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Results on AREs

NARE

Nonsymmetric Algebraic Riccati Equations

Given D ∈ Rn×n, A ∈ Rm×m, C ∈ Rn×m, B ∈ Rm×n, find
X ∈ Rm×n such that

NARE

XCX − AX − XD + B = 0 (1)

Remark: Any solution X of (1) is such that[
D −C
B −A

] [
I
X

]
=

[
I
X

]
(D − CX )

The eigenvalues of D − CX are eigenvalues of H =

[
D −C
B −A

]
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Results on AREs

NARE

Assumptions:

Let σ(H) = {λ1, λ2, . . . , λm+n}, with

Re(λm+n) ≤Re(λm+n−1) ≤ . . . ≤Re(λ2) ≤Re(λ1).

Assume that
Re(λn+1) < 0 < Re(λn) (2)

and that there exists a solution S to the NARE such that
σ(D − CS) = {λ1, . . . , λn}.
The solution S is called the extremal solution.

Our goal is the computation of S

Remark: Most of the result that we will show, are still valid if one
of the two “<”’s in (2) is replaced by a “≤”; the case
Re(λn+1) = 0 =Re(λn) requires some additional assumption.
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NARE

An example: matrix square root

If B is a square matrix having no real negative eigenvalues, then
the principal matrix square root of B is B1/2 = −S , where S is the
solution of X 2 − B = 0 such that σ(−S) = {λ1, . . . , λn}.

Location of the eigenvalues of H =

[
0 I
B 0

]
:



Results on AREs

NARE

An example: matrix square root

If B is a square matrix having no real negative eigenvalues, then
the principal matrix square root of B is B1/2 = −S , where S is the
solution of X 2 − B = 0 such that σ(−S) = {λ1, . . . , λn}.

Location of the eigenvalues of H =

[
0 I
B 0

]
:



Results on AREs

NARE

An example: fluid queues and transport problems

M =

[
D −C
−B A

]
is either a nonsingular M-matrix or a singular irreducible M-matrix.

Location of the eigenvalues of H in the singular case:

Positive recurrent Transient Null recurrent
(Critical case)
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NARE→ UQME

Idea

From NARE to UQME: idea

To transform the NARE into a Unilateral Quadratic Matrix
Equation (UQME) of the kind

A0 + A1Y + A2Y
2 = 0, A0,A1,A2 ∈ RN×N

with N ≤ m + n, such that:
1. det(A0 + A1λ+ A2λ

2) has roots

|ξ1| ≤ · · · ≤ |ξN | < 1 < |ξN+1| ≤ · · · ≤ |ξ2N |

2. there exists a solution G with
ρ(G ) = |ξN |

3. from G one may easily recover S .
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NARE→ UQME

Moving the eigenvalues

Moving the eigenvalues

Theorem
Let f (z) be a complex function, analytic in a region containing the
eigenvalues of H. If

H

[
I
X

]
=

[
I
X

]
R,

then

f (H)

[
I
X

]
=

[
I
X

]
f (R).

Consequence: the matrix Ĥ = f (H) defines a new NARE, having
the same solutions of the original NARE.

Remark: the theorem is still valid under weaker assumptions on
f (z)
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NARE→ UQME

Moving the eigenvalues

Cayley transform

The Cayley transform f (z) = (z − γ)/(z + γ) applied to H yields
the matrix

Hγ = f (H) =

[
D + γI −C

B −A + γI

]−1 [
D − γI −C

B −A− γI

]
.

Since µ = γ−λ
γ+λ is eigenvalue of Hγ iff λ is eigenvalue of H, the

eigenvalues of Hγ are split w.r.t. the unit circle.
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NARE→ UQME

Moving the eigenvalues

Shrink and shift

The “shrink-and-shift” function f (z) = 1 + tz applied to H yields
the matrix

Ht =

[
I + tD −tC

tB I − tA

]
.

If M is an M-matrix and if 0 < t < 1/max(ai ,i , di ,i ) the
eigenvalues of the matrix have a splitting w.r.t. the unit circle.

For a general H other conditions on t may be found.
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NARE→ UQME

Moving the eigenvalues

Shrink and shift

Original eigenvalues

Shrink by t Shift by 1
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NARE→ UQME

From NARE to UQME

NARE→UQME: Ramaswami’s transform

The linear matrix pencil

H − λI =

[
D −C
B −A

]
− λI

can be transformed into a quadratic matrix polynomial by
multiplying the second block column by λ

A(λ) =

[
D 0
B 0

]
+

[
−I −C
0 −A

]
λ+

[
0 0
0 −I

]
λ2

This matrix polynomial defines a UQME[
D 0
B 0

]
+

[
−I −C
0 −A

]
Y +

[
0 0
0 −I

]
Y 2 = 0 (3)
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NARE→ UQME

From NARE to UQME

Theorem
The roots of the matrix polynomial A(λ) are:

I m equal to 0

I the m + n eigenvalues λ1, . . . , λm+n of H

I n at infinity.

Moreover

V =

[
D − CS 0

S 0

]
,

where S is the extremal solution of (1), is the unique solution of
the UQME (3) with m eigenvalues equal to zero and n eigenvalues
equal to λ1, . . . , λn.
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NARE→ UQME

From NARE to UQME

NARE→UQME: UL based transform

Consider the block UL factorization

H = U−1L, U =

[
I −U1

0 U2

]
, L =

[
L1 0
−L2 I

]
,

and transform the pencil H − λI into the new pencil

L− λU.

Now multiply the second block row by −λ and get

A(λ) =

[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
λ+

[
0 0
0 U2

]
λ2,

which defines the UQME[
L1 0
0 0

]
+

[
−I U1

L2 −I

]
Y +

[
0 0
0 U2

]
Y 2 = 0 (4)
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From NARE to UQME

Theorem
The roots of the matrix polynomial A(λ) are:

I m equal to 0

I the m + n eigenvalues λ1, . . . , λm+n of H

I n at infinity.

Moreover

V =

[
D − CS 0

S(D − CS) 0

]
,

where S is the extremal solution of (1), is the unique solution of
the UQME (4) with m eigenvalues equal to zero and n eigenvalues
equal to λ1, . . . , λn.
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From NARE to UQME

NARE→UQME: “Small size” transform

The matrix pencil H − λI is transformed into[
I 0
−U I

]
H

[
I 0
−U I

]−1

− λI . (5)

If det C 6= 0, by choosing U = C−1D, (5) becomes[
0 I

R(C−1D) A− C−1DC

]
− λI ,

where R(U) = UCU − AU − UD + B, which defines the UQME

(B − AC−1D)C + (C−1DC − A)Y + Y 2 = 0
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NARE→ UQME

From NARE to UQME

Theorem
The roots of

A(λ) = (B − AC−1D)C + (C−1DC − A)λ+ Iλ2

are the eigenvalues of H.
Moreover, Y = C−1(D − CS)C is the unique solution of the
UQME

(B − AC−1D)C + (C−1DC − A)Y + Y 2 = 0

with eigenvalues λ1, . . . , λn.
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NARE→ UQME

From NARE to UQME

Remark: The condition det C 6= 0 is not restrictive. Indeed, X
solves (1) if and only if X̃ = X (I −MX )−1 solves

Y C̃Y − ÃY − Y D̃ + B̃ = 0,

where M is any matrix such that det(I −MX ) 6= 0, and

Ã = A− BM, B̃ = B,

C̃ = R̃(M), D̃ = D −MB,

R̃(M) = MBM − DM −MA + C .

Open issue: Find M such that R̃(M) is well-conditioned.
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NARE→ UQME

Theoretical and computational consequences

A few remarks

I In all these transformations the m + n eigenvalues of H are
roots of det A(λ).

I If we replace H with f (H), then det A(λ) has m + n roots
inside the unit disk, and m + n roots outside (including the
ones at infinity). Moreover, the solution of the UQME with
smallest spectral radius is the one of interest.

Different combinations of “eigenvalue transformations f (z)” with
“NARE→UQME reductions” → old and new
theoretical/computational properties
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NARE→ UQME

Theoretical and computational consequences

A theoretical result

Theorem
Let Q(λ) = λ−1A(λ), where A(λ) is obtained by applying the
Cayley transform and the UL based reduction. Then:

I The matrix function Q(λ) is analytic and invertible for
|ξ| < |z | < |η|, where ξ = (λn − γ)/(λn + γ),
η = (λn+1 − γ)/(λn+1 + γ).

I The series ψ(λ) = Q(λ)−1, ψ(λ) =
∑+∞

k=−∞ λkψk is such that

ψ−1
0 =

[
I −T
−S I

]

where T is the solution of the dual NARE of (1).
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NARE→ UQME

Theoretical and computational consequences

The Structure-preserving Doubling Algorithm is Cyclic
Reduction!

SDA applied to the NARE is CR applied to the UQME[
−Dγ 0

0 0

]
+

[
I −Gγ

−Hγ I

]
Y +

[
0 0
0 −Fγ

]
Y 2 = 0

obtained with “Cayley transform + UL-based reduction”.
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NARE→ UQME

Theoretical and computational consequences

Different combinations + CR → different algorithms

We may combine the different strategies, and apply CR for solving
the UQME:

I “Shrink and shift” + “Ramaswami transform” lead to an
algorithm similar to that of Ramaswami (1999) of cost
(68/3)n3 ops per step (ss-ram).

I “Cayley transform” + “UL-based reduction” lead to SDA,
having a cost (64/3)n3 per step (sda).

I “Shrink and shift” + “UL-based reduction” lead to a new
algorithm with the same cost of SDA. Formally, this algorithm
differs from SDA only for the initial values, which are simpler
(ss-ul).

I “Cayley transform” + “Small-size transform” lead to a new
algorithm, having a cost (38/3)n3 (nodoub).
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NARE→ UQME

Theoretical and computational consequences

Numerical results: a random NARE

M is a randomly chosen singular M-matrix M, generated using
Matlab’s commands R=rand(2*n), M=diag(R*ones(2*n,1))-R.
The reported values are the average of ten different choices of the
random matrix.

n sda ss-ul ss-ram nodoub
8 0.016927 0.015696 0.017 0.015045
16 0.028276 0.028877 0.032625 0.026565
32 0.083346 0.084624 0.099644 0.07022
64 0.48015 0.48756 0.58651 0.38958
128 4.8408 4.8895 6.1907 3.9967
256 34.036 34.497 40.72 26.933
512 291.47 295.6 354.06 228.18

Table: Running time in seconds
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NARE→ UQME

Theoretical and computational consequences

n sda ss-ul ss-ram nodoub
8 4.3812e-15 3.8386e-15 2.8644e-15 2.8628e-11
16 1.3656e-14 1.0136e-14 6.8251e-15 9.1426e-11
32 3.8594e-14 2.3889e-14 1.8441e-14 3.2387e-10
64 1.1038e-13 6.2969e-14 4.6679e-14 2.5328e-08
128 3.6836e-13 1.5803e-13 1.2221e-13 6.6213e-09
256 1.0805e-12 4.3243e-13 3.3097e-13 5.6768e-10
512 3.2239e-12 1.1668e-12 9.0803e-13 3.8776e-10

Table: Absolute residual
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NARE→ UQME

Theoretical and computational consequences

A new iteration for the matrix square root

“Shrink-and-shift + Small-size transform” applied to H =

[
0 I
B 0

]
lead to the UQME

Y 2 + 2Y + (I − t2B) = 0

such that the minimal solvent is Y = I + tB1/2.

CR can be applied to solve the UQME.

Comparisons with the existing methods are still to be performed
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NARE→ UQME

Theoretical and computational consequences

A problem from transport theory

We consider a specific instance of an ARE encountered in a
problem of transport theory where

A = ∆1 − eqT , B = eeT , C = qqT , D = ∆2 − qeT

∆1 = diag(δ
(1)
1 , δ

(1)
2 , . . . , δ

(1)
n ), where δ

(1)
i > 0,

∆2 = diag(δ
(2)
1 , δ

(2)
2 , . . . , δ

(2)
n ), where δ

(2)
i > 0,

e = (1, 1, . . . , 1)T ,
q = (q1, q2, . . . , qn)

T , where qi > 0.

The Riccati equation is associated with a diagonal plus rank-one
M-matrix

M =

[
D −C
−B A

]
=

[
∆2 0
0 ∆1

]
−

[
q
e

] [
eT qT

]
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NARE→ UQME

Theoretical and computational consequences

Remark: the matrix polynomials A(λ) obtained by transforming
the NARE into a UQME are Cauchy-like, i.e.,

DA(λ)− A(λ)D = rank 2 where D =

[
D1 0
0 D2

]

Consequence: ψ(λ) =
(
λ−1A(λ)

)−1
is Cauchy-like moreover

Dψ(λ)− ψ(λ)D = u1(λ)v1 + u2v2(λ)

where v1 and u2 are independent of λ

This implies that the matrix functions ψk(λ) generated by CR are
Cauchy-like and Ak(λ) are Cauchy-like.
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NARE→ UQME

Theoretical and computational consequences

I The Cauchy-like structure can be exploited for designing an
implementation of CR and SDA, based on the GKO algorithm
at a cost of O(n2) ops per step.

I Similar techniques can be applied for the implementation of
Newton’s iteration.

I Lu’s quadratical convergent iteration can be implemented
with O(n2) ops.
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Theoretical and computational consequences

Some numerical experiments
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Fast Lu + shift

I α = .5, c = .5 (noncritical case)
I α = 10−8, c = 1− 10−6 (close to critical case)
I α = 0, c = 1 (critical case)

Noncritical case for n = 512, 15 times faster

Critical case with shift, 80 times faster

Accuracy in the critical case, relative error ≈ 10−15 (instead of
≈ 10−8)
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Conclusions and open issues

I The interpretation provided in this talk casts new light on the
relationship between UQMEs and NAREs, and on the SDA
algorithm.

I Several other approaches to the solution of the NARE can be
developed with this new setting. Among the possible ideas:

I using numerical integration and the Cauchy integral theorem
for computing the matrix ψ0;

I using functional iterations borrowed from stochastic processes
(QBD) for solving the UQME;

I using Newton’s iteration applied to the UQME trying to
exploit the specific matrix structure.
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Conclusions and open issues (cont.)

I An analysis of the accuracy and efficiency of the algorithms
obtained with the different combinations is still to be
performed.

I Are there other nice functions, besides Cayley and
“Shrink-and-shift”, to move the eigenvalues?

I It would be important to find more general transformations
which map the matrix H to a new one H̃ where the block H̃1,2

is not only nonsingular but numerically well conditioned.

I Can we apply our approach to other matrix equations, whose
solutions is expressed by means of an invariant subspace?


	Outline
	Nonsymmetric Algebraic Riccati Equations
	NARE  UQME
	Idea
	Moving the eigenvalues
	From NARE to UQME
	Theoretical and computational consequences

	Conclusions and open issues

