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Perturbations of Jordan Matrices

The simple matrix

A =



0 1

0 1

0 1

0 1

0 1

0


has spectrum {0}. The same applies if one has several Jordan
blocks.
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Perturbations of Jordan Matrices

The situation changes entirely if one adds a few extra entries as in

A =



0 1 1 0

0 1

0 1

0 1

1 0 1

1 0


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The Associated Graph

The graph of any matrix is defined by putting

X = {1, 2, . . . , n}

and if x, y ∈ X then

x→ y iff Ax,y 6= 0.

We will assume that this graph is irreducible in the sense that any
point is accessible from any other.
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The Associated Graph

The graph of any n× n matrix is defined by putting

S = {1, 2, . . . , n}

and if x, y ∈ S then
x→ y iff Ax,y 6= 0.

We will assume that this graph is irreducible in the sense that any
point is accessible from any other.

One can regard the graph as weighted by attaching the number
Ax,y to the edge x→ y and the number A(x, x) to the vertex x.
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Channels

We define C to be the set of all s ∈ S that have indegree 1 and
outdegree 1. We assume that C and J = S\C are both non-empty.

The set C can be written as the union of disjoint ‘channels’ Ci,
which we define as subsets T of S that can be identified with
{b = 1, 2, ..., e− 1, e} in such a way that

1. every x ∈ T has outdegree 1; if x < e then x→ x+ 1; moreover
e→ ẽ ∈ J ;

2. every x ∈ T has indegree 1; if x > 1 then x− 1→ x; moreover
J 3 b̃→ b.
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Asymptotics

We will assume that the length of each channel is a multiple of n
and investigate the spectral asymptotics as n→∞. The geometry
of the graph and the matrix entries are otherwise unchanged.

The matrix entries for each channel involve two constants, one for
the diagonal entries and another for the off-diagonal entries.

Different channels may have a different pair of constants.
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The Eigenvalue Problem

det(An − zI) = Fn(z) =
R∑

r=1

ar(z)fr(z)n

where each ar(z) and fr(z) is a polynomial.

The task is to find where the zeros of such an expression lie in the
limit n→∞.

One can generalize by allowing the functions to be analytic rather
than polynomial.
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An Example

Consider the function

F (z) = (z − a)n(z + a)n + α(z − a)n + γ.

for which

f1(z) = (z − a)(z + a),

f2(z) = (z − a),

f3(z) = 1.
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Excluded Regions

We can exclude the regions

Ur = {z : |fr(z)| > |fs(z)| for all s 6= r}.

except for certain isolated points.

These are the points where ar(z) = 0.
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Excluded Regions

We can exclude the regions

Ur = {z : |fr(z)| > |fs(z)| for all s 6= r}.

except for certain isolated points.

These are the points where ar(z) = 0.
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The Remaining Eigenvalues

Most of the eigenvalues must lie close to the curves

Cr,s = {z : |fr(z)| = |fs(z)| > |ft(z)| for all t 6= r, s}.

One also needs a hypothesis that ensures that three functions can
only coincide in absolute value at isolated points.

Each curve starts and ends at a point of E.
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Another Example

Consider the (3n+ 3)× (3n+ 3) matrix

Ai,j =



i/2 if 1 ≤ i = j ≤ n,

−2 if i = j = n+ 1,

−i/2 if n+ 2 ≤ i = j ≤ 2n+ 1,

2 if i = j = 2n+ 2,

3/2 if 2n+ 3 ≤ i = j ≤ 3n+ 2,

0 if i = j = 3n+ 3,

1 if i+ 1 = j,

1 if i = 3n+ 3, j = 1,

1 if i = n+ 1, j = 3n+ 3,

0 otherwise.
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It corresponds to a graph with three channels of length n and two
junctions. It has characteristic polynomial

det(zI −A) = z(z2 − 4)(z − i/2)n(z + i/2)n(z − 3/2)n

−(z − 2)(z + i/2)n(z − 3/2)n − 1.

Also

f1(z) = (z − i/2)(z + i/2)(z − 3/2)

f2(z) = (z + i/2)(z − 3/2)

f3(z) = −1.
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The Case n = 20
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The Eigenvalue Density

One finally has to prove that the eigenvalues close to the curves

Cr,s = {z : |fr(z)| = |fs(z)| > |ft(z)| for all t 6= r, s}.

have an asymptotic density.

For every interval J on the curve the number of eigenvalues close to
that interval is of the form c(J)n+ o(n) where c(J) is the integral
of a certain real-analytic function over the interval.
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Pseudospectra
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