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MIMS New Directions Workshop, Functions of Matrices

University of Manchester, May 15-16, 2008



Thick-restart Arnoldi methods for the evaluation of matrix functions 1

1 Problem

Given: A ∈ Cn×n, b ∈ Cn, b 6= 0 , f analytic in neighborhood of Λ(A).

Sought: f(A)b.

Original Motivation: Numerical simulation of transient electromagnetic

(TEM) geophysical exploration (collaboration with Institute of Geophysics):

u(t) = exp(−tA)u0,

where A discretizes σ−1∇× (µ−1∇× · ) and is large and sparse.

Other Important Applications:

Exponential integrators: ϕ0(λ) = exp(−tλ), ϕj+1(λ) = ϕj(tλ)−ϕj(0)
tλ .

Lattice quantum chromodynamics: sign(λ).

Time-dependent hyperbolic problems: trigonometric functions.

Problem MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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• The Arnoldi method projects the problem of evaluating f(A)b onto a

sequence of m-dimensional Krylov subspaces.

• The cost of storing (and computing) the basis vectors of these spaces

increases with m.

• It is possible to restart the Arnoldi method after a fixed dimension m

similar to linear systems or eigenproblems.

• Restarting usually results in slower convergence.

• How can we compensate for the loss of information that occurs upon

restarting by retaining a judiciously chosen part of the previously

generated spaces?

Problem MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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2 Three ways to generate Krylov subspace

approximations

• Krylov subspace methods generate approximants ym of f(A)b with

ym ∈ Km(A, b) := span{b, Ab, . . . , Am−1b} = {q(A)b : q ∈Pm−1}.

• There are usually based on Arnoldi-like decompositions of A,

AWm = WmHm + hm+1,mwm+1e
T
m,

where colspan(Wm) = Km(A, b), βWme1 = b, Hm is unreduced

upper Hessenberg.

• Most prominent example: (proper) Arnoldi decomposition,

AVm = VmHm + hm+1,mvm+1e
T
m, where V H

m Vm = Im.

Three ways to generate Krylov subspace approximations MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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• restarted Arnoldi: k standard Arnoldi decompositions of A

AVj = VjHj + hj+1vjm+1e
T
m, j = 1, 2, . . . , k,

wrt the m-dim. Krylov spaces Km(A, v(j−1)m+1), glued together,

AV̂k = V̂kĤk + hk+1vkm+1e
T
km,

where V̂k := [V1 V2 · · · Vk] ∈ Cn×km,

Ĥk :=


H1

E2 H2

. . .
. . .

Ek Hk

 ∈ Ckm×km, Ej := hje1e
T
m ∈ Rm×m,

cf. [E. & Ernst, 2006].

Three ways to generate Krylov subspace approximations MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Projection: With βw1 = b set

y (1)
m := βWmf(Hm)e1 ∈ Km(A, b).

Cauchy integral: f(A)b = 1
2πi

∫
Γ f(λ)x (λ) dλ. Approximate

x (λ) := (λI −A)−1b by zm(λ) = βWm(λI −Hm)−1e1 and set

y (2)
m :=

1
2πi

∫
Γ
f(λ)zm(λ) dλ.

Interpolation: Let pm−1 ∈Pm−1 be the interpolating polynomial (in

Hermite’s sense) for f at the eigenvalues of Hm and set

y (3)
m := pm−1(A)b.

Theorem 1 y
(1)
m = y

(2)
m = y

(3)
m

cf. [Hochbruck & Hochstenbach, 2005]

Three ways to generate Krylov subspace approximations MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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• Arnoldi approximation [Druskin & Knizhnerman, 1989], [Saad, 1992]

fm = pm−1(A)b =
1

2πi

∫
Γ
f(λ)zm(λ) dλ = βVmf(Hm)e1,

where pm−1 ∈Pm−1 interpolates f at the Ritz values of A wrt

Km(A, b), where zm(λ) is the FOM approximation to

(λIn −A)x (λ) = b.

• Restarted Arnoldi approximation [E. & Ernst, 2006], [Niehoff, 2006]

f̂k = p̂k(A)b =
1

2πi

∫
Γ
f(λ)ẑk(λ) dλ = βV̂kf(Ĥk)e1,

where p̂k ∈Pkm−1 interpolates f at the Ritz values of A wrt

Km(A, v(j−1)m+1) (j = 1, 2, . . . , k), where ẑk(λ) is the FOM(m)

approximation (after k cycles) to (λIn −A)x (λ) = b.

Three ways to generate Krylov subspace approximations MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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3 Thick restarts

• Compensate for the deterioration of convergence of Krylov subspace

methods due to restarting by using nearly invariant subspaces to

augment the Krylov subspace.

• Identify a subspace which slows convergence, approximate this space

and eliminate its influence from the iteration process.

• In practice: Approximate eigenspaces which belong to eigenvalues

close to singularities of f (for f = exp, approximate eigenspaces which

belong to ”large” eigenvalues).

• Well known for eigenproblems [Wu & Simon, 2000], [Stewart, 2001]

and linear systems [Morgan, 2002]. For matrix functions, first

proposed by [Niehoff, 2006].

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Thick-restart procedure

• Starting point: Km(A, b) with Arnoldi decomposition

AV1 = V1H1 + h2vm+1e
T
m.

• Compute `-dimensional H1-invariant subspace,

H1 [X1 ∗] = [X1 ∗]

[
U1 ∗
O ∗

]

(partial Schur decomposition), i.e., U1 ∈ C`×` is upper triangular,

X1 ∈ Cm×` has orthonormal columns.

Set Y1 := V1X1. Then

AY1 = Y1U1 + h2vm+1u
T
1 , where u1 = XT

1 e` ∈ C` (dense!).

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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• Extend by m Arnoldi steps

A [Y1 V2] = [Y1 V2]

[
U1 G2

h2e1u
T
1 H2

]
+ h3v2m+1e

T
`+m,

where [Y1 V2 v2m+1] has orthonormal columns, V2e1 = vm+1,

H2 ∈ Cm×m is upper Hessenberg.

• Known [Morgan, 2002]: colspan([Y1 V2]) = K`+m(A, s(A)b), where

s(λ) =
∏

µ∈Λ(H1)\Λ(U1)

(λ− µ) ∈Pm−`

(implicitly restarted Arnoldi [Sorensen, 1992]).

• If A = AH : U1 is diagonal, H2 is symmetric tridiagonal,

G2 = h2u1e
T
1 .

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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• Second sweep: Compute `-dimensional invariant subspace,[
U1 G2

h2e1u
T
1 H2

]
[X2 ∗] = [X2 ∗]

[
U2 ∗
O ∗

]
.

• With Y2 := [Y1 V2]X2,

AY2 = Y2U2 + h3v2m+1u
T
2 , where u2 = XT

2 e`+m ∈ C`.

• Extend by m further Arnoldi steps

A [Y2 V3] = [Y2 V3]

[
U2 G3

h3e1u
T
2 H3

]
+ h4v3m+1e

T
`+m,

where [Y2 V3 v3m+1] has orthonormal columns, V3e1 = v2m+1, H3 is

upper Hessenberg.

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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We glue these decompositions together,

A [V1 Y1 V2 Y2 V3] = [V1 Y1 V2 Y2 V3]



H1 O O O O

O U1 G2 O O

E2 F2 H2 O O

O O O U2 G3

O O E3 F3 H3


+h4v3m+1e

T
3m+2`.

Here Ej = hje1e
T
m ∈ Rm×m, Fj = hje1u

T
j−1 ∈ Cm×`.

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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After k sweeps, we arrive at a ”thick-restart decomposition”

AṼk= ṼkH̃k + hk+1vkm+1e
Tbk , where

Ṽk = [V1|Y1|V2| · · · |Yk−1|Vk] ∈ Cn×bk has linearly dependent columns,

H̃k =



H1

E2

U1 G2

F2 H2

. . .
. . .

Ek

Uk−1 Gk

Fk Hk


∈ Cbk×bk

is not Hessenberg (k̂ = km+ (k − 1)`).

We need km mvm’s to construct this decomposition.

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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From the decomposition AṼk = ṼkH̃k + hk+1vkm+1e
Tbk , we define

f̃k := βṼkf(H̃k)e1.

Since Y1 = V1X1 and Yj = [Yj−1 Vj ]Xj (j = 2, . . . , k), we write

Ṽk = [V1 Y1 V2 · · · Yk−1 Vk] = [V1 V2 · · · Vk] C =: V̂kC,

where C ∈ Cmk×bk has full row rank.

We have CC† = Ikm and eTbk C† = ekm. Thus, by inserting

AV̂kC = V̂kCH̃k + hk+1vkm+1e
Tbk

or AV̂k = V̂k

(
CH̃kC

†
)

+ hk+1vkm+1e
Tbk C† =: V̂kĤk + hk+1vkm+1e

T
km

which is a valid Arnoldi-like decomposition, i.e., Ĥk is upper Hessenberg

and the columns of V̂k are linearly independent.

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Theorem 2 Given the thick-restart decomposition

AṼk = Ṽk H̃k + hk+1vkm+1e
Tbk

(k-th sweep, i.e., after k − 1 restarts, ` Ritz vectors per restart, m mvm

per sweep) and the associated Arnoldi-like decomposition

AV̂k = V̂k Ĥk + hk+1vkm+1e
T
km.

Then

f̃k = β Ṽk f(H̃k)e1 = β V̂k f(Ĥk)e1.

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Three interpretations:

Theorem 3 For the thick-restart approximation there holds

f̃k = βṼkf(H̃k)e1 = p̂k(A)b =
1

2πi

∫
Γ
f(λ)ẑ (m,`)

k (λ) dλ,

where p̂k ∈Pkm−1 interpolates f in

Λ(Ĥk) = Λ(H̃k) \
(
∪k−1
j=1Λ(Uj)

)
,

and where ẑ
(m,`)
k (λ) is the approximate solution of (λI −A)x (λ) = b

which is generated by k sweeps of FOM(m, `) (cf. [Morgan, 2002]).

cf. [Niehoff, 2006]

Thick restarts MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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4 Convergence

Use the interpretation as an interpolation procedure.

Programm:

1. Where in the complex plane is Λ(Ĥk), the set of interpolation points,

located?

2. For which λ ∈ C do the corresponding interpolation polynomials

converge to f(λ)?

Remarks:

1. This approach works only for (nearly) normal A.

2. The second question is answered, e.g., by [Walsh, 1969].

Convergence MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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A Hermitian with eigenvalues λ1 < λ2 < · · · < λn: I
Nodes for standard restarted Arnoldi (m = 1): •
Nodes for thick-restart Arnoldi (m = 1, ` = 1): � + last ♦

Convergence MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Theorem 4 (Afanasjew et al., 2008) Let A be Hermitian.

Consider the restarted Arnoldi method with restart length m = 1:

Λ(Ĥk) = {η1, . . . , ηk} and Λ(Ĥk+1) = {η1, . . . , ηk, ηk+1}.
There exists α ∈ (0, 1) (which depends on b and Λ(A)) such that

lim
j→∞

η2j+1 = ζ1 = αλ1 + (1− α)λn,

lim
j→∞

η2j = ζ2 = (1− α)λ1 + αλn.

λ
1

λ
n

ζ
1

ζ
2

Convergence MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Theorem 5 (Afanasjew et al., 2008) Under the conditions of

Theorem 4

lim sup
k→∞

‖f(A)b − f̂k‖1/k ≤
κA
κf
, where

κA := min{ρ > 0 : Λ(A) ⊂ int Γρ ∪ Γρ},
κf := max{ρ > 0 : f analytic in int Γρ}.

If f(λ) = exp(τλ), τ 6= 0, then

lim sup
k→∞

[
k‖f(A)b − fk‖1/k

]
≤ κA |τ | e.

In each case, there exist vectors b such that equality holds.

Convergence MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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Theorem 6 (E. & Güttel, 2008) Let A be Hermitian.

Consider the thick-restarted Arnoldi method with (m, `) = (1, 1)
with target λn.

Λ(Ĥk) : η1, η2, . . . , ηk−1, η
∗
k and Λ(Ĥk+1) : η1, η2, . . . , ηk−1, ηk, η

∗
k+1.

There exists α ∈ (0, 1) (which depends on b and Λ(A)) such that

lim
j→∞

η2j+1 = ζ̃1 = αλ1 + (1− α)λn−1

lim
j→∞

η2j = ζ̃2 = (1− α)λ1 + αλn−1

lim
j→∞

η∗j = λn.

Here, the lemniscates with foci ζ̃1, ζ̃2 determine the convergence behavior.

Convergence MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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A Hermitian with eigenvalues λ1 < λ2 < · · · < λn: I
Nodes for standard restarted Arnoldi (m = 5): •
Nodes for thick-restart Arnoldi (m = 5, ` = 2): � + last ♦
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5 A numerical example

0 500 1000 1500 2000

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

matrix−vector products

||e
rr

or
||

 

 

Alg. 1, m=∞
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Alg. 2, m=30
stopping error

exp(−tA)b, where t = 10−3, A =discrete version of σ−1∇× (µ−1∇× )̇,

Λ(A) ∈ [0, 108], dim(A) = 565, 326 (see [Afanasjew et al., 2008a])

A numerical example MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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target = eigenvalues closest to 0
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6 Summary

• Restarted Arnoldi methods result in acceptable storage cost even for

very large matrices.

• Thick restarts accelerate the convergence.

• There is a stable implementation with constant (low) computational

costs per sweep. Necessary: A near best rational approximation to f

on W (A) (Faber-Carathéodory-Fejér).

• The asymptotic convergence behavior is (nearly) understood in the

Hermitian case.

• Stopping criteria (a posteriori error estimates) are available.

Summary MIMS New Directions Workshop, Functions of Matrices, Manchester, May 15-16, 2008
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