On matrix approximation theory

Jörg Liesen

Institute of Mathematics, TU Berlin
based on joint work with
Petr Tichý (Czech Academy of Sciences) and Vance Faber (BD Biosciences)

Functions of Matrices Workshop
University of Manchester, May 2008

Introduction

- A classical problem of approximation theory:

Best approximation by polynomials

$$
\min _{p \in \mathcal{P}_{m}}\|f-p\|_{K}, \quad\|g\|_{K} \equiv \max _{z \in K}|g(z)|
$$

- f is a given (nice) function, $K \subset \mathbb{C}$ is compact, \mathcal{P}_{m} is the set of polynomials of degree at most m
- Such problems have been studied since the 1850s; numerous results on existence, uniqueness and rate of convergence for $m \rightarrow \infty$
- Best approximation results can be used for bounding and/or estimating "almost best" approximations

Introduction

- Classical example:

Bound for the error of the Faber expansion of f

(Kövari \& Pommerenke, Math. Zeitschr. 1967)

4. Faber Expansion and the Best Polynomial Approximation

It is known that if K is any continuum, and that if $f(z)$ is any function continuous on K and analytic in the interior of K, there exists a polynomial $\pi_{n}(z)$ of degree n (the polynomial of best uniform approximation) such that for every polynomial $P_{n}(z)$ of degree n

$$
\max _{z \in K}\left|f(z)-P_{n}(z)\right| \geqq \max _{z \in K}\left|f(z)-\pi_{n}(z)\right|=\rho_{n}(f, K),
$$

and $\rho_{n}(f, K)$ is the best (uniform) polynomial approximation of the function $f(z)$ on K.

Theorem 3. If

$$
S_{n}(z)=\sum_{k=0}^{n} c_{k} F_{k}(z)
$$

then for any continuum K whose complement is connected and for any function $f(z)$ analytic in the interior of K and continuous on K we have

$$
\begin{equation*}
\left|f(z)-S_{n}(z)\right| \leqq A n^{\alpha} \cdot \rho_{n}(f, K) \tag{4.1}
\end{equation*}
$$

where A and $\alpha<\frac{1}{2}$ are absolute constants.

Introduction

- Instead of the well studied scalar approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f-p\|_{K}, \quad\|g\|_{K} \equiv \max _{z \in K}|g(z)|
$$

we here consider the matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f(A)-p(A)\|, \quad\|\cdot\|=\text { given matrix norm }
$$

- $A \in \mathbb{C}^{n \times n}, f$ is analytic in neighborhood of A 's spectrum
- Does this problem have a unique solution $p_{*} \in \mathcal{P}_{m}$?
- Yes, if the matrix norm is strictly convex

Introduction

- Definition of strict convexity: For all A_{1}, A_{2},

$$
\text { if }\left\|A_{1}\right\|=\left\|A_{2}\right\|=\frac{1}{2}\left\|A_{1}+A_{2}\right\| \text { then }\left\|A_{1}\right\|=\left\|A_{2}\right\|
$$

- Geometrically: Unit sphere does not contain line segments
- Strictly convex matrix norm: Frobenius norm,

$$
\|A\|_{F}^{2} \stackrel{(1)}{=} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2} \stackrel{(2)}{=} \operatorname{trace}\left(A^{*} A\right) \stackrel{(3)}{=} \sum_{i=1}^{n} \sigma_{i}(A)^{2}
$$

Introduction

- Definition of strict convexity: For all A_{1}, A_{2},

$$
\text { if }\left\|A_{1}\right\|=\left\|A_{2}\right\|=\frac{1}{2}\left\|A_{1}+A_{2}\right\| \text { then }\left\|A_{1}\right\|=\left\|A_{2}\right\|
$$

- Geometrically: Unit sphere does not contain line segments
- Strictly convex matrix norm: Frobenius norm,

$$
\|A\|_{F}^{2} \stackrel{(1)}{=} \sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{2} \stackrel{(2)}{=} \operatorname{trace}\left(A^{*} A\right) \stackrel{(3)}{=} \sum_{i=1}^{n} \sigma_{i}(A)^{2}
$$

- Remarks:
(1) Matrix Frobenius norm $=$ Vector 2 -norm in $\mathbb{C}^{n^{2}}$
(2) $\mathbb{C}^{n \times n}$ and $\langle A, B\rangle \equiv \operatorname{trace}\left(A^{*} B\right)$ make a Hilbert space; associated norms are always strictly convex
(3) Sum of all singular values

Introduction

- A useful matrix norm in many applications:

Matrix 2-norm defined by $\|A\| \equiv \sigma_{1}(A)$

- This norm is not strictly convex
- Example:

$$
A_{1}=\left[\begin{array}{cc}
B & 0 \\
0 & C
\end{array}\right], \quad A_{2}=\left[\begin{array}{cc}
B & 0 \\
0 & D
\end{array}\right]
$$

where $\left\|A_{1}\right\|=\left\|A_{2}\right\|=\sigma_{1}(B) \geq \frac{1}{2}\|C+D\|$.
Then $\frac{1}{2}\left\|A_{1}+A_{2}\right\|=\sigma_{1}(B)$. But if $C \neq D$ then $A_{1} \neq A_{2}$.

- Consequently: Best approximation problems in the matrix 2-norm are not guaranteed to have a unique solution

Uniqueness results

- We here consider the matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|f(A)-p(A)\|, \quad\|\cdot\|=\text { matrix 2-norm }
$$

- Well known: $f(A)=p_{f}(A)$ for a polynomial p_{f} depending on values and possibly derivatives of f on A 's spectrum
- We therefore ask:

Given a polynomial b and a nonnegative integer $m<\operatorname{deg} b$.
Does the best matrix approximation problem

$$
\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\|
$$

have a unique solution?

- Not much known about such problems so far

Uniqueness results

- Our problem: $\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\|$
- The special case $b(A)=A^{m+1}$ is called the $(m+1)$ st ideal Arnoldi approximation problem
- Introduced in (Greenbaum \& Trefethen, SISC 1994), paper contains uniquness result $(\rightarrow$ story of the proof)

Uniqueness results

- Our problem: $\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\|$
- The special case $b(A)=A^{m+1}$ is called the $(m+1)$ st ideal Arnoldi approximation problem
- Introduced in (Greenbaum \& Trefethen, SISC 1994), paper contains uniquness result (\rightarrow story of the proof)
- ($m+1$)st ideal Arnoldi polynomial of A later named ($m+1$)st Chebyshev polynomial of A
- Reason: For normal A we have $\min _{p \in \mathcal{P}_{m}}\left\|A^{m+1}-p(A)\right\|=\min _{p \in \mathcal{P}_{m}}\left\|z^{m+1}-p(z)\right\|_{K}$ with $K=$ spectrum of A (scalar approximation problem)
- Some work on these polynomials in (Toh PhD thesis, 1996), (Toh \& Trefethen, SIMAX 1998), (Trefethen \& Embree, Book, 2005)

Uniqueness results

- Our problem: $\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\|$
- $\ell \geq 0$ and $m \geq 0$ given, polynomial b given by

$$
b=\sum_{j=0}^{\ell+m+1} \beta_{j} z^{j} \in \mathcal{P}_{\ell+m+1}
$$

Uniqueness results

- Our problem: $\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\|$
- $\ell \geq 0$ and $m \geq 0$ given, polynomial b given by

$$
b=\sum_{j=0}^{\ell+m+1} \beta_{j} z^{j} \in \mathcal{P}_{\ell+m+1}
$$

- We rewrite the problem for convenience:

$$
\begin{aligned}
\min _{p \in \mathcal{P}_{m}}\|b(A)-p(A)\| & =\min _{p \in \mathcal{P}_{m}}\left\|b(A)-\left(p(A)+\sum_{j=0}^{m} \beta_{j} A^{j}\right)\right\| \\
& =\min _{p \in \mathcal{P}_{m}}\left\|\sum_{j=m+1}^{\ell+m+1} \beta_{j} A^{j}-p(A)\right\| \\
& =\min _{p \in \mathcal{P}_{m}}\left\|A^{m+1} \sum_{j=0}^{\ell} \beta_{j+m+1} A^{j}-p(A)\right\|
\end{aligned}
$$

Uniqueness results

- We have rewritten the problem as

$$
\min _{p \in \mathcal{P}_{m}}\left\|A^{m+1} \sum_{j=0}^{\ell} \beta_{j+m+1} A^{j}-p(A)\right\|
$$

- The polynomials are of the form $z^{m+1} g+h$, where $g \in \mathcal{P}_{\ell}$ is given, and $h \in \mathcal{P}_{m}$ is sought
- Our problem therefore is:
$\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(A)\|, \quad \mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell}\right.$ is given, $\left.h \in \mathcal{P}_{m}\right\}$
- $\mathcal{G}_{\ell, m}^{(g)}=$ subset of $\mathcal{P}_{\ell+m+1}$, where the coefficients at

$$
z^{m+1}, \ldots, z^{\ell+m+1} \text { are fixed }
$$

Uniqueness results

$\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(A)\|, \quad \mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell}\right.$ is given, $\left.h \in \mathcal{P}_{m}\right\}$

- Here the $\ell+1$ largest coefficients are fixed
- Related problem: Fix the $m+1$ smallest coefficients, i.e. those at $1, \ldots, z^{m}$
- This is the following approximation problem:
$\min _{p \in \mathcal{H}_{\ell, m}^{(h)}}\|p(A)\|, \quad \mathcal{H}_{\ell, m}^{(h)} \equiv\left\{z^{m+1} g+h: h \in \mathcal{P}_{m}\right.$ is given, $\left.g \in \mathcal{P}_{\ell}\right\}$
- The special case $m=0$ and $h=1$ is called the $(\ell+1)$ st ideal GMRES approximation problem

Uniquness results

(1) $\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(A)\|, \quad \mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell}\right.$ is given, $\left.h \in \mathcal{P}_{m}\right\}$
(2) $\min _{p \in \mathcal{H}_{\ell, m}^{(h)}}\|p(A)\|, \quad \mathcal{H}_{\ell, m}^{(h)} \equiv\left\{z^{m+1} g+h: h \in \mathcal{P}_{m}\right.$ is given, $\left.g \in \mathcal{P}_{\ell}\right\}$

- Uniqueness question is only of interest when value is >0
- Lemma below gives conditions for this

Lemma (L. \& Tichý, 2008)
Let $d(A)=$ degree of A 's minimal polynomial.
(1) >0 for all nonzero $g \in \mathcal{P}_{\ell}$ if and only if $\ell+m+1<d(A)$.

If A is nonsingular, the previous are equivalent with
(2) >0 for all nonzero $h \in \mathcal{P}_{m}$.

Uniqueness results

(1) $\min _{p \in \mathcal{G}_{\ell, m}^{(g)}}\|p(A)\|, \quad \mathcal{G}_{\ell, m}^{(g)} \equiv\left\{z^{m+1} g+h: g \in \mathcal{P}_{\ell}\right.$ is given, $\left.h \in \mathcal{P}_{m}\right\}$
(2) $\min _{p \in \mathcal{H}_{\ell, m}^{(h)}}\|p(A)\|, \quad \mathcal{H}_{\ell, m}^{(h)} \equiv\left\{z^{m+1} g+h: h \in \mathcal{P}_{m}\right.$ is given, $\left.g \in \mathcal{P}_{\ell}\right\}$

Theorem (L. \& Tichý, 2008)
(1) $A \in \mathbb{C}^{n \times n}, \ell \geq 0, m \geq 0$, nonzero $g \in \mathcal{P}_{\ell}$.

If $(1)>0$, then the minimizer is unique.
(2) $A \in \mathbb{C}^{n \times n}$ nonsingular, $\ell \geq 0, m \geq 0$, nonzero $h \in \mathcal{P}_{m}$. If $(2)>0$, then the minimizer is unique.

- Recall: $\ell+m+1<d(A)$ is sufficient for $(1),(2)>0$
- We don't know whether nonsingularity in (2) is necessary

General characterizations

- A more general matrix approximation problem is

$$
\min _{M \in \mathbb{A}}\|B-M\|
$$

where $\mathbb{A} \equiv \operatorname{span}\left\{A_{1}, \ldots, A_{m}\right\}$,
$A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$ lin. indep., $B \in \mathbb{R}^{n \times n} \backslash \mathbb{A}$

- $A_{*} \in \mathbb{A}$ achieving the minimum is called a spectral approximation of B from the subspace \mathbb{A}

General characterizations

- A more general matrix approximation problem is

$$
\min _{M \in \mathbb{A}}\|B-M\|,
$$

where $\mathbb{A} \equiv \operatorname{span}\left\{A_{1}, \ldots, A_{m}\right\}$,
$A_{1}, \ldots, A_{m} \in \mathbb{R}^{n \times n}$ lin. indep., $B \in \mathbb{R}^{n \times n} \backslash \mathbb{A}$

- $A_{*} \in \mathbb{A}$ achieving the minimum is called a spectral approximation of B from the subspace \mathbb{A}

Theorem (Ziȩtak, LAA 1993)

If $R\left(A_{*}\right)=B-A_{*}$ has an n-fold maximal singular value, then the spectral approximation A_{*} of B is unique.

General characterizations

Theorem (Lau \& Riha, LAA 1981)

A_{*} is a spectral approximation of B if and only if
there exist k rank-one matrices $w_{1} z_{1}^{T}, \ldots, w_{k} z_{k}^{T}$, with $\left\|w_{i}\right\|=\left\|z_{i}\right\|=1, i=1, \ldots, k$, where $1 \leq k \leq m+1$, and k positive real numbers $\lambda_{1}, \ldots, \lambda_{k}, \sum_{i=1}^{k} \lambda_{i}=1$, such that

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i} w_{i}^{T} M z_{i}=0, \quad \text { for all } M \in \mathbb{A} \text { and } \\
& w_{i}^{T} R\left(A_{*}\right) z_{i}=\left\|R\left(A_{*}\right)\right\|, \quad i=1, \ldots, k .
\end{aligned}
$$

General characterizations

- Using the theorem of Lau \& Riha we can show:

Lemma (L. \& Tichý, 2008)
Let J_{λ} be the $n \times n$ Jordan block with eigenvalue $\lambda \in \mathbb{R}$.
Then for $m+1<n$ the $(m+1)$ st ideal Arnoldi (or Chebyshev) polynomial of J_{λ} is given by $(z-\lambda)^{m+1}$.

General characterizations

- Using the theorem of Lau \& Riha we can show:

Lemma (L. \& Tichý, 2008)
Let J_{λ} be the $n \times n$ Jordan block with eigenvalue $\lambda \in \mathbb{R}$.
Then for $m+1<n$ the $(m+1)$ st ideal Arnoldi (or Chebyshev) polynomial of J_{λ} is given by $(z-\lambda)^{m+1}$.

- Equivalently, $A_{*}=J_{\lambda}^{m+1}-\left(J_{\lambda}-\lambda I\right)^{m+1}$ is the spectral approximation of $B=J_{\lambda}^{m+1}$ from $\mathbb{A}=\operatorname{span}\left\{I, J_{\lambda}, \ldots, J_{\lambda}^{m}\right\}$
- $R\left(A_{*}\right)=J_{0}^{m+1}$ has $m+1$ singular values equal to zero, and $n-m-1$ singular values equal to one
- Apparently, Ziȩtak's sufficient condition is not satisfied

General characterizations

- Recall:

Ideal Arnoldi problem: $\min _{p \in \mathcal{P}_{m}}\left\|J_{\lambda}^{m+1}-p\left(J_{\lambda}\right)\right\|$
Ideal GMRES problem: $\min _{p \in \mathcal{P}_{m}}\left\|I-J_{\lambda} p\left(J_{\lambda}\right)\right\|$

- The ideal Arnoldi polynomial is $(z-\lambda)^{m+1}$
- For $\lambda \neq 0$, we can write

$$
(z-\lambda)^{m+1}=(-\lambda)^{m+1} \cdot\left(1-\lambda^{-1} z\right)^{m+1}
$$

- Rightmost factor has value one at the origin, hence a candidate for solving ideal GMRES problem
- Is the ideal GMRES polynomial a scaled version of the ideal Arnoldi polynomial (at least for J_{λ}) ?

General characterizations

- No! Determination of ideal GMRES polynomials for J_{λ} is very complicated and intriguing problem
- Analysis in (Tichý, L. \& Faber, etna 2007)
- $(m+1)$ st ideal GMRES polynomial is $\left(1-\lambda^{-1} z\right)^{m+1}$ if and only if $0 \leq m+1<n / 2$ and $|\lambda| \geq \varrho_{m+1, n-m-1}^{-1}$ $\varrho_{k, n}=$ radius of degree k polyhull of $n \times n$ Jordan block (indep. of λ)

General characterizations

- No! Determination of ideal GMRES polynomials for J_{λ} is very complicated and intriguing problem
- Analysis in (Tichý, L. \& Faber, etna 2007)
- $(m+1)$ st ideal GMRES polynomial is $\left(1-\lambda^{-1} z\right)^{m+1}$ if and only if $0 \leq m+1<n / 2$ and $|\lambda| \geq \varrho_{m+1, n-m-1}^{-1}$
$\varrho_{k, n}=$ radius of degree k polyhull of $n \times n$ Jordan block (indep. of λ)
- Among the many other cases: n even and $m+1=n / 2$

If $|\lambda| \leq 2^{-\frac{2}{n}}$, the ideal GMRES polynomial is 1
If $|\lambda| \geq 2^{-\frac{2}{n}}$, the ideal GMRES polynomial is

$$
\frac{2}{4 \lambda^{n}+1}+\frac{4 \lambda^{n}-1}{4 \lambda^{n}+1}\left(1-\lambda^{-1} z\right)^{n / 2}
$$

- Obviously, neither 1 nor the above polynomial are scalar multiples of the corresponding ideal Arnoldi polynomial

Summary

- We showed uniqueness of best approximation of $f(A)$ by polynomials in A in the matrix 2 -norm (under natural conditions)
- Nontrivial problem for nonnormal A (matrix 2-norm not strictly convex)
- Special case: Ideal Arnoldi approximation problem (aka the Chebyshev polynomials of A)
- We also showed uniqueness for a related problem, a special case of which is the ideal GMRES approximation problem
- Ideal Arnoldi and ideal GMRES only differ by scaling (highest vs. lowest coefficient), but the corresponding polynomials can vastly differ
- Ultimate goal: Fully understand convergence ... a long way to go
- More details in
P. Tichý, J.L., V. Faber, ETNA 26 (2007), pp. 453-473
J.L., P. Tichý, in preparation, check my website after Householder

