Computing Matrix Functions by Matrix Iterations

Bruno Iannazzo, University of Insubria, Italy

Manchester, May, 15-16, 2008

Matrix iterations and matrix functions

A function $f(A)$ can be solution of a matrix equation $F(X ; A)=0$; a natural way to compute it is to use iterative root-finding algorithms.

Numerical issues of an iteration:

- Competitivity with respect to the existing methods;
- Quick convergence (at least quadratic and in few steps!);
- Adequate accuracy.

Which functions can be computed by a given matrix iterations?

Example: square root

Newton's method is the most known root-finding algorithm. For the equation $x^{2}-a=0$ yields the iteration

$$
\begin{equation*}
x_{k+1}=\frac{1}{2}\left(x_{k}+a x_{k}^{-1}\right) \tag{1}
\end{equation*}
$$

Newton's method for the matrix equation $X^{2}-A=0$ is

$$
\left\{\begin{array}{l}
H_{k} X_{k}+X_{k} H_{k}=-X_{k}^{2}+A \\
X_{k+1}=X_{k}+H_{k}
\end{array}\right.
$$

Generalizing naively formula (1) yields

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+A X_{k}^{-1}\right)
$$

which we call simplified Newton's method.

Example: square root

Two different methods which coincide if

- the former is well defined;
- X_{0} commutes with A.

The simplified Newton method has advantages wrt the Newton method:

- Much less expensive;
- Easily proved convergence to the principal square root (if there exists) for $X_{0}=A$;
- Wider applicability.

Problem: instability in certain cases.

Iterations which are functions of A

Consider the iterations $X_{k+1}=F\left(X_{k}\right)$ such that $X_{k}=s_{k}(A)$, for s_{k} function of A.

The iterates can be put together in a block upper triangular form by means of the same similarity.
If

$$
M A M^{-1}=J_{1} \oplus \cdots \oplus J_{r}
$$

then

$$
M s_{k}(A) M^{-1}=s_{k}\left(J_{1}\right) \oplus \cdots \oplus s_{k}\left(J_{r}\right)
$$

The study of the convergence is reduced to the case in which A is a Jordan block.

Iterations which are functions of A

If A is diagonalizable then scalar convergence of $s_{k}(\lambda)$ for λ eigenvalue of A implies matrix convergence.

In general, "convergence on eigenvalues" does not implies convergence on Jordan blocks: if $x_{k+1}=x_{k}^{2}$,

$$
X_{0}=\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right], \quad X_{k}=\left[\begin{array}{cc}
1 & 2^{k} \\
0 & 1
\end{array}\right]
$$

Iterations which are functions of A

If the sequence s_{k} converges to a function f uniformly on a neighborhood K of the spectrum of A, then the matrix iteration converges, moreover

$$
\left\|s_{k}(A)-f(A)\right\|_{1} \leq c\left\|s_{k}-f\right\|_{K}
$$

where c depends on A.

If s_{k} is generated by a fixed point iteration usually pointwise convergence to attractive fixed points implies uniform convergence in a neighborhood.

Pure rational matrix iterations

A pure rational matrix iteration has the form

$$
Z_{k+1}=\varphi\left(Z_{k}\right), \quad Z_{0} \in \mathbb{C}^{n \times n}
$$

where φ is a rational function (of degree at least 2).
Classification of a fixed point z^{*} for the scalar iteration:

- attractive if $\left|\varphi^{\prime}\left(z^{*}\right)\right|<1$;
- rationally indifferent if $\varphi^{\prime}\left(z^{*}\right)=\exp (2 i \pi \theta), \theta \in \mathbb{Q}$;
- irrationally indifferent if $\varphi^{\prime}\left(z^{*}\right)=\exp (2 i \pi \theta), \theta \notin \mathbb{Q}$;
- repulsive if $\left|\varphi^{\prime}\left(z^{*}\right)\right|>1$;

Theorem (I.)

Let $Z_{k+1}=\varphi\left(Z_{k}\right)$ be a pure rational matrix iteration. If for each eigenvalue λ of Z_{0} the scalar sequence $z_{k+1}=\varphi\left(z_{k}\right), z_{0}=\lambda$, converges to a fixed point λ_{*}, attractive or rationally indifferent with infinite orbit, then there exists a locally constant function $f(z)$ such that for each initial value Z in a neighborhood of Z_{0} the matrix iteration converges to $f(Z)$. Moreover, $f(Z)$ is diagonalizable.

The theorem can be extended:

- if λ_{*} is repulsive or $\lambda_{*}=\exp (2 i \pi \theta)$ for almost each $\theta \in[0,1]$ (λ_{*} not being a Cremer point or a root of unity) convergence can occurs only for diagonalizable matrices and in a finite number of steps;

Matrix convergence

A pure rational matrix iteration converges to a locally constant matrix function.

Consequence: only locally constant functions can be computed by pure iterations.

Example

Examples of locally constant functions: the Voronoi maps relative to a set of finite points.

In this class are the matrix sign function and the matrix p-sector function.

Rational matrix iterations involving A

A generalization of pure rational matrix iteration is obtained allowing A in the formula

$$
Z_{k+1}=\varphi\left(Z_{k}, A\right), \quad Z_{0}=g(A)
$$

where $\varphi(z, t)$ is a rational function of two variable.

Theorem (Higham, 08)
If for each eigenvalue of A the scalar iteration converges to an attractive fixed point then the matrix iteration converges.

Rational matrix iterations involving A

The result can be improved:
(I.)

- the limit in a neighborhood of the spectrum is uniquely determined by the iteration (if convergence is at least linear);
- the limit of a rational matrix iterations (with convergence at least linear) is an analytic function;
- there can be given a bound for the convergence of nondiagonal elements.

Remark

- the limit of a rational iteration is an algebraic function.

Consequences

- Nonanalytic functions cannot be limit of rational iterations;
- Transcendental functions cannot be limit of rational iterations;

Iterations for the functions $\exp (A), \log (A)$, etc... must be transcendental.

- Most of the theoretical results can be extended from rational functions to holomorphic functions;
- Evident drawback: computing the iteration step is usual as expensive as the computation of the function.

Summary

Which functions can be computed by a given matrix iterations?

class of iterations	functions	examples
pure rational iterations	locally constant functions	$\operatorname{sign}(\mathrm{A}), \operatorname{sector}_{\mathrm{p}}(\mathrm{A})$
rational iterations containing A	algebraic functions which are analytic	A^{α}
analytic iterations	analytic functions	$\exp (\mathrm{A}), \log (\mathrm{A})$

Stability

What about the convergence in presence of small perturbations?

In general: local convergence \Longrightarrow stability

But: scalar local convergence \nRightarrow matrix local convergence!
There can be repulsive directions in a neighborhood of the fixed point, moreover fixed points can be non isolated; it is pointless requiring local convergence

A model for the stability

It can be enough much less than local convergence.
Definition (Cheng, Higham, Kenney, Laub, 2001)
An iteration $X_{k+1}=\psi\left(X_{k}\right)$ is stable in a neighborhood of a fixed point X (N -stable) if the differential $d \psi$ at X is power bounded.

N -stable implies that a perturbation of some iterate cannot blow up.

An example: inverting a matrix by an iteration

Given

$$
\varphi_{1}(X)=2 X-X A X, \quad \varphi_{2}(X)=2 X-X^{2} A
$$

the two iterations $X_{k+1}=\varphi_{1}\left(X_{k}\right)$ and $X_{k+1}=\varphi_{2}\left(X_{k}\right)$ are mathematically equivalent for $X_{0}=A$, but

- $d \varphi_{1 A^{-1}}=0 \longrightarrow$ stable in a neigh'd of A^{-1}
- $d \varphi_{2 A^{-1}}=I-A^{T} \otimes A^{-1} \longrightarrow$ stable if $\left|1-\frac{\lambda_{i}}{\lambda_{j}}\right|<1, \lambda_{i} \in \sigma(A)$

However $\left.d \varphi_{2 A^{-1}}\right|_{\text {matrices commuting with } A}=0$

An example: inverting a matrix by an iteration

$$
A=M^{-1}\left[\begin{array}{cc}
1 & 0 \\
0 & 2 / 3
\end{array}\right] M
$$

$$
\rho\left(d \varphi_{2 A^{-1}}\right)=3
$$

$$
\rho\left(d \varphi_{2 A^{-1}}\right)=1 / 10
$$

General results on N-stability

Some general results are known for pure rational matrix iterations, i.e., iteration of the form $X_{k+1}=\varphi\left(X_{k}\right)$.

Theorem (Higham, 08)

Let f be an idempotent function that is Frèchet differentiable at $X=f(X)$. If X_{k} obtained by a pure rational matrix iteration which converges superlinearly to $f\left(X_{0}\right)$ for all X_{0} close to X then $d f_{X}=$ $d \varphi_{X}$.

Consequence: an iteration converging superlinearly to a function such that $d f_{X}$ is idempotent is N -stable at X.

General results on N-stability

The previous result can be generalized.
Theorem (I.)
Let S be a fixed point of a pure rational matrix iteration, if the eigenvalues of S are attractive fixed points, then S is diagonalizable and the iteration is N -stable at S .

If S is a Jordan block relative to a rationally indifferent fixed point, then any sequence X_{k} converging to S must be finite (the same holds for repulsive and rationally indifferent points which are not Cremer points).

Pure rational iterations are stable!

Possible approaches to remove instability

- Projection of each iterate into a stable subspace;
- Preprocessing the matrix to get stability;
- Modifying the iterations trying to reach a pure iteration.

The first two approaches seem too expensive

For the third approach there is no general recipe anyway...

Example: pth root of a matrix

For the equation $X^{p}=A$, the family

$$
X_{k+1}=\frac{(p-1) X_{k}+A X^{1-p}}{p}, \quad X_{0}=\iota
$$

is not stable, but the equivalent

$$
\begin{cases}X_{k+1}=X_{k}\left(\frac{(p-1) I+M_{k}}{p}\right), & X_{0}=I \\ M_{k+1}=\left(\frac{(p-1) I+M_{k}}{p}\right)^{-p} M_{k}, & M_{0}=A\end{cases}
$$

is stable [I., SIMAX, 2006]

Systems of rational iterations

A relatively unexplored topic is the study of systems of (pure) rational iterations.
Example. The Cyclic Reduction is a system of pure rational iterations,

$$
\left\{\begin{array}{l}
A_{k+1}=-A_{k} B_{k}^{-1} A_{k}, \\
B_{k+1}=B_{k}-A_{k} B_{k}^{-1} C_{k}-C_{k} B_{k}^{-1} A_{k}, \\
C_{k+1}=-C_{k} B_{k}^{-1} C_{k},
\end{array}\right.
$$

for $k=0,1, \ldots$ and $A_{0}=A, B_{0}=B, C_{0}=C$ initial values. The iteration is N -stable.

- Is it possible to see the CR as a single block iteration?
- Can the limit described as a function of A, B and C ?
- Is there a general convergence result?

Palindromic cyclic reduction: all purpose iteration

If $A=C$ can be rewritten as the three-terms (pure) rational iteration

$$
X_{k+1}=\frac{1}{2}\left(X_{k}+2 X_{k-1}-X_{k-1} X_{k}^{-1} X_{k-1}\right)
$$

this recurrence is related to many "matrix functions":

- $X_{0}=A, X_{1}=\frac{1}{2}(A+I)$,
- $X_{0}=A, X_{1}=\frac{1}{2}\left(A+A^{-1}\right)$,
- $X_{0}=A, X_{1}=\frac{1}{2}\left(A+A^{-*}\right)$,
- $X_{0}=A, X_{1}=\frac{1}{2}(A+B), A, B$, def. pos. $\quad X_{k} \rightarrow A \# B$.

囯 C. Kenney, A.J. Laub, Rational iterative methods for the matrix sign function, SIMAX, 1991.
N. Higham, Functions of Matrices: Theory and Computation, 2008.
B. Iannazzo, On the Newton method for the matrix pth root, SIMAX, 2006.

目 B. Iannazzo, Notes on rational matrix iterations, preprint, 2007.
(R. Iannazzo, Numerical Solution of Certain Nonlinear Matrix Equations, PhD Thesis, 2007.

