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Important Facts

f (A) is well de�ned (independent of the choice of S)

JCF (f (Jm(λ)) = Jm(f (λ)) if f 0(λ) 6= 0 (blocks do not split)
f (A) is some polynomial in A. If B commutes with A, then B
commutes with f (A).
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Existence of a Unique Solution of f(X) = Y (Figure 1)

H1 : f 0(z) 6= 0 on D1
H2 : f (z1) = f (z2) & z1, z2 2 D1 , z1 = z2

Suppose σ(A) � D1. Then J(A) and J(f (A)) have the same sets of
block sizes (H1) with respective eigenvalues λj and f (λj ),
j = 1, . . . , k (H2).
g(f (A)) = A is a primary matrix function, so A is a polynomial in
f (A).
Suppose σ(B) � D1 and f (B) = f (A). Then block sizes and
eigenvalues of B are same as those of A, so JCF (B) = JCF (A) and
hence B is similar to A: B = SAS�1

f (A) = f (B) = f (SAS�1) = Sf (A)S�1, so Sf (A) = f (A)S , and
hence SA = AS since A is a polynomial in f (A).
Finally, B = SAS�1 = ASS�1 = A
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Application to f(z) = exp(z) (Figure 2)

Suppose σ(A), σ(B) � D1. Then A is a polynomial in eA and B is a
polynomial in eB , so eA commutes with eB (if and) only if A
commutes with B.

The implication is entirely conceptual; no need for power series,
limits, or other analytic arguments.

But this is only a local result about the entire analytic function ez

and its associated primary matrix function eA, de�ned for all A 2 Mn.

Next: a global result
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Kronecker Sums and Commutativity

vec(YXZ ) =
�
ZT 
 Y

�
vecX (VTP)

vec(XY � YX ) = vec(IXY � YXI )
= (Y T 
 I � I 
 Y )| {z }

KY

vecX (K)

XY � YX = 0, KY vecX = 0
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An Entire Analytic Function

f (z) = ez�1
z if z 6= 0, f (0) = 1

f (z)z = ez � 1 for all z 2 C

For any Y 2 Mn we have

f (KY )KY = eKY � I = eY T
I�I
Y � I
= eY

T
I e�I
Y � I
= eY

T 
 e�Y � I

f (KY ) is singular if and only if 2mπi 2 σ(KY ) for some �integer
m 6= 0
If f (KY ) is nonsingular, then

KY = f (KY )
�1
�
eY

T 
 e�Y � I
�

(F)
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First Step

Claim: If eAeB = eB eA (H) then AeB = eBA provided that f (KA) is
nonsingular

vec(eBA� AeB ) K= KA vec eB
F
= f (KA)

�1
�
eA

T 
 e�A � I
�

vec eB

= f (KA)
�1
�
(eA

T 
 e�A) vec eB � vec eB
�

VTP
= f (KA)

�1 vec
�
e�AeB eA � eB

�
H
= f (KA)

�1 vec
�
e�AeAeB � eB

�
= f (KA)

�1 vec
�
eB � eB

�
= 0
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Second Step

Claim: If AeB = eBA (H) then AB = BA provided that f (KB ) is
nonsingular

vec(AB � BA) K= KB vecA
F
= f (KB )

�1
�
eB

T 
 e�B � I
�

vecA

= f (KB )
�1
�
(eB

T 
 e�B ) vecA� vecA
�

VTP
= f (KB )

�1 vec
�
e�BAeB � A

�
H
= f (KB )

�1 vec
�
e�B eBA� A

�
= f (KB )

�1 vec (A� A) = 0
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The Nonsingularity Condition

f (KY ) is nonsingular if and only if 2mπi /2 σ(KY ) for every �integer
m 6= 0

σ(KY ) consists entirely of di¤erences of eigenvalues of Y (not all
di¤erences need occur)

If we insist that no di¤erence of eigenvalues of A, and no di¤erence of
eigenvalues of B, is a nonzero � integer multiple of 2πi , then f (KY )
is nonsingular and eAeB = eB eA ) AB = BA.

Another approach: Make an assumption on the entries of A and
B that makes it impossible for any � integer multiple of 2πi to be in
the �eld generated by the zeroes of their characteristic polynomials.

For example, if all the entries of A and B are algebraic numbers, then
the zeroes of their characteristic polynomials are all algebraic
numbers, so � integer multiples of 2πi are excluded.
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