On Newton's method and Halley's method for pth roots of matrices

Chun-Hua Guo
University of Regina
Canada

May 15, 2008

Principal p th root

Let $p \geq 2$ be an integer. Suppose that $A \in \mathbb{C}^{n \times n}$ has no negative real eigenvalues and all zero eigenvalues are semisimple. Let the Jordan canonical form of A be

$$
Z^{-1} A Z=\operatorname{diag}\left(J_{1}, J_{2}, \ldots, J_{p}\right)
$$

Then the principal p th root of A is

$$
A^{1 / p}=Z \operatorname{diag}\left(J_{1}^{1 / p}, J_{2}^{1 / p}, \ldots, J_{p}^{1 / p}\right) Z^{-1}
$$

where for $m_{k} \times m_{k}$ Jordan block $J_{k}=J_{k}\left(\lambda_{k}\right)$

$$
J_{k}^{1 / p}=\left[\begin{array}{cccc}
f\left(\lambda_{k}\right) & f^{\prime}\left(\lambda_{k}\right) & \cdots & \frac{f^{\left(m_{k}-1\right)}\left(\lambda_{k}\right)}{\left(m_{k}-1\right)!} \\
& f\left(\lambda_{k}\right) & \ddots & \vdots \\
& & \ddots & f^{\prime}\left(\lambda_{k}\right) \\
& & & f\left(\lambda_{k}\right)
\end{array}\right] \text { with } f(z)=z^{1 / p} .
$$

Newton's method and Halley's method

We can find $A^{1 / p}$ without JCF.
Newton's method:

$$
\begin{aligned}
& X_{0}=I \\
& X_{k+1}=\frac{1}{p}\left((p-1) X_{k}+A X_{k}^{1-p}\right)
\end{aligned}
$$

Halley's method:

$$
\begin{aligned}
& X_{0}=I \\
& X_{k+1}=X_{k}\left((p+1) X_{k}^{p}+(p-1) A\right)^{-1}\left((p-1) X_{k}^{p}+(p+1) A\right)
\end{aligned}
$$

Stable versions of these methods are given in [lannazzo, 2006] and [lannazzo, 2007].

Residual relation for Newton's method

Let the residual be defined by $R\left(X_{k}\right)=I-A X_{k}^{-p}$.
(The usual definition $R\left(X_{k}\right)=X_{k}^{p}-A$ does not work well.) Assume that $\rho(I-A) \leq 1$. So $\rho\left(R\left(X_{0}\right)\right) \leq 1$.
Assume that X_{k} is defined and nonsingular, with $\rho\left(R\left(X_{k}\right)\right) \leq 1$. Then $X_{k+1}=X_{k}\left(I-\frac{1}{p} R\left(X_{k}\right)\right)$ is defined and nonsingular, and

$$
R\left(X_{k+1}\right)=I-\left(I-\frac{1}{p} R\left(X_{k}\right)\right)^{-p}\left(I-R\left(X_{k}\right)\right)=\sum_{i=2}^{\infty} c_{i}\left(R\left(X_{k}\right)\right)^{i},
$$

where $c_{i}>0$ for $i \geq 2$ and $\sum_{i=2}^{\infty} c_{i}=1$. So $\rho\left(R\left(X_{k+1}\right)\right) \leq 1$. If $\left\|R\left(X_{0}\right)\right\| \leq 1$, then $\left\|R\left(X_{k}\right)\right\| \leq\left\|\left(R\left(X_{0}\right)\right)^{2^{k}}\right\|$.

The scalar case

Theorem

Let λ be any complex number in $E=\{z:|z-1| \leq 1\}$. Then Newton's method with $x_{0}=1$ converges to $\lambda^{1 / p}$.

Proof.
If $\lambda=0$, then $x_{k}=((p-1) / p)^{k}$, converging to 0 linearly. If $\lambda \neq 0$ and $|\lambda-1| \leq 1$, then $\left\{x_{k}\right\}$ is a Cauchy sequence (by the residual relation) and hence converges to a p th root of λ. However, the set E is connected and for $\lambda=1 \in E$ we know that $\left\{x_{k}\right\}$ converges to 1 , the principal p th root of 1 . It follows that for each $\lambda \in E,\left\{x_{k}\right\}$ converges to the principal p th root of λ.

Return to the matrix case

Scalar convergence implies matrix convergence [Higham, 2008, Theorem 4.15].

Theorem
If all eigenvalues of A are in $\{z:|z-1| \leq 1\}$ and all zero eigenvalues of A (if any) are semisimple, then Newton's method converges to $A^{1 / p}$.

Theorem
[Iannazzo, 2006] If all eigenvalues of A are in
$\{z: \operatorname{Rez}>0,|z| \leq 1\}$, then Newton's method converges to $A^{1 / p}$.

Residual relation for Halley's method

Let $R\left(X_{k}\right)=I-A X_{k}^{-p}$. When $\rho\left(\left(R\left(X_{k}\right)\right)<\frac{2 p}{p+1}\right.$,

$$
X_{k+1}=X_{k} \frac{I-\frac{p+1}{2 p} R\left(X_{k}\right)}{I-\frac{p-1}{2 p} R\left(X_{k}\right)}
$$

is defined and nonsingular.

$$
R\left(X_{k+1}\right)=I-\left(\frac{I-\frac{p-1}{2 p} R\left(X_{k}\right)}{I-\frac{p+1}{2 p} R\left(X_{k}\right)}\right)^{p}\left(I-R\left(X_{k}\right)\right)
$$

Let

$$
f(t)=1-\left(\frac{1-\frac{p-1}{2 p} t}{I-\frac{p+1}{2 p} t}\right)^{p}(1-t)
$$

Properties of $f(t)$

For $|t|<\frac{2 p}{p+1}, f(t)=\sum_{i=3}^{\infty} c_{i} t^{i}$, where $\sum_{i=3}^{\infty} c_{i}=1$ and $c_{3}=\left(p^{2}-1\right) /\left(12 p^{2}\right)$.
Conjecture
$c_{i}>0$ for all $i \geq 3$.
If this conjecture is proved, then:
If $\left\|R\left(X_{0}\right)\right\| \leq 1$ then $\left\|R\left(X_{k}\right)\right\| \leq\left\|R\left(X_{0}\right)^{3^{k}}\right\|$.
This would prove the convergence of Halley's method when $\sigma(A) \subset\{z:|z-1|<1\}$. [lannazzo, 2007] proved the convergence of Halley's method when $\sigma(A) \subset \mathbb{C}_{+}$.
Without proving this conjecture, we have:
If $\left\|R\left(X_{0}\right)\right\| \leq q \leq 1$ for a sufficiently small q then
$\left\|R\left(X_{k}\right)\right\| \leq\left\|R\left(X_{0}\right)^{3^{k}}\right\|$.

Newton, Halley, and binomial expansion

Theorem

Suppose that all eigenvalues of A are in $\{z:|z-1|<1\}$ and write $A=I-B($ so $\rho(B)<1)$. Let $(I-B)^{1 / p}=\sum_{i=0}^{\infty} c_{i} B^{i}$ be the binomial expansion (so $c_{i}<0$ for $i \geq 1$). Then the sequence X_{k} generated by Newton's method or by Halley's method has the Taylor expansion $X_{k}=\sum_{i=0}^{\infty} c_{k, i} B^{i}$. For Newton's method we have $c_{k, i}=c_{i}$ for $i=0,1, \ldots, 2^{k}-1$, and for Halley's method we have $c_{k, i}=c_{i}$ for $i=0,1, \ldots, 3^{k}-1$.

Proof.

For Newton's method, take $B=J(0)_{2^{k} \times 2^{k}}$. Then $\left\|R\left(X_{k}\right)\right\| \leq\left\|R\left(X_{0}\right)^{2^{k}}\right\|=\left\|B^{2^{k}}\right\|=0$ so $X_{k}=(I-B)^{1 / p}$, which implies $c_{k, i}=c_{i}$ for $i=0,1, \ldots, 2^{k}-1$.

Conjecture about $c_{k, i}$ for Newton's method

For Newton's method we know

- $c_{k, 0}=1$ for $k \geq 0$.
- $c_{0, i}=0$ for $i \geq 1$.
- $c_{1,1}=-1 / p, c_{1, i}=0$ for $i \geq 2$.
- $c_{2, i}<0$ for $i \geq 1$.
- $c_{k, i}<0$ for $k \geq 3$ and $i=1: 2^{k}-1$.
- $\sum_{i=0}^{\infty} c_{k, i}=((p-1) / p)^{k}$ for $k \geq 0$.

Conjecture
For Newton's method, $c_{k, i}<0$ for $k \geq 3$ and $i \geq 2^{k}$.

Conjecture about $c_{k, i}$ for Halley's method

For Halley's method we know

- $c_{k, 0}=1$ for $k \geq 0$.
- $c_{0, i}=0$ for $i \geq 1$.
- $c_{1, i}<0$ for $i \geq 1$.
- $c_{k, i}<0$ for $k \geq 2$ and $i=1: 3^{k}-1$.
- $\sum_{i=0}^{\infty} c_{k, i}=((p-1) /(p+1))^{k}$ for $k \geq 0$.

Conjecture
For Halley's method, $c_{k, i}<0$ for $k \geq 2$ and $i \geq 3^{k}$.

Scaling

If all eigenvalues of A are in $E=\{z:|z-1|<1\}$, faster convergence can be achieved by a proper scaling of A. We write $A=c(I-B)$ with $c>0$ and $B=I-\frac{1}{c} A$. Then $A^{1 / p}=c^{1 / p}(I-B)^{1 / p}$ and $(I-B)^{1 / p}$ is computed by Newton's method or Halley's method. The best constant c minimizes $\rho(B)$. The eigenvalues of A are known when A is obtained from a preprocessing procedure [Guo, Higham, 2006] based on the Schur decomposition and the computation of matrix square roots. If A has real eigenvalues $\lambda_{1} \geq \ldots \geq \lambda_{n}$, the optimal c is $\left(\lambda_{1}+\lambda_{n}\right) / 2$. If A has complex eigenvalues, a near-optimal c can be obtained by using the idea in the proof of Proposition 4.5 in [Guo, Higham, 2007] and a bisection procedure on the parameter c.

The singular case

If A has semisimple zero eigenvalues, then the convergence of Newton iteration is linear with rate $(p-1) / p$, but accurate approximations to $A^{1 / p}$ can be obtained by computing $Z_{k}=p X_{k}-(p-1) X_{k-1}$. For Halley's method one would use $Z_{k}=\frac{1}{2}\left((p+1) X_{k}-(p-1) X_{k-1}\right)$ for the improvement.

Proposition

Suppose that A has semisimple zero eigenvalues and let $R(Y)=Y^{p}-A$. Then for Newton's method or Halley's method

$$
\left\|R\left(X_{k}\right)\right\|=O\left(\left\|X_{k}-A^{1 / p}\right\|^{p}\right), \quad\left\|R\left(Z_{k}\right)\right\|=O\left(\left\|Z_{k}-A^{1 / p}\right\|\right)
$$

pth root of nonsingular H-matrix

It is shown in [Johnson, 1982] that $A^{1 / p}$ is a nonsingular M-matrix for every nonsingular M-matrix A.
Theorem
Let A be a nonsingular H-matrix with positive diagonal entries.
Then the principal pth root of A exists and is a nonsingular H-matrix whose diagonal entries have positive real parts.

Corollary
Let A be a real nonsingular H-matrix with positive diagonal entries. Then the principal pth root of A exists and is also a real nonsingular H-matrix with positive diagonal entries.

pth root of singular M-matrix

Theorem
Let A be a singular M-matrix with semisimple zero eigenvalues.
Then $A^{1 / p}$ is also a singular M-matrix with semisimple zero eigenvalues.

Corollary
Let A be an irreducible singular M-matrix. Then $A^{1 / p}$ is also an irreducible singular M-matrix.

Computing pth root of nonsingular H-matrix

Let A be a nonsingular H-matrix with positive diagonal entries. Then the large convergence region [lannazzo, 2007] for Halley's method allows one to compute $A^{1 / p}$ directly by Halley's method (with $X_{0}=I$). However, a better strategy is as follows. Let s be the largest diagonal entry of A. Then $A=s(I-B)$ with $\rho(B)<1$. (If A is a nonsingular M-matrix, we also have $B \geq 0$.) We compute $A^{1 / p}$ through $A^{1 / p}=s^{1 / p}(I-B)^{1 / p}$. To find $(I-B)^{1 / p}$ we generate a sequence X_{k} by Newton's method or Halley's method, with $X_{0}=I$ in each case.

Structure preserving for M-matrices

We would like to know whether the approximations X_{k} are nonsingular M-matrices.

Proposition

For Newton's method or Halley's method, the matrix X_{k} is a nonsingular M-matrix for all nonsingular M-matrices (of all sizes) $A=I-B$ with $B \geq 0$ if and only if $c_{k, i} \leq 0$ for all $i \geq 1$.
Thus, when A is a nonsingular M-matrix with $a_{i i} \leq 1, X_{1}$ and X_{2} from Newton's method are always nonsingular M-matrices (diagonal entries also ≤ 1); X_{1} from Halley's method is always a nonsingular M-matrix.

Square roots of M-matrices

When $p=2$, it is shown in [Meini, 2004] that if A is a nonsingular M-matrix with all diagonal entries ≤ 1, then the matrices X_{k} generated by Newton's method are all nonsingular M-matrices.

Conjecture

The matrices X_{k} generated by Newton's method (with $X_{0}=I$) are nonsingular M-matrices for every nonsingular M-matrix A.
This conjecture is of purely theoretical interest, since it is more appropriate to compute $A^{1 / 2}$ though $A^{1 / 2}=s^{1 / 2}(I-B)^{1 / 2}$ by applying Newton's method (with $X_{0}=I$) to compute $(I-B)^{1 / 2}$, or equivalently, to compute $A^{1 / 2}$ directly by applying Newton's method with $X_{0}=s^{1 / 2} l$.

Structure preserving for H-matrices

Proposition

Let A be a real nonsingular H-matrix with $0<a_{i i} \leq 1$ for all i. If $c_{k, i} \leq 0$ for all $i \geq 1$ for Newton's method or Halley's method, the matrix X_{k} is a real nonsingular H-matrix with $0<\left(X_{k}\right)_{i i} \leq 1$.
Thus, for Newton's method or Halley's method structure preserving for nonsingular M-matrices implies structure preserving for real nonsingualr H -matrices with positive diagonal entries.

