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Introduction

• A classical problem of approximation theory:

Best approximation by polynomials

minp∈Pm ‖f − p‖K , ‖g‖K ≡ maxz∈K |g(z)|

• f is a given (nice) function, K ⊂ C is compact,
Pm is the set of polynomials of degree at most m

• Such problems have been studied since the 1850s;
numerous results on existence, uniqueness and
rate of convergence for m→∞

• Best approximation results can be used for bounding
and/or estimating “almost best” approximations



Introduction

• Classical example:
Bound for the error of the Faber expansion of f
(Kövari & Pommerenke, Math. Zeitschr. 1967)



Introduction

• Instead of the well studied scalar approximation problem

minp∈Pm ‖f − p‖K , ‖g‖K ≡ maxz∈K |g(z)|

we here consider the matrix approximation problem

minp∈Pm ‖f(A)− p(A)‖ , ‖ · ‖ = given matrix norm

• A ∈ Cn×n, f is analytic in neighborhood of A’s spectrum

• Does this problem have a unique solution p∗ ∈ Pm ?

• Yes, if the matrix norm is strictly convex



Introduction

• Definition of strict convexity: For all A1, A2,

if ‖A1‖ = ‖A2‖ =
1
2 ‖A1 + A2‖ then ‖A1‖ = ‖A2‖

• Geometrically: Unit sphere does not contain line segments

• Strictly convex matrix norm: Frobenius norm,

‖A‖2F
(1)
≡
∑n
i=1

∑n
j=1 |aij|

2 (2)
= trace(A∗A)

(3)
=
∑n
i=1 σi(A)

2
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• Remarks:

(1) Matrix Frobenius norm = Vector 2-norm in Cn
2

(2) Cn×n and 〈A,B〉 ≡ trace(A∗B) make a Hilbert space;
associated norms are always strictly convex

(3) Sum of all singular values



Introduction

• A useful matrix norm in many applications:

Matrix 2-norm defined by ‖A‖ ≡ σ1(A)

• This norm is not strictly convex

• Example:

A1 =

[
B 0
0 C

]
, A2 =

[
B 0
0 D

]
,

where ‖A1‖ = ‖A2‖ = σ1(B) ≥ 1
2 ‖C +D‖.

Then 1
2 ‖A1 + A2‖ = σ1(B). But if C �= D then A1 �= A2.

• Consequently: Best approximation problems in the
matrix 2-norm are not guaranteed to have a unique solution



Uniqueness results

• We here consider the matrix approximation problem

minp∈Pm ‖f(A)− p(A)‖ , ‖ · ‖ = matrix 2-norm

• Well known: f(A) = pf (A) for a polynomial pf
depending on values and possibly derivatives of f
on A’s spectrum

• We therefore ask:
Given a polynomial b and a nonnegative integer m < deg b.
Does the best matrix approximation problem

minp∈Pm ‖b(A)− p(A)‖

have a unique solution ?

• Not much known about such problems so far



Uniqueness results

• Our problem: minp∈Pm ‖b(A)− p(A)‖

• The special case b(A) = Am+1 is called
the (m + 1)st ideal Arnoldi approximation problem

• Introduced in (Greenbaum & Trefethen, SISC 1994),
paper contains uniquness result (→ story of the proof)
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• Our problem: minp∈Pm ‖b(A)− p(A)‖

• The special case b(A) = Am+1 is called
the (m + 1)st ideal Arnoldi approximation problem

• Introduced in (Greenbaum & Trefethen, SISC 1994),
paper contains uniquness result (→ story of the proof)

• (m + 1)st ideal Arnoldi polynomial of A later named
(m + 1)st Chebyshev polynomial of A

• Reason: For normal A we have

minp∈Pm ‖Am+1 − p(A)‖ = minp∈Pm ‖zm+1 − p(z)‖K

with K = spectrum of A (scalar approximation problem)

• Some work on these polynomials in (Toh PhD thesis, 1996),
(Toh & Trefethen, SIMAX 1998), (Trefethen & Embree, Book, 2005)



Uniqueness results

• Our problem: minp∈Pm ‖b(A)− p(A)‖

• ℓ ≥ 0 and m ≥ 0 given, polynomial b given by

b =
∑ℓ+m+1

j=0 βjz
j ∈ Pℓ+m+1



Uniqueness results

min
p∈Pm

‖b(A)− p(A)‖ = min
p∈Pm

‖ b(A)−
(
p(A) +

m∑

j=0

βjA
j
)
‖

= min
p∈Pm

‖
ℓ+m+1∑

j=m+1

βjA
j − p(A) ‖

= min
p∈Pm

‖Am+1
ℓ∑

j=0

βj+m+1A
j − p(A) ‖

• Our problem: minp∈Pm ‖b(A)− p(A)‖

• ℓ ≥ 0 and m ≥ 0 given, polynomial b given by

b =
∑ℓ+m+1

j=0 βjz
j ∈ Pℓ+m+1

• We rewrite the problem for convenience:



Uniqueness results

min
p∈G

(g)
ℓ,m

‖p(A)‖, G(g)ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}

• G(g)ℓ,m = subset of Pℓ+m+1, where the coefficients at

zm+1, . . . , zℓ+m+1 are fixed

• We have rewritten the problem as

minp∈Pm ‖Am+1
∑ℓ

j=0 βj+m+1A
j − p(A) ‖

• The polynomials are of the form zm+1g + h,
where g ∈ Pℓ is given, and h ∈ Pm is sought

• Our problem therefore is:



Uniqueness results

min
p∈G

(g)
ℓ,m

‖p(A)‖, G(g)ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}

min
p∈H

(h)
ℓ,m

‖p(A)‖, H(h)

ℓ,m ≡
{
zm+1g + h : h ∈ Pm is given, g ∈ Pℓ

}

• The special case m = 0 and h = 1 is called
the (ℓ+ 1)st ideal GMRES approximation problem

• Here the ℓ+ 1 largest coefficients are fixed

• Related problem: Fix the m+ 1 smallest coefficients,
i.e. those at 1, . . . , zm

• This is the following approximation problem:



Uniquness results

(1) min
p∈G

(g)
ℓ,m

‖p(A)‖, G(g)ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}

(2) min
p∈H

(h)
ℓ,m

‖p(A)‖, H(h)

ℓ,m ≡
{
zm+1g + h : h ∈ Pm is given, g ∈ Pℓ

}

• Uniqueness question is only of interest when value is > 0

• Lemma below gives conditions for this

Lemma (L. & Tichý, 2008)

Let d(A) = degree of A’s minimal polynomial.

(1) > 0 for all nonzero g ∈ Pℓ if and only if ℓ+m+ 1 < d(A).

If A is nonsingular, the previous are equivalent with

(2) > 0 for all nonzero h ∈ Pm.



Uniqueness results

Theorem (L. & Tichý, 2008)

(1) A ∈ Cn×n, ℓ ≥ 0, m ≥ 0, nonzero g ∈ Pℓ.
If (1) > 0, then the minimizer is unique.

(2) A ∈ Cn×n nonsingular, ℓ ≥ 0, m ≥ 0, nonzero h ∈ Pm.
If (2) > 0, then the minimizer is unique.

• Recall: ℓ+m+ 1 < d(A) is sufficient for (1), (2) > 0

• We don’t know whether nonsingularity in (2) is necessary

(1) min
p∈G

(g)
ℓ,m

‖p(A)‖, G(g)ℓ,m ≡
{
zm+1g + h : g ∈ Pℓ is given, h ∈ Pm

}

(2) min
p∈H

(h)
ℓ,m

‖p(A)‖, H(h)

ℓ,m ≡
{
zm+1g + h : h ∈ Pm is given, g ∈ Pℓ

}



General characterizations

• A more general matrix approximation problem is

minM∈A ‖B −M‖ ,

where A ≡ span {A1, . . . , Am},
A1, . . . , Am ∈ R

n×n lin. indep., B ∈ Rn×n\A

• A∗ ∈ A achieving the minimum is called a
spectral approximation of B from the subspace A
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• A more general matrix approximation problem is

minM∈A ‖B −M‖ ,

where A ≡ span {A1, . . . , Am},
A1, . . . , Am ∈ R

n×n lin. indep., B ∈ Rn×n\A

• A∗ ∈ A achieving the minimum is called a
spectral approximation of B from the subspace A

Theorem (Ziȩtak, LAA 1993)

If R(A∗) = B − A∗ has an n-fold maximal singular value,
then the spectral approximation A∗ of B is unique.



General characterizations

Theorem (Lau & Riha, LAA 1981)

A∗ is a spectral approximation of B if and only if

there exist k rank-one matrices w1z
T
1 , . . . , wkz

T
k ,

with ‖wi‖ = ‖zi‖ = 1, i = 1, . . . , k, where 1 ≤ k ≤m+ 1,

and k positive real numbers λ1, . . . , λk,
∑k

i=1 λi = 1,

such that
∑k

i=1 λiw
T
i Mzi = 0, for all M ∈ A and

wTi R(A∗)zi = ‖R(A∗)‖, i = 1, . . . , k.



General characterizations

Lemma (L. & Tichý, 2008)

Let Jλ be the n× n Jordan block with eigenvalue λ ∈ R.

Then for m+ 1 < n the (m+ 1)st ideal Arnoldi (or Chebyshev)
polynomial of Jλ is given by (z − λ)m+1.

• Using the theorem of Lau & Riha we can show:



General characterizations

• Using the theorem of Lau & Riha we can show:

Lemma (L. & Tichý, 2008)

Let Jλ be the n× n Jordan block with eigenvalue λ ∈ R.

Then for m+ 1 < n the (m+ 1)st ideal Arnoldi (or Chebyshev)
polynomial of Jλ is given by (z − λ)m+1.

• Equivalently, A∗ = Jm+1λ − (Jλ − λI)m+1 is the spectral
approximation of B = Jm+1λ from A = span {I, Jλ, . . . , J

m
λ }

• R(A∗) = Jm+10 has m+ 1 singular values equal to zero,
and n−m− 1 singular values equal to one

• Apparently, Ziȩtak’s sufficient condition is not satisfied



General characterizations

• Recall:

Ideal Arnoldi problem: minp∈Pm ‖J
m+1
λ − p(Jλ)‖

Ideal GMRES problem: minp∈Pm ‖I − Jλp(Jλ)‖

• The ideal Arnoldi polynomial is (z − λ)m+1

• For λ �= 0, we can write

(z − λ)m+1 = (−λ)m+1 · (1 − λ−1z)m+1

• Rightmost factor has value one at the origin,
hence a candidate for solving ideal GMRES problem

• Is the ideal GMRES polynomial a scaled version
of the ideal Arnoldi polynomial (at least for Jλ) ?



General characterizations

• No! Determination of ideal GMRES polynomials for Jλ
is very complicated and intriguing problem

• Analysis in (Tichý, L. & Faber, ETNA 2007)

• (m+ 1)st ideal GMRES polynomial is (1− λ−1z)m+1

if and only if 0 ≤ m+ 1 < n/2 and |λ| ≥ ̺−1m+1,n−m−1

̺k,n = radius of degree k polyhull of n× n Jordan block (indep. of λ)
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• (m+ 1)st ideal GMRES polynomial is (1− λ−1z)m+1

if and only if 0 ≤ m+ 1 < n/2 and |λ| ≥ ̺−1m+1,n−m−1

̺k,n = radius of degree k polyhull of n× n Jordan block (indep. of λ)

• Among the many other cases: n even and m+ 1 = n/2

If |λ| ≤ 2−
2
n , the ideal GMRES polynomial is 1

If |λ| ≥ 2−
2
n , the ideal GMRES polynomial is

2
4λn+1 +

4λn−1
4λn+1 (1− λ−1z)n/2

• Obviously, neither 1 nor the above polynomial
are scalar multiples of the corresponding ideal Arnoldi polynomial



Summary

• We showed uniqueness of best approximation of f(A)
by polynomials in A in the matrix 2-norm (under natural conditions)

• Nontrivial problem for nonnormal A (matrix 2-norm not strictly convex)

• Special case: Ideal Arnoldi approximation problem
(aka the Chebyshev polynomials of A)

• We also showed uniqueness for a related problem,
a special case of which is the ideal GMRES approximation problem

• Ideal Arnoldi and ideal GMRES only differ by scaling (highest vs.
lowest coefficient), but the corresponding polynomials can vastly differ

• Ultimate goal: Fully understand convergence ... a long way to go

• More details in
P. Tichý, J.L., V. Faber, ETNA 26 (2007), pp. 453—473
J.L., P. Tichý, in preparation, check my website after Householder


