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Matrix sector function

The sector regions
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The sector regions, p=4.




Matrix sector function

The scalar p-sector function

o Sp(A) is the nearest pth root of unity

(which lies in the same sector ® in
which A is).

@ s,(A) is not defined for the pth roots of nonpositive real
numbers.




Matrix sector function

Representation

P/)\p
¢/a principal pth root of a ¢ R™,
¢/a lies in O




Matrix sector function

Principal matrix pth root

Let nonsingular complex matrix A have no
negative eigenvalue. There is a unique pth
root of A:

X = AlP
all of whose eigenvalues lie in the sector ®.

XP=A, arg\;j(X) € (—E, z)
p’p




e A € C™" nonsingular
o arg(\) # 2m(q +3)/p

qe{0,...,p—1}

Matrix sector function of A € C"*"

sect, (A) = A ( v AP> -

Matrix sector function is a specific pth root
of identity /.




Matrix sector function

sect, (A) = Zdiag (sp()\j)/,j) Z!

A= Zdiag (4, by Im) 271,

Jordan canonical form

Jordan block Ji(\)

p = 2 matrix sign function




Algorithms for matrix sector function

Algorithms for matrix sector function

sect,p(A) = A(AP)~L/P
sectp(A) = A exp(—log(AP)/p)

MATLAB: expm, logm

o real Schur algorithm
o Newton's iterations
o Halley's method

o Padé family of iterations
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Real Schur algorithm for sector

A= QRQT real Schur decomposition

U = sectp(R), RU = UR, Ur =1
sectp(A) = QUQT
Parlett recurrence relations between blocks of R and U

and some Sylvester equations for the blocks lead to
real Schur algorithm for sector.

Remark. If A has multiple complex eigenvalues in the sectors
different from @, (if p even) and ®, then real Schur
algorithm does not work.

Smith 2003 - any primary matrix pth root
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Newton's method

Newton's method for sector

X = A
Xes1 = ((p = D)X + 1) pX,°

Newton's method is applied to the scalar equation

xP—1=0; xo=\(A)

Convergence regions for matrix sector function follow from thes
results of Higham and lannazzo for matrix pth roots.
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Newton's method

Regions of convergence of Newton for sector

determined experimentally

Newton's method, p=5, 30 iterations

Newton’s method, p=7, 30 iterations

Im(2)
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Newton's method

Convergence of Newton for sector

If all eigenvalues of A lie in

p—1

J®BcuCLURY)
k=0
2k 2k
Ek:{2663|Z|21,—W—l<arg(2)<_ﬂ-+l}
P 2p P 2p
1 2km 0w 2kt 0w
(Ck:{ze(C.mﬁ\z[ﬁl,T—Ip<arg(z)<T 4-_p}

Rf={zeC: z=re,reR"}

then Newton is convergent.
lannazzo pth roots
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Newton's method

Convergence regions of Newton

and

im(z)
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Newton's method

nce regions of Ne

Additional regions

Newton dia p=5, sektor glowny

im(z)
im(z)
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Halley's method

Halley's method for sector

Bakkaloglu, Kog, 1995

Xo=A

Xirr = X [(p = D)X + (p+ DI x [(p+ )XP — (p— 1)/
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Halley's method

Regions of convergence of Halley for sector

determined experimentally

Halley's method, p=5, 30 iterations Halley's method, p=7, 30 iterations
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Halley's method

Halley for sector

Newton and Bh! Halley,and,Pade.
- y \

im@)
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real(z)

real(z)

If all eigenvalues of A lie in

p—1
2kt 2kt
Bhall — {ZE(C:———<argz<—+—}
P kL:JO p2p () p 2p

then Halley is convergent to sector.

lannazzo - pth roots
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Halley's method

Stability of Newton's and Halley's methods for
matrix sector function

From the theorems of Higham and lannazzo we
deduce that Newton's and Halley's iterations are
stable, i.e. Fréchet derivatives of the functions,
generating iterations, have bounded powers.
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Halley's method

Stability of Schur method for pth roots

Smith 2003
Let U be computed upper triangular pth roots of R from
Schur decomposition of A. Then

UP=R+E, |E| < cpnullP
1UlIE
pU) = > 1
IRl

Schur method for pth root is stable provided G(U) is
sufficiently small
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Padé family of methods

The Padé family iterations for sector function

Prm(1 — xP)
X = X
s ka(]' - le)

X0:>\J'

Pim/Qim - [k/m] Padé approximant to (1 — z)~%/P

p = 2 sign function
Kenney, Laub, 1991
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Padé family of methods

The convergence region of Padé iterations
[m —1/m]
[0/1] [1/2]
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Padé family of methods

Figure: The convergence region of Padé iterations
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Padé family of methods

Padé [k/m] for sector

"yellow flowers" - known for p = 2 (Kenney-Laub)

First observation - Padé for sector

For k >m—1, if

. Pkm(l — Xﬁ)
1—x5] <1

then
11— xP| < |1 — x| (kFmt)

lim x, — sp(x0)
n—oo
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Padé family of methods

Principal Padé for sector

Principal Padé iteration for matrix sector

function preserve structure
(automorphism group)!!!

Second observation - principal Padé for sector

If all eigenvalues of A lie in Bgaﬂ then
principal Pade [m/m] iterations are
convergent to sector.

"Yellow flowers"" lie in this region.




Numerical experiments

Implementation

X1 = [(p = 1)XP+1] (X))

v

Halley 1

Xiwr = Xi[(p = XP + (p+ DI x [(p+ 1)XE + (p— 1)/ |




Numerical experiments

Example 1

AeCrn, Y =AU

T 0 -
0 I
C = c (Cpnxpn'
/
| A 0]

0o Y 0

sectp(C) = 0
0 Yyt




Numerical experiments

A in real Schur form, cond(A) = 1.4e + 16
eigenvalues of A € R¥*8; _1—’82 + ik, k=1,234

black boxes - eigenvalues of C for p = 3, convergence regions

C has 4 groups of eigen. with 2p eigenvalues
with the same module in each group




Table: Results for C,

Numerical experiments

cond(C) ~ 10°

n=24 p=3, |[X|=171x10° @iteryews =8, iterman =5
alg. CPU IXP—1)| ||IcX = XC| W
Newt | 1.14e—02 | 1.32e—09 | 1.50e —09 | 1.94e — 18
Hall1 |8.68e—03| 1.88e —09 | 3.12¢ —09 | 4.03e —18
Hall 2 2.34e — 09 | 6.67e — 06 | 8.62¢ — 15
r—Sch | 6.17e — 02 | 2.76e — 06 | 8.91e —08 | 1.15¢ — 16
p — root 6.02e —09 | 5.37e —09 | 6.94e — 18

n=48, p=6, |X| =876x10% @iternewt =9, iterga =5
alg. CPU | |IXP 1| |CX —Xc|| | It
Newt | 3.74e—02 | 5.07e —09 | 3.21e—09 | 8.10e — 18
Hall 1 | 2.63e — 02 | 4.00e — 09 | 3.57e —09 | 9.03e — 18
Hall 2 2.08e — 09 | 6.27e — 07 | 1.58¢ — 15
r—Sch|4.98¢—01|88le—04| 58le—08 | 1.47e—16




Numerical experiments

Accuracy of computed Schur decomposition of C
for p =16, n =48, cond(C) ~ 10°

max | ASMT — )\JA\ ~ 12le—10
J

max [ A — )\fig| ~ 1.12e — 10
J

max |\ — \7¥| ~ 3.14e — 11
° )\JS-Chur - eigenvalues of C computed directly from diagonal
blocks of R
° )\j?ig - eigenvalues of C computed by eig
° )\JA - eigenvalues of C computed as pth roots of
eigenvalues of A
5 _ lsecty(R)?

= 1.25¢ +35
[IRIlF




Example 2

A=D+T,
A triangular

T triangular real,

Numerical experiments

D = diag(};),

n=140

Table: Results for A

complex

cond(A) =9.81

p=5, |X||=11, iternewt =28, iterg. = 16
alg. CPU | |[XP—1| | |AX = XA | 1ol
Newt |3.12e— 01 | 6.40e — 16 | 5.57e — 15 | 4.13e — 17
Hall 1 | 2.51e — 01 | 1.45¢ — 15 | 1.65e — 11 | 1.22¢ — 13
Hall 2 8.26e — 16 | 4.23e — 15 | 3.13¢ — 17
c—Sch|9.83e—02| 1.le—15 | 2.13e —15 | 1.59¢ —17




Example 3

Numerical experiments

slow convergence of Newton

n =10, A asin Example 2, complex triangular
p=10, |[X| =102, iteryey; =51, itery. =28
alg. CPU IXP — 1| | |AX = XA W
Newt |3.59e—-02|1.32e—15| 1.75e—15 | 1.47e —17
Hall 1 | 3.03e — 02| 1.94e — 15| 3.29e¢ — 08 | 2.76e — 10
Hall 2 8.90e — 16 | 1.53e —15 | 1.29e¢ — 17
c—Sch|1.00e—02]|128e—15| 4.11e—16 | 3.45¢ — 18




Conditioning of matrix sector func

Fréchet derivative and

condition numbers of matrix function

Let F = F(X) be a matrix function. The Fréchet derivative of
F at X in the direction E is a linear mapping such that

F(X+ E)— F(X)=L(X,E) = o(|]|E]|).

Absolute and relative condition numbers of F(X)

condaps(F, X) = lim sup = ||L(X)]|

IF(X+ E) = FX)
e=0)|E|<e 3
OO Xl
condlFX) = "TE 00




Conditioning of matrix sector func

Fréchet derivative of matrix sign function

Matrix sign decomposition - Higham
A=SN, S=sign(A), N=(A%Y?
S =1, st=5

A\

S+ As =sign(A+ Aj)

L = L(A, A,) Fréchet derivative of matrix sign function of A
in direction Ax4
As — L= o(||Aall)

Kenney-Laub

[ satisfies  NL+ LN = Aqg— SALS.




Conditioning of matrix sector func

Fréchet derivative of matrix sector function

sectp(A) + As = sectp(A+ Ap)

Matrix sector decomposition A = SN,
S =sect,(A), N = (AP)Y/P, S t=5r"1

The Fréchet derivative L = L(A, Ap) of matrix sector function
is the unique solution of

p—2
NL+ SKLS™N = Aa— ST'A4S
k=0




Conditioning of matrix sector func

Fréchet derivative

Let A € C"™" be such that sect,(A) exists and the Newton
iterates X are convergent to sect,(A). Let

1 LR o
Yip1 = 5 ((p = =R (Z Xp—2 ka;> X,}"’) :

j=0
Yo=A0 X =A

Then the sequence Y/ tends to the Fréchet derivative
L(A, AA) of sectp(A): Iimk_,oo Yk = L(A, AA)

Matrix sign (p = 2) Kenney-Laub
Yier = 3(Yi = X7 VX )
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Summary

@ Real Schur algorithm for the matrix sector function was
proposed.

@ Some convergence regions of Newton's and Halley's
iterations were proven.

o Padé family for the matrix sector function was introduced.

e Conditioning and stability of the algorithms were
discussed.

@ Numerical experiments were presented:

e the commutativity condition was not well satisfied by
Halley in some cases,

e accuracy of Schur algorithm for A with multiple
eigenvalues was sometimes not good because of
inaccuracy in computed by MATLAB Schur decomposition
and ill conditioning.

Other results in PhD of Beata Laszkiewicz.




Thank you for your attention!
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