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Matrix iterations and matrix functions

A function f (A) can be solution of a matrix equation F (X ;A) = 0;
a natural way to compute it is to use iterative root-finding
algorithms.

Numerical issues of an iteration:

I Competitivity with respect to the existing methods;

I Quick convergence (at least quadratic and in few steps!);

I Adequate accuracy.

Which functions can be computed by a given matrix
iterations?
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Example: square root

Newton’s method is the most known root-finding algorithm. For
the equation x2 − a = 0 yields the iteration

xk+1 =
1

2
(xk + ax−1

k ). (1)

Newton’s method for the matrix equation X 2 − A = 0 is{
HkXk + XkHk = −X 2

k + A,
Xk+1 = Xk + Hk .

Generalizing naively formula (1) yields

Xk+1 =
1

2
(Xk + AX−1

k ),

which we call simplified Newton’s method.
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Example: square root

Two different methods which coincide if

I the former is well defined;

I X0 commutes with A.

The simplified Newton method has advantages wrt the Newton
method:

I Much less expensive;

I Easily proved convergence to the principal square root (if
there exists) for X0 = A;

I Wider applicability.

Problem: instability in certain cases.
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Iterations which are functions of A

Consider the iterations Xk+1 = F (Xk) such that Xk = sk(A), for sk
function of A.

The iterates can be put together in a block upper triangular form
by means of the same similarity.
If

MAM−1 = J1 ⊕ · · · ⊕ Jr ,

then
Msk(A)M−1 = sk(J1)⊕ · · · ⊕ sk(Jr ).

The study of the convergence is reduced to the case in
which A is a Jordan block.
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Iterations which are functions of A

If A is diagonalizable then scalar convergence of sk(λ) for λ
eigenvalue of A implies matrix convergence.

In general, “convergence on eigenvalues” does not implies
convergence on Jordan blocks: if xk+1 = x2

k ,

X0 =

[
1 1
0 1

]
, Xk =

[
1 2k

0 1

]
.
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Iterations which are functions of A

If the sequence sk converges to a function f uniformly on a neighbor-
hood K of the spectrum of A, then the matrix iteration converges,
moreover

‖sk(A)− f (A)‖1 ≤ c‖sk − f ‖K ,

where c depends on A.

If sk is generated by a fixed point iteration usually pointwise
convergence to attractive fixed points implies uniform
convergence in a neighborhood.
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Pure rational matrix iterations

A pure rational matrix iteration has the form

Zk+1 = ϕ(Zk), Z0 ∈ Cn×n,

where ϕ is a rational function (of degree at least 2).

Classification of a fixed point z∗ for the scalar iteration:

I attractive if |ϕ′(z∗)| < 1;

I rationally indifferent if ϕ′(z∗) = exp(2iπθ), θ ∈ Q;

I irrationally indifferent if ϕ′(z∗) = exp(2iπθ), θ /∈ Q;

I repulsive if |ϕ′(z∗)| > 1;
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Theorem (I.)

Let Zk+1 = ϕ(Zk) be a pure rational matrix iteration. If for each
eigenvalue λ of Z0 the scalar sequence zk+1 = ϕ(zk), z0 = λ,
converges to a fixed point λ∗, attractive or rationally indifferent with
infinite orbit, then there exists a locally constant function f (z)
such that for each initial value Z in a neighborhood of Z0 the matrix
iteration converges to f (Z ). Moreover, f (Z ) is diagonalizable.

The theorem can be extended:

I if λ∗ is repulsive or λ∗ = exp(2iπθ) for almost each θ ∈ [0, 1]
(λ∗ not being a Cremer point or a root of unity) convergence
can occurs only for diagonalizable matrices and in a finite
number of steps;
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Matrix convergence

A pure rational matrix iteration converges to a locally constant
matrix function.

Consequence: only locally constant functions can be computed by
pure iterations.
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Example

Examples of locally constant functions: the Voronoi maps relative
to a set of finite points.

In this class are the matrix sign function and the matrix
p-sector function.
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Rational matrix iterations involving A

A generalization of pure rational matrix iteration is obtained
allowing A in the formula

Zk+1 = ϕ(Zk ,A), Z0 = g(A),

where ϕ(z , t) is a rational function of two variable.

Theorem (Higham, 08)

If for each eigenvalue of A the scalar iteration converges to an
attractive fixed point then the matrix iteration converges.
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Rational matrix iterations involving A

The result can be improved:

(I.)

I the limit in a neighborhood of the spectrum is uniquely
determined by the iteration (if convergence is at least linear);

I the limit of a rational matrix iterations (with convergence at
least linear) is an analytic function;

I there can be given a bound for the convergence of
nondiagonal elements.

Remark

I the limit of a rational iteration is an algebraic function.
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Consequences

I Nonanalytic functions cannot be limit of rational iterations;

I Transcendental functions cannot be limit of rational
iterations;

Iterations for the functions exp(A), log(A), etc... must be
transcendental.

I Most of the theoretical results can be extended from rational
functions to holomorphic functions;

I Evident drawback: computing the iteration step is usual as
expensive as the computation of the function.
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Summary

Which functions can be computed by a given matrix iterations?

class of iterations functions examples
pure rational locally constant functions sign(A), sectorp(A)
iterations
rational iterations algebraic functions Aα

containing A which are analytic
analytic iterations analytic functions exp(A), log(A)
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Stability

What about the convergence in presence of small perturbations?

In general: local convergence =⇒ stability

But: scalar local convergence =⇒/ matrix local convergence!

There can be repulsive directions in a neighborhood of the fixed
point, moreover fixed points can be non isolated; it is pointless
requiring local convergence
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A model for the stability

It can be enough much less than local convergence.

Definition (Cheng, Higham, Kenney, Laub, 2001)

An iteration Xk+1 = ψ(Xk) is stable in a neighborhood of a fixed
point X (N-stable) if the differential dψ at X is power bounded.

N-stable implies that a perturbation of some iterate cannot blow
up.
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An example: inverting a matrix by an iteration

Given

ϕ1(X ) = 2X − XAX , ϕ2(X ) = 2X − X 2A,

the two iterations Xk+1 = ϕ1(Xk) and Xk+1 = ϕ2(Xk) are
mathematically equivalent for X0 = A, but

I dϕ1A−1 = 0 −→ stable in a neigh’d of A−1

I dϕ2A−1 = I − AT ⊗ A−1 −→ stable if
∣∣∣1− λi

λj

∣∣∣ < 1, λi ∈ σ(A)

However dϕ2A−1 |matrices commuting with A = 0
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An example: inverting a matrix by an iteration

A = M−1

[
1 0
0 2/3

]
M A = M−1

[
1 0
0 1/10

]
M

ρ(dϕ2A−1) = 3 ρ(dϕ2A−1) = 1/10
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General results on N-stability

Some general results are known for pure rational matrix iterations,
i.e., iteration of the form Xk+1 = ϕ(Xk).

Theorem (Higham, 08)

Let f be an idempotent function that is Frèchet differentiable at
X = f (X ). If Xk obtained by a pure rational matrix iteration which
converges superlinearly to f (X0) for all X0 close to X then dfX =
dϕX .

Consequence: an iteration converging superlinearly to a function
such that dfX is idempotent is N-stable at X .
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General results on N-stability

The previous result can be generalized.

Theorem (I.)

Let S be a fixed point of a pure rational matrix iteration, if the
eigenvalues of S are attractive fixed points, then S is diagonalizable
and the iteration is N-stable at S .

If S is a Jordan block relative to a rationally indifferent fixed point,
then any sequence Xk converging to S must be finite (the same
holds for repulsive and rationally indifferent points which are not
Cremer points).

Pure rational iterations are stable!
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Possible approaches to remove instability

I Projection of each iterate into a stable subspace;

I Preprocessing the matrix to get stability;

I Modifying the iterations trying to reach a pure iteration.

The first two approaches seem too expensive

For the third approach there is no general recipe anyway...
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Example: pth root of a matrix

For the equation X p = A, the family

Xk+1 =
(p − 1)Xk + AX 1−p

p
, X0 = I ,

is not stable, but the equivalent Xk+1 = Xk

(
(p−1)I+Mk

p

)
, X0 = I ,

Mk+1 =
(

(p−1)I+Mk

p

)−p
Mk , M0 = A.

is stable [I., SIMAX, 2006]
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Systems of rational iterations

A relatively unexplored topic is the study of systems of (pure)
rational iterations.
Example. The Cyclic Reduction is a system of pure rational
iterations, 

Ak+1 = −AkB−1
k Ak ,

Bk+1 = Bk − AkB−1
k Ck − CkB−1

k Ak ,

Ck+1 = −CkB−1
k Ck ,

for k = 0, 1, . . . and A0 = A, B0 = B, C0 = C initial values. The
iteration is N-stable.

I Is it possible to see the CR as a single block iteration?

I Can the limit described as a function of A,B and C?

I Is there a general convergence result?
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Palindromic cyclic reduction: all purpose iteration

If A = C can be rewritten as the three-terms (pure) rational
iteration

Xk+1 =
1

2
(Xk + 2Xk−1 − Xk−1X

−1
k Xk−1),

this recurrence is related to many “matrix functions”:

I X0 = A, X1 = 1
2(A + I ), Xk → A1/2;

I X0 = A, X1 = 1
2(A + A−1), Xk → sign(A);

I X0 = A, X1 = 1
2(A + A−∗), Xk → polar(A);

I X0 = A, X1 = 1
2(A + B), A,B, def. pos. Xk → A#B.
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