Algorithms for matrix sector function

Krystyna Ziętak

(the joint work with Beata Laszkiewicz)
Institute of Mathematics and Computer Science Wrocław University of Technology

Manchester, May 15-16, 2008

Outline

(1) Matrix sector function
(2) Algorithms for matrix sector function

- Newton's method
- Halley's method
- Padé family of methods
(3) Numerical experiments

4 Conditioning of matrix sector function
(5) Summary

The sector regions

$$
\begin{aligned}
& \quad \Phi_{k}=\left\{z \in \mathbb{C}: \frac{2 k \pi}{p}-\frac{\pi}{p}<\arg (z)<\frac{2 k \pi}{p}+\frac{\pi}{p}\right\} \\
& k=0, \ldots, p-1
\end{aligned}
$$

The scalar p-sector function

- $s_{p}(\lambda)$ is the nearest p th root of unity
(which lies in the same sector Φ_{k} in which λ is).
- $s_{\rho}(\lambda)$ is not defined for the $p t h$ roots of nonpositive real numbers.

Representation

$$
s_{p}(\lambda)=\frac{\lambda}{\sqrt[p]{\lambda^{p}}}
$$

$\sqrt[p]{a}$ principal pth root of $a \notin \mathbb{R}^{-}$,
$\sqrt[p]{a}$ lies in Φ_{0}

Principal matrix pth root

Let nonsingular complex matrix A have no negative eigenvalue. There is a unique p th root of A :

$$
X=A^{1 / p}
$$

all of whose eigenvalues lie in the sector Φ_{0}.

$$
X^{p}=A, \quad \arg \lambda_{j}(X) \in\left(-\frac{\pi}{p}, \frac{\pi}{p}\right)
$$

- $A \in \mathbb{C}^{n \times n}$ nonsingular
- $\arg \left(\lambda_{j}\right) \neq 2 \pi\left(q+\frac{1}{2}\right) / p$

$$
q \in\{0, \ldots, p-1\}
$$

Matrix sector function of $A \in \mathbb{C}^{n \times n}$

$$
\operatorname{sect}_{p}(A)=A\left(\sqrt[p]{A^{p}}\right)^{-1}
$$

Matrix sector function is a specific pth root of identity 1 .

Matrix sector function

$$
\operatorname{sect}_{p}(A)=Z \operatorname{diag}\left(s_{p}\left(\lambda_{j}\right) I_{r_{j}}\right) Z^{-1}
$$

$$
A=Z \operatorname{diag}\left(J_{1}, J_{2}, \ldots, J_{m}\right) Z^{-1}
$$

Jordan canonical form Jordan block $J_{k}(\lambda)$
$p=2$ matrix sign function

Algorithms for matrix sector function

$$
\begin{gathered}
\operatorname{sect}_{p}(A)=A\left(A^{p}\right)^{-1 / p} \\
\operatorname{sect}_{p}(A)=A \exp \left(-\log \left(A^{p}\right) / p\right)
\end{gathered}
$$

MATLAB: expm, logm

- real Schur algorithm
- Newton's iterations
- Halley's method
- Padé family of iterations

Real Schur algorithm for sector

$$
A=Q R Q^{T} \quad \text { real Schur decomposition }
$$

$$
\begin{aligned}
& U=\operatorname{sect}_{p}(R), \quad R U=U R, \quad U^{p}=1 . \\
& \operatorname{sect}_{p}(A)=Q \cup Q^{T}
\end{aligned}
$$

Parlett recurrence relations between blocks of R and U and some Sylvester equations for the blocks lead to real Schur algorithm for sector.

Remark. If A has multiple complex eigenvalues in the sectors different from $\Phi_{p / 2}$ (if p even) and Φ_{0} then real Schur algorithm does not work.

Smith 2003 - any primary matrix pth root

Newton's method for sector

Shieh, Tsay, Wang, 1984

$$
\begin{gathered}
X_{0}=A \\
X_{k+1}=\left((p-1) X_{k}^{p}+I\right) p X_{k}^{1-p}
\end{gathered}
$$

Newton's method is applied to the scalar equation

$$
x^{p}-1=0 ; \quad x_{0}=\lambda_{j}(A)
$$

Convergence regions for matrix sector function follow from the results of Higham and lannazzo for matrix pth roots.

Newton's method

Regions of convergence of Newton for sector

determined experimentally

Newton's method, $\mathrm{p}=5,30$ iterations

Newton's method, $\mathrm{p}=7,30$ iterations

$\omega_{j} p$ th root of unity
color: $\left|x_{30}-\omega_{j}\right|<10^{-5}$

Convergence of Newton for sector

If all eigenvalues of A lie in

$$
\begin{gathered}
\bigcup_{k=0}^{p-1}\left(\mathbb{B}_{k} \cup \mathbb{C}_{k} \cup \mathbb{R}_{k}^{+}\right) \\
\mathbb{B}_{k}=\left\{z \in \mathbb{C}:|z| \geq 1, \frac{2 k \pi}{p}-\frac{\pi}{2 p}<\arg (z)<\frac{2 k \pi}{p}+\frac{\pi}{2 p}\right\} \\
\mathbb{C}_{k}=\left\{z \in \mathbb{C}: \frac{1}{2^{1 / p}} \leq|z| \leq 1, \frac{2 k \pi}{p}-\frac{\pi}{4 p}<\arg (z)<\frac{2 k \pi}{p}+\frac{\pi}{4 p}\right\} \\
\mathbb{R}_{k}^{+}=\left\{z \in \mathbb{C}: z=r \epsilon_{k}, r \in \mathbb{R}^{+}\right\}
\end{gathered}
$$

then Newton is convergent.

Newton's method

Convergence regions of Newton

Region \mathbb{B}_{k}

and
Region \mathbb{C}_{k}

Newton's method

Convergence regions of Newton

Additional regions

$\curvearrowleft 9 \curvearrowright$

Halley's method

Halley's method for sector

Bakkaloğlu, Koç, 1995

$$
X_{0}=A
$$

$$
X_{k+1}=X_{k}\left[(p-1) X_{k}^{p}+(p+1) /\right] \times\left[(p+1) X_{k}^{p}-(p-1) /\right]^{-1}
$$

Regions of convergence of Halley for sector

determined experimentally

Halley＇s method，$p=5,30$ iterations

Halley＇s method，$p=7,30$ iterations

$\omega_{j} p$ th root of unity

$$
\text { color: }\left|z_{30}-\omega_{j}\right|<10^{-5}
$$

Halley's method

Halley for sector

Newton and $\mathbb{B}_{p}^{\text {hall }}$

Halleyarand Padens

If all eigenvalues of A lie in

$$
\mathbb{B}_{p}^{\text {hall }}=\bigcup_{k=0}^{p-1}\left\{z \in \mathbb{C}: \frac{2 k \pi}{p}-\frac{\pi}{2 p}<\arg (z)<\frac{2 k \pi}{p}+\frac{\pi}{2 p}\right\}
$$

then Halley is convergent to sector.

Halley's method
 Stability of Newton's and Halley's methods for matrix sector function

From the theorems of Higham and lannazzo we deduce that Newton's and Halley's iterations are stable, i.e. Fréchet derivatives of the functions, generating iterations, have bounded powers.

Halley's method

Stability of Schur method for pth roots

Smith 2003
Let \hat{U} be computed upper triangular p th roots of R from Schur decomposition of A. Then

$$
\hat{U}^{p}=R+E, \quad|E| \leq c p n u|\hat{U}|^{p}
$$

$$
\beta(U)=\frac{\|U\|_{F}^{p}}{\|R\|_{F}} \geq 1
$$

Schur method for p th root is stable provided $\beta(U)$ is sufficiently small

Padé family of methods

The Padé family iterations for sector function

$$
\begin{aligned}
s_{p}(\lambda) & =\frac{\lambda}{\sqrt[p]{\lambda^{p}}}=\frac{\lambda}{\sqrt[p]{1-z}} \\
z & =1-\lambda^{p}
\end{aligned}
$$

$$
\begin{gathered}
x_{i+1}=x_{i} \frac{P_{k m}\left(1-x_{i}^{p}\right)}{Q_{k m}\left(1-x_{i}^{p}\right)} \\
x_{0}=\lambda_{j}
\end{gathered}
$$

$P_{k m} / Q_{k m}-[k / m]$ Padé approximant to $(1-z)^{-1 / p}$
$p=2$ sign function
Kenney, Laub, 1991

Padé family of methods

The convergence region of Padé iterations

 $[m-1 / m]$[0/1]
[1/2]

Figure: The convergence region of Pade iterations
[4/4]
[3/4]

Padé family of methods

Padé $[k / m]$ for sector

"yellow flowers" - known for $p=2$ (Kenney-Laub)
First observation - Padé for sector
For $k \geq m-1$, if

$$
\begin{gathered}
x_{n+1}=x_{n} \frac{P_{k m}\left(1-x_{n}^{p}\right)}{Q_{k} m\left(1-x_{n}^{p}\right)} \\
\left|1-x_{0}^{p}\right|<1
\end{gathered}
$$

then

$$
\begin{gathered}
\left|1-x_{n}^{p}\right| \leq\left|1-x_{0}^{p}\right|^{(k+m+1)^{n}} \\
\lim _{n \rightarrow \infty} x_{n} \rightarrow s_{p}\left(x_{0}\right)
\end{gathered}
$$

Principal Padé for sector

Principal Padé iteration for matrix sector function preserve structure (automorphism group)!!!

Second observation - principal Padé for sector

If all eigenvalues of A lie in $\mathbb{B}_{p}^{\text {hall }}$ then principal Pade $[\mathrm{m} / \mathrm{m}$] iterations are convergent to sector.
"Yellow flowers"' lie in this region.

Implementation

Newton

$$
X_{k+1}=\left[(p-1) X_{k}^{p}+1\right]\left(X_{k}^{-1}\right)^{p-1}
$$

Halley 1

$$
X_{k+1}=X_{k}\left[(p-1) X_{k}^{p}+(p+1) \iota\right] \times\left[(p+1) X_{k}^{p}+(p-1) /\right]^{-1}
$$

Halley 2

$$
X_{k+1}=\frac{p-1}{p+1} X_{k}+\frac{4 p}{p+1} X_{k}\left[(p+1) X_{k}^{p}+(p-1) /\right]^{-1}
$$

Example 1

$$
\begin{gathered}
A \in \mathbb{C}^{n \times n}, \quad Y=A^{1 / p} \\
C=\left[\begin{array}{ccccc}
0 & 1 & & & \\
& 0 & I & & \\
& & \ddots & \ddots & \\
& & & \ddots & I \\
A & & & 0
\end{array}\right] \in \mathbb{C}^{p n \times p n} . \\
\operatorname{sect}_{p}(C)=\left[\begin{array}{ccccc}
0 & Y^{-1} & & 0 \\
\vdots & & 0 & \ddots & \\
0 & \ddots & \ddots & Y^{-1} \\
A Y^{-1} & 0 & \cdots & 0
\end{array}\right] .
\end{gathered}
$$

A in real Schur form, $\operatorname{cond}(A)=1.4 e+16$ eigenvalues of $A \in \mathbb{R}^{8 \times 8}: \quad \frac{-k^{2}}{10} \pm i k, \quad k=1,2,3,4$
black boxes - eigenvalues of C for $p=3$, convergence regions

C has 4 groups of eigen. with $2 p$ eigenvalues with the same module in each group

Table: Results for $C, \quad \operatorname{cond}(C) \approx 10^{9}$
$n=24, \quad p=3, \quad\|\hat{X}\|=1.71 \times 10^{6}, \quad$ iter $_{\text {Newt }}=8, \quad$ iter $_{\text {Hall }}=5$

alg.	$C P U$	$\left\\|\hat{X}^{p}-I\right\\|$	$\\|C \hat{X}-\hat{X} C\\|$	$\frac{\\|C \hat{X}-\hat{X} C\\|}{\\|\hat{X}\\| C \\|}$
Newt	$1.14 e-02$	$1.32 e-09$	$1.50 e-09$	$1.94 e-18$
Hall 1	$8.68 e-03$	$1.88 e-09$	$3.12 e-09$	$4.03 e-18$
Hall 2		$2.34 e-09$	$\mathbf{6 . 6 7 e}-\mathbf{0 6}$	$8.62 e-15$
r-Sch	$6.17 e-02$	$\mathbf{2 . 7 6 e}-\mathbf{0 6}$	$8.91 e-08$	$1.15 e-16$
$\mathrm{p}-$ root		$6.02 e-09$	$5.37 e-09$	$6.94 e-18$

$n=48, \quad p=6, \quad\|\hat{X}\|=8.76 \times 10^{5}, \quad$ iter $_{\text {Newt }}=9, \quad$ iter $_{\text {Hall }}=5$

alg.	$C P U$	$\left\\|\hat{X}^{p}-I\right\\|$	$\\|C \hat{X}-\hat{X} C\\|$	$\frac{\\|C \hat{X}-\hat{X} C\\|}{\\|\hat{X}\\|\\|C\\|}$
Newt	$3.74 e-02$	$5.07 e-09$	$3.21 e-09$	$8.10 e-18$
Hall 1	$2.63 e-02$	$4.00 e-09$	$3.57 e-09$	$9.03 e-18$
Hall 2		$2.08 e-09$	$\mathbf{6 . 2 7 e}-\mathbf{0 7}$	$1.58 e-15$
$\mathrm{r}-$ Sch	$4.98 e-01$	$\mathbf{8 . 8 1 e}-\mathbf{0 4}$	$5.81 e-08$	$1.47 e-16$

Accuracy of computed Schur decomposition of C for $p=6, n=48$, $\operatorname{cond}(C) \approx 10^{9}$

$$
\begin{aligned}
\max _{j}\left|\lambda_{j}^{\text {schur }}-\lambda_{j}^{A}\right| & \approx 1.21 e-10 \\
\max _{j}\left|\lambda_{j}^{\text {schur }}-\lambda_{j}^{\text {eig }}\right| & \approx 1.12 e-10 \\
\max _{j}\left|\lambda_{j}^{A}-\lambda_{j}^{e i g}\right| & \approx 3.14 e-11
\end{aligned}
$$

- $\lambda_{j}^{\text {schur }}$ - eigenvalues of C computed directly from diagonal blocks of R
- $\lambda_{j}^{\text {eig }}$ - eigenvalues of C computed by eig
- λ_{j}^{A} - eigenvalues of C computed as p th roots of eigenvalues of A

$$
\beta=\frac{\left\|\operatorname{sect}_{p}(R)\right\|_{F}^{p}}{\|R\|_{F}}=1.25 e+35
$$

R triangular from Schur decomposition of C, Matlab 6.5

Example 2

$$
A=D+T, \quad D=\operatorname{diag}\left(\lambda_{j}\right), \quad \text { complex }
$$

A triangular
T triangular real,

$$
n=40 \quad \operatorname{cond}(A)=9.81
$$

Table: Results for A

$$
p=5, \quad\|\hat{X}\|=1.1, \quad \text { iter }_{\text {Newt }}=28, \quad \text { iter }_{\text {Hall }}=16
$$

alg.	$C P U$	$\left\\|\hat{X}^{p}-I\right\\|$	$\\|A \hat{X}-\hat{X} A\\|$	$\frac{\\|A \hat{X}-\hat{X} A\\|}{\\|\hat{X}\\|\\|A\\|}$
Newt	$3.12 e-01$	$6.40 e-16$	$5.57 e-15$	$4.13 e-17$
Hall 1	$2.51 e-01$	$1.45 e-15$	$\mathbf{1 . 6 5 e}-\mathbf{1 1}$	$1.22 e-13$
Hall 2		$8.26 e-16$	$\mathbf{4 . 2 3 e}-\mathbf{1 5}$	$3.13 e-17$
c-Sch	$9.83 e-02$	$1.1 e-15$	$2.13 e-15$	$1.59 e-17$

Example 3

slow convergence of Newton
$n=10, \quad A$ as in Example 2, complex triangular

$$
p=10, \quad\|\hat{X}\|=1.02, \quad \text { iter }_{\text {Newt }}=\mathbf{5 1}, \quad \text { iter } r_{\text {Hall }}=28
$$

alg.	$C P U$	$\left\\|\hat{X}^{p}-I\right\\|$	$\\|A \hat{X}-\hat{X} A\\|$	$\frac{\\|A \hat{X}-\hat{X} A\\|}{\\|\hat{X}\\|\\|A\\|}$
Newt	$3.59 e-02$	$1.32 e-15$	$1.75 e-15$	$1.47 e-17$
Hall 1	$3.03 e-02$	$1.94 e-15$	$\mathbf{3 . 2 9 e}-\mathbf{0 8}$	$2.76 e-10$
Hall 2		$8.90 e-16$	$1.53 e-15$	$1.29 e-17$
c-Sch	$1.00 e-02$	$1.28 e-15$	$4.11 e-16$	$3.45 e-18$

Fréchet derivative and

condition numbers of matrix function

Let $F=F(X)$ be a matrix function. The Fréchet derivative of F at X in the direction E is a linear mapping such that

$$
F(X+E)-F(X)=L(X, E)=o(\|E\|) .
$$

Absolute and relative condition numbers of $F(X)$

$$
\begin{gathered}
\operatorname{cond}_{\text {abs }}(F, X)=\lim _{\varepsilon \rightarrow 0} \sup _{\|E\| \leq \varepsilon} \frac{\|F(X+E)-F(X)\|}{\varepsilon}=\|L(X)\| \\
\operatorname{cond}_{\mathrm{rel}}(F, X)=\frac{\|L(X)\|\|X\|}{\|F(X)\|}
\end{gathered}
$$

Fréchet derivative of matrix sign function

Matrix sign decomposition - Higham

$$
\begin{gathered}
A=S N, \quad S=\operatorname{sign}(A), \quad N=\left(A^{2}\right)^{1 / 2} \\
S^{2}=I, \quad S^{-1}=S
\end{gathered}
$$

$$
S+\Delta_{S}=\operatorname{sign}\left(A+\Delta_{A}\right)
$$

$L=L\left(A, \Delta_{A}\right)$ Fréchet derivative of matrix sign function of A in direction Δ_{A}

$$
\Delta_{S}-L=o\left(\left\|\Delta_{A}\right\|\right)
$$

Kenney-Laub
L satisfies $\quad N L+L N=\Delta_{A}-S \Delta_{A} S$.

Fréchet derivative of matrix sector function

$$
\operatorname{sect}_{p}(A)+\Delta_{S}=\operatorname{sect}_{p}\left(A+\Delta_{A}\right)
$$

Matrix sector decomposition $A=S N$,

$$
S=\operatorname{sect}_{p}(A), \quad N=\left(A^{p}\right)^{1 / p}, \quad S^{-1}=S^{p-1}
$$

The Fréchet derivative $L=L\left(A, \Delta_{A}\right)$ of matrix sector function is the unique solution of

$$
N L+\sum_{k=0}^{p-2} S^{k} L S^{-k} N=\Delta_{A}-S^{-1} \Delta_{A} S
$$

Fréchet derivative

Let $A \in \mathbb{C}^{n \times n}$ be such that $\operatorname{sect}_{p}(A)$ exists and the Newton iterates X_{k} are convergent to $\operatorname{sect}_{p}(A)$. Let

$$
\begin{gathered}
Y_{k+1}=\frac{1}{p}\left((p-1) Y_{k}-X_{k}^{1-p}\left(\sum_{j=0}^{p-2} X_{k}^{p-2-j} Y_{k} X_{k}^{j}\right) X_{k}^{1-p}\right), \\
Y_{0}=\Delta_{A}, \quad X_{0}=A .
\end{gathered}
$$

Then the sequence Y_{k} tends to the Fréchet derivative $L\left(A, \Delta_{A}\right)$ of $\operatorname{sect}_{p}(A)$: $\quad \lim _{k \rightarrow \infty} Y_{k}=L\left(A, \Delta_{A}\right)$.

Matrix sign $(p=2)$ Kenney-Laub

$$
Y_{k+1}=\frac{1}{2}\left(Y_{k}-X_{k}^{-1} Y_{k} X_{k}^{-1}\right)
$$

Summary

- Real Schur algorithm for the matrix sector function was proposed.

Other results in PhD of Beata Laszkiewicz.

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were proven.

Other results in PhD of Beata Laszkiewicz.

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were proven.
- Padé family for the matrix sector function was introduced.
- Conditioning and stability of the algorithms were discussed.

Other results in PhD of Beata Laszkiewicz.

Summary

- Real Schur algorithm for the matrix sector function was proposed.
- Some convergence regions of Newton's and Halley's iterations were proven.
- Padé family for the matrix sector function was introduced.
- Conditioning and stability of the algorithms were discussed.
- Numerical experiments were presented:
- the commutativity condition was not well satisfied by Halley in some cases,
- accuracy of Schur algorithm for A with multiple eigenvalues was sometimes not good because of inaccuracy in computed by MATLAB Schur decomposition and ill conditioning.

Other results in PhD of Beata Laszkiewicz.

Thank you for your attention!

References

- B. Iannazzo, Numerical solution of certain nonlinear matrix equations, PhD, Pisa 2007.
- C. Kenney, A. Laub, Rational iterative methods for the matrix sign function, SIAM J. MAtrix Anal. Appl. 12 (2): 273 291, 1991.
- C..K. Koç, B. Bakkaloğlu, Halley's method for the matrix sector function IEEE Trans. on Automatic Control 40 (5): 994 - 948, 1995.
- L.S. Shieh, Y.T. Tsay, C.T. Wang, Matrix sector function and their applications to system theory, IEE Proceedings 131 (5): 171 - 181, 1984.

