On $e^{A} e^{B}=e^{B} e^{A} \Rightarrow A B=B A$

Roger Horn

MIMS Meeting, Manchester, UK, May 16, 2008

Primary Matrix Functions

- $A=S J S^{-1}, J=J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)$

$$
J_{m}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & 0 \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
\mathbf{0} & & & \lambda
\end{array}\right] \in M_{m}
$$

Primary Matrix Functions

- $A=S J S^{-1}, J=J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)$

$$
J_{m}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & \mathbf{0} \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
\mathbf{0} & & & \lambda
\end{array}\right] \in M_{m}
$$

- $f(A) \equiv S f(J) S^{-1}, f(J) \equiv f\left(J_{n_{1}}\left(\lambda_{1}\right)\right) \oplus \cdots \oplus f\left(J_{n_{k}}\left(\lambda_{k}\right)\right)$

Primary Matrix Functions

- $A=S J S^{-1}, J=J_{n_{1}}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{n_{k}}\left(\lambda_{k}\right)$

$$
J_{m}(\lambda)=\left[\begin{array}{cccc}
\lambda & 1 & & \mathbf{0} \\
& \ddots & \ddots & \\
& & \ddots & 1 \\
\mathbf{0} & & & \lambda
\end{array}\right] \in M_{m}
$$

- $f(A) \equiv S f(J) S^{-1}, f(J) \equiv f\left(J_{n_{1}}\left(\lambda_{1}\right)\right) \oplus \cdots \oplus f\left(J_{n_{k}}\left(\lambda_{k}\right)\right)$

$$
f\left(J_{m}(\lambda)\right) \equiv\left[\begin{array}{ccccc}
f(\lambda) & f^{\prime}(\lambda) & \frac{1}{2!} f^{(2)}(\lambda) & \cdots & \frac{1}{(m-1)!} f^{(m-1)}(\lambda) \\
& \ddots & \ddots & \ddots & \vdots \\
& & \ddots & \ddots & \frac{1}{2!} f^{(2)}(\lambda) \\
0 & & & \ddots & f^{\prime}(\lambda) \\
0 & & & & f(\lambda)
\end{array}\right]
$$

Important Facts

- $f(A)$ is well defined (independent of the choice of S)

Important Facts

- $f(A)$ is well defined (independent of the choice of S)
- $J C F\left(f\left(J_{m}(\lambda)\right)=J_{m}(f(\lambda))\right.$ if $f^{\prime}(\lambda) \neq 0$ (blocks do not split)

Important Facts

- $f(A)$ is well defined (independent of the choice of S)
- $\operatorname{JCF}\left(f\left(J_{m}(\lambda)\right)=J_{m}(f(\lambda))\right.$ if $f^{\prime}(\lambda) \neq 0$ (blocks do not split)
- $f(A)$ is some polynomial in A. If B commutes with A, then B commutes with $f(A)$.

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{array}{ll}
H_{1}: & f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
H_{2} & : f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
\end{array}
$$

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{aligned}
& H_{1}: \quad f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
& H_{2}: \quad f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
\end{aligned}
$$

- Suppose $\sigma(A) \subset \mathcal{D}_{1}$. Then $J(A)$ and $J(f(A))$ have the same sets of block sizes $\left(H_{1}\right)$ with respective eigenvalues λ_{j} and $f\left(\lambda_{j}\right)$, $j=1, \ldots, k\left(H_{2}\right)$.

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{aligned}
& H_{1}: \quad f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
& H_{2}: \quad f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
\end{aligned}
$$

- Suppose $\sigma(A) \subset \mathcal{D}_{1}$. Then $J(A)$ and $J(f(A))$ have the same sets of block sizes $\left(H_{1}\right)$ with respective eigenvalues λ_{j} and $f\left(\lambda_{j}\right)$, $j=1, \ldots, k\left(H_{2}\right)$.
- $g(f(A))=A$ is a primary matrix function, so A is a polynomial in $f(A)$.

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{aligned}
& H_{1}: f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
& H_{2}: f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
\end{aligned}
$$

- Suppose $\sigma(A) \subset \mathcal{D}_{1}$. Then $J(A)$ and $J(f(A))$ have the same sets of block sizes $\left(H_{1}\right)$ with respective eigenvalues λ_{j} and $f\left(\lambda_{j}\right)$, $j=1, \ldots, k\left(H_{2}\right)$.
- $g(f(A))=A$ is a primary matrix function, so A is a polynomial in $f(A)$.
- Suppose $\sigma(B) \subset \mathcal{D}_{1}$ and $f(B)=f(A)$. Then block sizes and eigenvalues of B are same as those of A, so $\operatorname{JCF}(B)=\operatorname{JCF}(A)$ and hence B is similar to $A: B=S A S^{-1}$

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{aligned}
& H_{1}: f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
& H_{2}: f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
\end{aligned}
$$

- Suppose $\sigma(A) \subset \mathcal{D}_{1}$. Then $J(A)$ and $J(f(A))$ have the same sets of block sizes $\left(H_{1}\right)$ with respective eigenvalues λ_{j} and $f\left(\lambda_{j}\right)$, $j=1, \ldots, k\left(H_{2}\right)$.
- $g(f(A))=A$ is a primary matrix function, so A is a polynomial in $f(A)$.
- Suppose $\sigma(B) \subset \mathcal{D}_{1}$ and $f(B)=f(A)$. Then block sizes and eigenvalues of B are same as those of A, so $\operatorname{JCF}(B)=\operatorname{JCF}(A)$ and hence B is similar to $A: B=S A S^{-1}$
- $f(A)=f(B)=f\left(S A S^{-1}\right)=\operatorname{Sf}(A) S^{-1}$, so $S f(A)=f(A) S$, and hence $S A=A S$ since A is a polynomial in $f(A)$.

Existence of a Unique Solution of $f(X)=Y$ (Figure 1)

$$
\begin{aligned}
& H_{1}: f^{\prime}(z) \neq 0 \text { on } \mathcal{D}_{1} \\
& H_{2}:
\end{aligned}: f\left(z_{1}\right)=f\left(z_{2}\right) \& z_{1}, z_{2} \in \mathcal{D}_{1} \Leftrightarrow z_{1}=z_{2}
$$

- Suppose $\sigma(A) \subset \mathcal{D}_{1}$. Then $J(A)$ and $J(f(A))$ have the same sets of block sizes $\left(H_{1}\right)$ with respective eigenvalues λ_{j} and $f\left(\lambda_{j}\right)$, $j=1, \ldots, k\left(H_{2}\right)$.
- $g(f(A))=A$ is a primary matrix function, so A is a polynomial in $f(A)$.
- Suppose $\sigma(B) \subset \mathcal{D}_{1}$ and $f(B)=f(A)$. Then block sizes and eigenvalues of B are same as those of A, so $\operatorname{JCF}(B)=\operatorname{JCF}(A)$ and hence B is similar to A : $B=S A S^{-1}$
- $f(A)=f(B)=f\left(S A S^{-1}\right)=\operatorname{Sf}(A) S^{-1}$, so $S f(A)=f(A) S$, and hence $S A=A S$ since A is a polynomial in $f(A)$.
- Finally, $B=S A S^{-1}=A S S^{-1}=A$

Application to $f(z)=\exp (z)$ (Figure 2)

- Suppose $\sigma(A), \sigma(B) \subset \mathcal{D}_{1}$. Then A is a polynomial in e^{A} and B is a polynomial in e^{B}, so e^{A} commutes with e^{B} (if and) only if A commutes with B.

Application to $f(z)=\exp (z)$ (Figure 2)

- Suppose $\sigma(A), \sigma(B) \subset \mathcal{D}_{1}$. Then A is a polynomial in e^{A} and B is a polynomial in e^{B}, so e^{A} commutes with e^{B} (if and) only if A commutes with B.
- The implication is entirely conceptual; no need for power series, limits, or other analytic arguments.

Application to $f(z)=\exp (z)$ (Figure 2)

- Suppose $\sigma(A), \sigma(B) \subset \mathcal{D}_{1}$. Then A is a polynomial in e^{A} and B is a polynomial in e^{B}, so e^{A} commutes with e^{B} (if and) only if A commutes with B.
- The implication is entirely conceptual; no need for power series, limits, or other analytic arguments.
- But this is only a local result about the entire analytic function e^{z} and its associated primary matrix function e^{A}, defined for all $A \in M_{n}$.

Application to $f(z)=\exp (z)$ (Figure 2)

- Suppose $\sigma(A), \sigma(B) \subset \mathcal{D}_{1}$. Then A is a polynomial in e^{A} and B is a polynomial in e^{B}, so e^{A} commutes with e^{B} (if and) only if A commutes with B.
- The implication is entirely conceptual; no need for power series, limits, or other analytic arguments.
- But this is only a local result about the entire analytic function e^{z} and its associated primary matrix function e^{A}, defined for all $A \in M_{n}$.
- Next: a global result

Kronecker Sums and Commutativity

$$
\begin{equation*}
\operatorname{vec}(Y X Z)=\left(Z^{\top} \otimes Y\right) \operatorname{vec} X \tag{VTP}
\end{equation*}
$$

Kronecker Sums and Commutativity

$$
\begin{equation*}
\operatorname{vec}(Y X Z)=\left(Z^{T} \otimes Y\right) \operatorname{vec} X \tag{VTP}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{vec}(X Y-Y X) & =\operatorname{vec}(I X Y-Y X I) \\
& =\underbrace{\left(Y^{\top} \otimes I-I \otimes Y\right)}_{K_{Y}} \operatorname{vec} X \tag{K}
\end{align*}
$$

Kronecker Sums and Commutativity

$$
\begin{equation*}
\operatorname{vec}(Y X Z)=\left(Z^{T} \otimes Y\right) \operatorname{vec} X \tag{VTP}
\end{equation*}
$$

$$
\begin{align*}
\operatorname{vec}(X Y-Y X) & =\operatorname{vec}(I X Y-Y X I) \\
& =\underbrace{\left(Y^{T} \otimes I-I \otimes Y\right)}_{K_{Y}} \operatorname{vec} X \tag{K}
\end{align*}
$$

$$
X Y-Y X=0 \Leftrightarrow K_{Y} \operatorname{vec} X=0
$$

An Entire Analytic Function

- $f(z)=\frac{e^{z}-1}{z}$ if $z \neq 0, f(0)=1$

An Entire Analytic Function

- $f(z)=\frac{e^{z}-1}{z}$ if $z \neq 0, f(0)=1$
- $f(z) z=e^{z}-1$ for all $z \in \mathbb{C}$

An Entire Analytic Function

- $f(z)=\frac{e^{z}-1}{z}$ if $z \neq 0, f(0)=1$
- $f(z) z=e^{z}-1$ for all $z \in \mathbb{C}$
- For any $Y \in M_{n}$ we have

$$
\begin{aligned}
f\left(K_{Y}\right) K_{Y} & =e^{K_{Y}}-I=e^{Y^{T} \otimes I-I \otimes Y}-I \\
& =e^{Y^{T} \otimes I} e^{-I \otimes Y}-I \\
& =e^{Y^{T}} \otimes e^{-Y}-I
\end{aligned}
$$

An Entire Analytic Function

- $f(z)=\frac{e^{z}-1}{z}$ if $z \neq 0, f(0)=1$
- $f(z) z=e^{z}-1$ for all $z \in \mathbb{C}$
- For any $Y \in M_{n}$ we have

$$
\begin{aligned}
f\left(K_{Y}\right) K_{Y} & =e^{K_{Y}}-I=e^{Y^{T} \otimes I-I \otimes Y}-I \\
& =e^{Y^{T} \otimes I} e^{-I \otimes Y}-I \\
& =e^{Y^{T}} \otimes e^{-Y}-I
\end{aligned}
$$

- $f\left(K_{Y}\right)$ is singular if and only if $2 m \pi i \in \sigma\left(K_{Y}\right)$ for some \pm integer $m \neq 0$

An Entire Analytic Function

- $f(z)=\frac{e^{z}-1}{z}$ if $z \neq 0, f(0)=1$
- $f(z) z=e^{z}-1$ for all $z \in \mathbb{C}$
- For any $Y \in M_{n}$ we have

$$
\begin{aligned}
f\left(K_{Y}\right) K_{Y} & =e^{K_{Y}}-I=e^{Y^{T} \otimes I-I \otimes Y}-I \\
& =e^{Y^{T} \otimes I} e^{-I \otimes Y}-I \\
& =e^{Y^{T}} \otimes e^{-Y}-I
\end{aligned}
$$

- $f\left(K_{Y}\right)$ is singular if and only if $2 m \pi i \in \sigma\left(K_{Y}\right)$ for some \pm integer $m \neq 0$
- If $f\left(K_{Y}\right)$ is nonsingular, then

$$
K_{Y}=f\left(K_{Y}\right)^{-1}\left(e^{Y^{T}} \otimes e^{-Y}-I\right)
$$

First Step

- Claim: If $e^{A} e^{B}=e^{B} e^{A}(\mathrm{H})$ then $A e^{B}=e^{B} A$ provided that $f\left(K_{A}\right)$ is nonsingular

First Step

- Claim: If $e^{A} e^{B}=e^{B} e^{A}(\mathrm{H})$ then $A e^{B}=e^{B} A$ provided that $f\left(K_{A}\right)$ is nonsingular

$$
\begin{aligned}
& \operatorname{vec}\left(e^{B} A-A e^{B}\right) \stackrel{K}{=} K_{A} \operatorname{vec} e^{B} \stackrel{\star}{=} f\left(K_{A}\right)^{-1}\left(e^{A^{T}} \otimes e^{-A}-I\right) \operatorname{vec} e^{B} \\
& =f\left(K_{A}\right)^{-1}\left(\left(e^{A^{T}} \otimes e^{-A}\right) \operatorname{vec} e^{B}-\operatorname{vec} e^{B}\right) \\
& \stackrel{\operatorname{vTP}}{=} f\left(K_{A}\right)^{-1} \operatorname{vec}\left(e^{-A} e^{B} e^{A}-e^{B}\right) \\
& \stackrel{H}{=} f\left(K_{A}\right)^{-1} \operatorname{vec}\left(e^{-A} e^{A} e^{B}-e^{B}\right) \\
& =f\left(K_{A}\right)^{-1} \operatorname{vec}\left(e^{B}-e^{B}\right)=0
\end{aligned}
$$

Second Step

- Claim: If $A e^{B}=e^{B} A(H)$ then $A B=B A$ provided that $f\left(K_{B}\right)$ is nonsingular

Second Step

- Claim: If $A e^{B}=e^{B} A(H)$ then $A B=B A$ provided that $f\left(K_{B}\right)$ is nonsingular

$$
\begin{aligned}
& \operatorname{vec}(A B-B A) \stackrel{K}{=} K_{B} \operatorname{vec} A \stackrel{\star}{=} f\left(K_{B}\right)^{-1}\left(e^{B^{T}} \otimes e^{-B}-I\right) \operatorname{vec} A \\
& =f\left(K_{B}\right)^{-1}\left(\left(e^{B^{T}} \otimes e^{-B}\right) \operatorname{vec} A-\operatorname{vec} A\right) \\
& \stackrel{V T P}{=} f\left(K_{B}\right)^{-1} \operatorname{vec}\left(e^{-B} A e^{B}-A\right) \\
& \stackrel{H}{=} f\left(K_{B}\right)^{-1} \operatorname{vec}\left(e^{-B} e^{B} A-A\right) \\
& =f\left(K_{B}\right)^{-1} \operatorname{vec}(A-A)=0
\end{aligned}
$$

The Nonsingularity Condition

- $f\left(K_{Y}\right)$ is nonsingular if and only if $2 m \pi i \notin \sigma\left(K_{Y}\right)$ for every \pm integer $m \neq 0$

The Nonsingularity Condition

- $f\left(K_{Y}\right)$ is nonsingular if and only if $2 m \pi i \notin \sigma\left(K_{Y}\right)$ for every \pm integer $m \neq 0$
- $\sigma\left(K_{Y}\right)$ consists entirely of differences of eigenvalues of Y (not all differences need occur)

The Nonsingularity Condition

- $f\left(K_{Y}\right)$ is nonsingular if and only if $2 m \pi i \notin \sigma\left(K_{Y}\right)$ for every \pm integer $m \neq 0$
- $\sigma\left(K_{Y}\right)$ consists entirely of differences of eigenvalues of Y (not all differences need occur)
- If we insist that no difference of eigenvalues of A, and no difference of eigenvalues of B, is a nonzero \pm integer multiple of $2 \pi i$, then $f\left(K_{Y}\right)$ is nonsingular and $e^{A} e^{B}=e^{B} e^{A} \Rightarrow A B=B A$.

The Nonsingularity Condition

- $f\left(K_{Y}\right)$ is nonsingular if and only if $2 m \pi i \notin \sigma\left(K_{Y}\right)$ for every \pm integer $m \neq 0$
- $\sigma\left(K_{Y}\right)$ consists entirely of differences of eigenvalues of Y (not all differences need occur)
- If we insist that no difference of eigenvalues of A, and no difference of eigenvalues of B, is a nonzero \pm integer multiple of $2 \pi i$, then $f\left(K_{Y}\right)$ is nonsingular and $e^{A} e^{B}=e^{B} e^{A} \Rightarrow A B=B A$.
- Another approach: Make an assumption on the entries of A and B that makes it impossible for any \pm integer multiple of $2 \pi i$ to be in the field generated by the zeroes of their characteristic polynomials.

The Nonsingularity Condition

- $f\left(K_{Y}\right)$ is nonsingular if and only if $2 m \pi i \notin \sigma\left(K_{Y}\right)$ for every \pm integer $m \neq 0$
- $\sigma\left(K_{Y}\right)$ consists entirely of differences of eigenvalues of Y (not all differences need occur)
- If we insist that no difference of eigenvalues of A, and no difference of eigenvalues of B, is a nonzero \pm integer multiple of $2 \pi i$, then $f\left(K_{Y}\right)$ is nonsingular and $e^{A} e^{B}=e^{B} e^{A} \Rightarrow A B=B A$.
- Another approach: Make an assumption on the entries of A and B that makes it impossible for any \pm integer multiple of $2 \pi i$ to be in the field generated by the zeroes of their characteristic polynomials.
- For example, if all the entries of A and B are algebraic numbers, then the zeroes of their characteristic polynomials are all algebraic numbers, so \pm integer multiples of $2 \pi i$ are excluded.

References

R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
R. Horn and G. Piepmeyer, Two applications of the theory of primary matrix functions, Linear Algebra Appl. 361 (2003) 99-106.
C. Schmoeger, Remarks on Commuting Exponentials in Banach Algebras, Proc. Amer. Math. Soc. 127 (1999) 1337-1338.
E. Wermuth, A Remark on Commuting Operator Exponentials, Proc. Amer. Math. Soc. 125 (1997) 1685-1688.

