On matrix approximation theory

Jörg Liesen

Institute of Mathematics, TU Berlin

based on joint work with

Petr Tichý (Czech Academy of Sciences) and Vance Faber (BD Biosciences)

> Functions of Matrices Workshop University of Manchester, May 2008

• A classical problem of approximation theory: Best approximation by polynomials

 $\min_{p \in \mathcal{P}_m} \|f - p\|_K, \quad \|g\|_K \equiv \max_{z \in K} |g(z)|$

- f is a given (nice) function, $K \subset \mathbb{C}$ is compact, \mathcal{P}_m is the set of polynomials of degree at most m
- Such problems have been studied since the 1850s; numerous results on existence, uniqueness and rate of convergence for $m \to \infty$
- Best approximation results can be used for bounding and/or estimating "almost best" approximations

• Classical example:

Bound for the error of the Faber expansion of f

(Kövari & Pommerenke, Math. Zeitschr. 1967)

4. Faber Expansion and the Best Polynomial Approximation

It is known that if K is any continuum, and that if f(z) is any function continuous on K and analytic in the interior of K, there exists a polynomial $\pi_n(z)$ of degree n (the polynomial of best uniform approximation) such that for every polynomial $P_n(z)$ of degree n

$$\max_{z \in K} |f(z) - P_n(z)| \ge \max_{z \in K} |f(z) - \pi_n(z)| = \rho_n(f, K),$$

and $\rho_n(f, K)$ is the best (uniform) polynomial approximation of the function f(z) on K.

Theorem 3. If $S_n(z) = \sum_{k=0}^n c_k F_k(z)$

then for any continuum K whose complement is connected and for any function f(z) analytic in the interior of K and continuous on K we have

(4.1)
$$|f(z) - S_n(z)| \leq A n^{\alpha} \cdot \rho_n(f, K)$$

where A and $\alpha < \frac{1}{2}$ are absolute constants.

• Instead of the well studied scalar approximation problem $\min_{p \in \mathcal{P}_m} \|f - p\|_K, \quad \|g\|_K \equiv \max_{z \in K} |g(z)|$

we here consider the matrix approximation problem $\min_{p \in \mathcal{P}_m} \|f(A) - p(A)\|, \quad \| \cdot \| = \text{given matrix norm}$

- $A \in \mathbb{C}^{n \times n}$, f is analytic in neighborhood of A's spectrum
- Does this problem have a unique solution $p_* \in \mathcal{P}_m$?
- Yes, if the matrix norm is strictly convex

- Definition of strict convexity: For all A_1, A_2 , if $||A_1|| = ||A_2|| = \frac{1}{2} ||A_1 + A_2||$ then $||A_1|| = ||A_2||$
- Geometrically: Unit sphere does not contain line segments
- Strictly convex matrix norm: Frobenius norm,

$$\|A\|_{F}^{2} \stackrel{(1)}{\equiv} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2} \stackrel{(2)}{\equiv} \operatorname{trace}(A^{*}A) \stackrel{(3)}{\equiv} \sum_{i=1}^{n} \sigma_{i}(A)^{2}$$

- Definition of strict convexity: For all A_1, A_2 , if $||A_1|| = ||A_2|| = \frac{1}{2} ||A_1 + A_2||$ then $||A_1|| = ||A_2||$
- Geometrically: Unit sphere does not contain line segments
- Strictly convex matrix norm: Frobenius norm,

$$\|A\|_{F}^{2} \stackrel{(1)}{\equiv} \sum_{i=1}^{n} \sum_{j=1}^{n} |a_{ij}|^{2} \stackrel{(2)}{=} \operatorname{trace}(A^{*}A) \stackrel{(3)}{=} \sum_{i=1}^{n} \sigma_{i}(A)^{2}$$

• Remarks:

(1) Matrix Frobenius norm = Vector 2-norm in \mathbb{C}^{n^2}

(2) $\mathbb{C}^{n \times n}$ and $\langle A, B \rangle \equiv \operatorname{trace}(A^*B)$ make a Hilbert space; associated norms are always strictly convex

(3) Sum of all singular values

- A useful matrix norm in many applications: Matrix 2-norm defined by $||A|| \equiv \sigma_1(A)$
- This norm is not strictly convex
- Example:

$$A_1 = \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}, \quad A_2 = \begin{bmatrix} B & 0 \\ 0 & D \end{bmatrix},$$

where $||A_1|| = ||A_2|| = \sigma_1(B) \ge \frac{1}{2} ||C + D||.$

Then $\frac{1}{2} ||A_1 + A_2|| = \sigma_1(B)$. But if $C \neq D$ then $A_1 \neq A_2$.

• Consequently: Best approximation problems in the matrix 2-norm are not guaranteed to have a unique solution

- We here consider the matrix approximation problem $\min_{p \in \mathcal{P}_m} \|f(A) - p(A)\|, \quad \| \cdot \| = \text{matrix 2-norm}$
- Well known: $f(A) = p_f(A)$ for a polynomial p_f depending on values and possibly derivatives of fon A's spectrum
- We therefore ask:

Given a polynomial b and a nonnegative integer $m < \deg b$. Does the best matrix approximation problem

 $\min_{p \in \mathcal{P}_m} \|b(A) - p(A)\|$

have a unique solution ?

• Not much known about such problems so far

- Our problem: $\min_{p \in \mathcal{P}_m} \|b(A) p(A)\|$
- The special case $b(A) = A^{m+1}$ is called the (m + 1)st ideal Arnoldi approximation problem
- Introduced in (Greenbaum & Trefethen, SISC 1994), paper contains uniqueess result (\rightarrow story of the proof)

- Our problem: $\min_{p \in \mathcal{P}_m} \|b(A) p(A)\|$
- The special case $b(A) = A^{m+1}$ is called the (m + 1)st ideal Arnoldi approximation problem
- Introduced in (Greenbaum & Trefethen, SISC 1994), paper contains uniqueess result (\rightarrow story of the proof)
- (m+1)st ideal Arnoldi polynomial of A later named (m+1)st Chebyshev polynomial of A
- Reason: For normal A we have $\min_{p \in \mathcal{P}_m} \|A^{m+1} - p(A)\| = \min_{p \in \mathcal{P}_m} \|z^{m+1} - p(z)\|_K$ with K = spectrum of A (scalar approximation problem)
- Some work on these polynomials in (Toh PhD thesis, 1996), (Toh & Trefethen, SIMAX 1998), (Trefethen & Embree, Book, 2005)

- Our problem: $\min_{p \in \mathcal{P}_m} \|b(A) p(A)\|$
- $\ell \geq 0$ and $m \geq 0$ given, polynomial b given by

 $b = \sum_{j=0}^{\ell+m+1} \beta_j z^j \in \mathcal{P}_{\ell+m+1}$

- Our problem: $\min_{p \in \mathcal{P}_m} \|b(A) p(A)\|$
- $\ell \geq 0$ and $m \geq 0$ given, polynomial b given by

 $b = \sum_{j=0}^{\ell+m+1} \beta_j z^j \in \mathcal{P}_{\ell+m+1}$

• We rewrite the problem for convenience:

 $\min_{p \in \mathcal{P}_m} \|b(A) - p(A)\| = \min_{p \in \mathcal{P}_m} \|b(A) - \left(p(A) + \sum_{j=0}^m \beta_j A^j\right)\|$ $= \min_{p \in \mathcal{P}_m} \|\sum_{j=m+1}^{\ell+m+1} \beta_j A^j - p(A)\|$ $= \min_{p \in \mathcal{P}_m} \|A^{m+1} \sum_{j=0}^{\ell} \beta_{j+m+1} A^j - p(A)\|$

- We have rewritten the problem as $\min_{p \in \mathcal{P}_m} \| A^{m+1} \sum_{j=0}^{\ell} \beta_{j+m+1} A^j - p(A) \|$
- The polynomials are of the form $z^{m+1}g + h$, where $g \in \mathcal{P}_{\ell}$ is given, and $h \in \mathcal{P}_m$ is sought
- Our problem therefore is:

 $\min_{p \in \mathcal{G}_{\ell,m}^{(g)}} \|p(A)\|, \quad \mathcal{G}_{\ell,m}^{(g)} \equiv \left\{ z^{m+1}g + h \, : \, g \in \mathcal{P}_{\ell} \text{ is given, } h \in \mathcal{P}_{m} \right\}$

• $\mathcal{G}_{\ell,m}^{(g)}$ = subset of $\mathcal{P}_{\ell+m+1}$, where the coefficients at $z^{m+1}, \ldots, z^{\ell+m+1}$ are fixed

 $\min_{p \in \mathcal{G}_{\ell,m}^{(g)}} \|p(A)\|, \quad \mathcal{G}_{\ell,m}^{(g)} \equiv \left\{ z^{m+1}g + h \, : \, g \in \mathcal{P}_{\ell} \text{ is given, } h \in \mathcal{P}_{m} \right\}$

- Here the $\ell + 1$ largest coefficients are fixed
- Related problem: Fix the m+1 smallest coefficients, i.e. those at $1, \ldots, z^m$
- This is the following approximation problem:

 $\min_{p \in \mathcal{H}_{\ell,m}^{(h)}} \|p(A)\|, \quad \mathcal{H}_{\ell,m}^{(h)} \equiv \left\{ z^{m+1}g + h \, : \, h \in \mathcal{P}_m \text{ is given}, \, g \in \mathcal{P}_\ell \right\}$

• The special case m = 0 and h = 1 is called the $(\ell + 1)$ st ideal GMRES approximation problem

- (1) $\min_{\substack{p \in \mathcal{G}_{\ell,m}^{(g)}}} \|p(A)\|, \quad \mathcal{G}_{\ell,m}^{(g)} \equiv \left\{ z^{m+1}g + h \, : \, g \in \mathcal{P}_{\ell} \text{ is given, } h \in \mathcal{P}_{m} \right\}$ (2) $\min_{\substack{p \in \mathcal{H}_{\ell,m}^{(h)}}} \|p(A)\|, \quad \mathcal{H}_{\ell,m}^{(h)} \equiv \left\{ z^{m+1}g + h \, : \, h \in \mathcal{P}_{m} \text{ is given, } g \in \mathcal{P}_{\ell} \right\}$
- Uniqueness question is only of interest when value is > 0
- Lemma below gives conditions for this

Lemma (L. & Tichý, 2008)

Let d(A) = degree of A's minimal polynomial.

(1) > 0 for all nonzero $g \in \mathcal{P}_{\ell}$ if and only if $\ell + m + 1 < d(A)$.

- If A is nonsingular, the previous are equivalent with
- (2) > 0 for all nonzero $h \in \mathcal{P}_m$.

(1)
$$\min_{\substack{p \in \mathcal{G}_{\ell,m}^{(g)}}} \|p(A)\|, \quad \mathcal{G}_{\ell,m}^{(g)} \equiv \left\{ z^{m+1}g + h \, : \, g \in \mathcal{P}_{\ell} \text{ is given, } h \in \mathcal{P}_{m} \right\}$$

(2)
$$\min_{\substack{p \in \mathcal{H}_{\ell,m}^{(h)}}} \|p(A)\|, \quad \mathcal{H}_{\ell,m}^{(h)} \equiv \left\{ z^{m+1}g + h \, : \, h \in \mathcal{P}_{m} \text{ is given, } g \in \mathcal{P}_{\ell} \right\}$$

Theorem (L. & Tichý, 2008)

- (1) $A \in \mathbb{C}^{n \times n}, \ \ell \ge 0, \ m \ge 0, \ \text{nonzero} \ g \in \mathcal{P}_{\ell}.$ If (1) > 0, then the minimizer is unique.
- (2) $A \in \mathbb{C}^{n \times n}$ nonsingular, $\ell \geq 0$, $m \geq 0$, nonzero $h \in \mathcal{P}_m$. If (2) > 0, then the minimizer is unique.
- Recall: $\ell + m + 1 < d(A)$ is sufficient for (1), (2) > 0
- We don't know whether nonsingularity in (2) is necessary

• A more general matrix approximation problem is

 $\min_{M\in\mathbb{A}} \|B-M\|,$

where $\mathbb{A} \equiv \text{span} \{A_1, \dots, A_m\},\$ $A_1, \dots, A_m \in \mathbb{R}^{n \times n}$ lin. indep., $B \in \mathbb{R}^{n \times n} \setminus \mathbb{A}$

• $A_* \in \mathbb{A}$ achieving the minimum is called a spectral approximation of B from the subspace \mathbb{A}

• A more general matrix approximation problem is

 $\min_{M\in\mathbb{A}} \|B-M\|,$

where $\mathbb{A} \equiv \text{span} \{A_1, \dots, A_m\},\$ $A_1, \dots, A_m \in \mathbb{R}^{n \times n}$ lin. indep., $B \in \mathbb{R}^{n \times n} \setminus \mathbb{A}$

• $A_* \in \mathbb{A}$ achieving the minimum is called a spectral approximation of B from the subspace \mathbb{A}

Theorem (Ziętak, LAA 1993)

If $R(A_*) = B - A_*$ has an *n*-fold maximal singular value, then the spectral approximation A_* of B is unique.

Theorem (Lau & Riha, LAA 1981)

 A_* is a spectral approximation of B if and only if

there exist k rank-one matrices $w_1 z_1^T, \ldots, w_k z_k^T$, with $||w_i|| = ||z_i|| = 1, i = 1, \ldots, k$, where $1 \le k \le m + 1$, and k positive real numbers $\lambda_1, \ldots, \lambda_k, \sum_{i=1}^k \lambda_i = 1$, such that

 $\sum_{i=1}^{k} \lambda_i w_i^T M z_i = 0, \quad \text{for all } M \in \mathbb{A} \text{ and}$ $w_i^T R(A_*) z_i = \|R(A_*)\|, \quad i = 1, \dots, k.$

• Using the theorem of Lau & Riha we can show:

Lemma (L. & Tichý, 2008)

Let J_{λ} be the $n \times n$ Jordan block with eigenvalue $\lambda \in \mathbb{R}$.

Then for m + 1 < n the (m + 1)st ideal Arnoldi (or Chebyshev) polynomial of J_{λ} is given by $(z - \lambda)^{m+1}$.

• Using the theorem of Lau & Riha we can show:

Lemma (L. & Tichý, 2008)

Let J_{λ} be the $n \times n$ Jordan block with eigenvalue $\lambda \in \mathbb{R}$. Then for m + 1 < n the (m + 1)st ideal Arnoldi (or Chebyshev) polynomial of J_{λ} is given by $(z - \lambda)^{m+1}$.

- Equivalently, $A_* = J_{\lambda}^{m+1} (J_{\lambda} \lambda I)^{m+1}$ is the spectral approximation of $B = J_{\lambda}^{m+1}$ from $\mathbb{A} = \text{span}\{I, J_{\lambda}, \dots, J_{\lambda}^m\}$
- $R(A_*) = J_0^{m+1}$ has m+1 singular values equal to zero, and n-m-1 singular values equal to one
- Apparently, Ziętak's sufficient condition is not satisfied

• Recall:

Ideal Arnoldi problem: $\min_{p \in \mathcal{P}_m} \|J_{\lambda}^{m+1} - p(J_{\lambda})\|$ Ideal GMRES problem: $\min_{p \in \mathcal{P}_m} \|I - J_{\lambda}p(J_{\lambda})\|$

- The ideal Arnoldi polynomial is $(z \lambda)^{m+1}$
- For $\lambda \neq 0$, we can write

$$(z - \lambda)^{m+1} = (-\lambda)^{m+1} \cdot (1 - \lambda^{-1}z)^{m+1}$$

- Rightmost factor has value one at the origin, hence a candidate for solving ideal GMRES problem
- Is the ideal GMRES polynomial a scaled version of the ideal Arnoldi polynomial (at least for J_{λ})?

- No! Determination of ideal GMRES polynomials for J_{λ} is very complicated and intriguing problem
- Analysis in (Tichý, L. & Faber, ETNA 2007)
- (m+1)st ideal GMRES polynomial is $(1 \lambda^{-1}z)^{m+1}$ if and only if $0 \le m+1 < n/2$ and $|\lambda| \ge \rho_{m+1,n-m-1}^{-1}$

 $\rho_{k,n}$ = radius of degree k polyhull of $n \times n$ Jordan block (indep. of λ)

- No! Determination of ideal GMRES polynomials for J_{λ} is very complicated and intriguing problem
- Analysis in (Tichý, L. & Faber, ETNA 2007)
- (m+1)st ideal GMRES polynomial is $(1 \lambda^{-1}z)^{m+1}$ if and only if $0 \le m+1 < n/2$ and $|\lambda| \ge \varrho_{m+1,n-m-1}^{-1}$

 $\rho_{k,n}$ = radius of degree k polyhull of $n \times n$ Jordan block (indep. of λ)

- Among the many other cases: n even and m + 1 = n/2If $|\lambda| \leq 2^{-\frac{2}{n}}$, the ideal GMRES polynomial is 1 If $|\lambda| \geq 2^{-\frac{2}{n}}$, the ideal GMRES polynomial is $\frac{2}{4\lambda^n+1} + \frac{4\lambda^n-1}{4\lambda^n+1}(1-\lambda^{-1}z)^{n/2}$
- Obviously, neither 1 nor the above polynomial are scalar multiples of the corresponding ideal Arnoldi polynomial

Summary

- We showed uniqueness of best approximation of f(A)by polynomials in A in the matrix 2-norm (under natural conditions)
- Nontrivial problem for nonnormal A (matrix 2-norm not strictly convex)
- Special case: Ideal Arnoldi approximation problem (aka the Chebyshev polynomials of A)
- We also showed uniqueness for a related problem, a special case of which is the ideal GMRES approximation problem
- Ideal Arnoldi and ideal GMRES only differ by scaling (highest vs. lowest coefficient), but the corresponding polynomials can vastly differ
- Ultimate goal: Fully understand convergence ... a long way to go
- More details in
 P. Tichý, J.L., V. Faber, ETNA 26 (2007), pp. 453–473
 J.L., P. Tichý, *in preparation*, check my website after Householder