ≤ ρ+ ρ−1 = 2τ,

by setting τ = (ρ+ρ−1)/2, and then

‖G+G−1−1−τ‖ ≤ τ−1,



Estimate of R3 + R4.

We note that

ReM(θ, A∗) = ρ2+ρ−2−(1+τ)Re(eiθU)−Re(eiθU(G+G−1−1−τ)),

and we have obtained

‖G+G−1−1−τ‖ ≤ τ−1, τ = (ρ+ρ−1)/2.



Estimate of R3 + R4.

We note that

ReM(θ, A∗) = ρ2+ρ−2−(1+τ)Re(eiθU)−Re(eiθU(G+G−1−1−τ)),

and we have obtained

‖G+G−1−1−τ‖ ≤ τ−1, τ = (ρ+ρ−1)/2.

This yields to ReM(θ, A∗) ≥ N(θ, U) with

N(θ, U) := ρ2+ρ−2−(1+τ)Re(eiθU)+1−τ



Estimate of R3 + R4.

We note that

ReM(θ, A∗) = ρ2+ρ−2−(1+τ)Re(eiθU)−Re(eiθU(G+G−1−1−τ)),

and we have obtained

‖G+G−1−1−τ‖ ≤ τ−1, τ = (ρ+ρ−1)/2.

This yields to ReM(θ, A∗) ≥ N(θ, U) with

N(θ, U) := ρ2+ρ−2−(1+τ)Re(eiθU)+1−τ

≥ ρ2+ρ−2−2τ > 0.



Estimate of R3 + R4.

Thus we may apply Lemma 2 and obtain

‖R3 + R4‖ ≤ ρ2 − ρ−2

2π

∥

∥

∥

∥

∫ 2π

0
N(θ, U)−1dθ

∥

∥

∥

∥



Estimate of R3 + R4.

Thus we may apply Lemma 2 and obtain

‖R3 + R4‖ ≤ ρ2 − ρ−2

2π

∥

∥

∥

∥

∫ 2π

0
N(θ, U)−1dθ

∥

∥

∥

∥

But the integral may be computed, and we get

‖R3 + R4‖ ≤

√

√

√

√

ρ2 + 2ρ + 1

ρ2 + ρ + 1
≤ 2√

3
.



But the integral may be computed, and we get

‖R3 + R4‖ ≤

√

√

√

√

ρ2 + 2ρ + 1

ρ2 + ρ + 1
≤ 2√

3
.

Finally, we have obtained

‖r(A)‖ ≤ ‖R1‖ + ‖R2‖ + ‖R3+R4‖ ≤ 2 +
2√
3

.



But the integral may be computed, and we get

‖R3 + R4‖ ≤

√

√

√

√

ρ2 + 2ρ + 1

ρ2 + ρ + 1
≤ 2√

3
.

Finally, we have obtained

‖r(A)‖ ≤ ‖R1‖ + ‖R2‖ + ‖R3+R4‖ ≤ 2 +
2√
3

.

Let us consider D1 = {z ; |z| ≤ ρ} and D2 = {z ; |z| ≥ ρ−1}.

We have shown that, if D1 and D2 are spectral sets for an operator

A, then C = D1 ∩ D2 is a 2 + 2/
√

3-spectral set for A.



The previous result is a particular case of a more general one,

obtained with C. Badea and B. Beckermann

If D1, D2,. . ., Dn are n disks of the Riemann sphere, and

if D1, D2,. . ., Dn are spectral sets for an operator A,

then X = D1 ∩ D2 ∩ · · · ∩ Dn is a (complete) K-spectral set for A,

with K ≤ n + n(n−1)/
√

3.



A similar proof allows to show that

If the numerical range of an operator A

W (A) := {〈Av, v〉 ; v ∈ D(A), ‖v‖ = 1}

is contained in a conic domain X, then X is a (complete) K-spectral

set for A, with K ≤ 2 + 2/
√

3.



A more intricate proof allows to show that

The numerical range of an operator A

W (A) := {〈Av, v〉 ; v ∈ D(A), ‖v‖ = 1}

is a (complete) K-spectral set for A, with K ≤ 11.08.
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