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The Gibbs Phenomenon
Occurs in the expansion of a piecewise smooth function in an
orthogonal series of smooth functions.
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Graphs of f (x)− fn(x), where n = 200, f (x) = I[− 1
2
, 1

2
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truncated Fourier/Chebyshev series of f .

Both poor local and poor global approximation:

I O (1) oscillations near each discontinuity.

I No uniform convergence of the approximation.
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Notable Examples

Spectral methods for PDEs

I Spectral methods converge spectrally (or even exponentially) fast

whenever the PDE has smooth (analytic) solution.

I Far less efficient for PDEs that develop discontinuities (shocks), e.g.

hyperbolic conservation laws.

Image and signal processing

I Known as the ringing artifact.

I In particular, Magnetic Resonance Imaging (MRI).

This leads naturally to the following question:

How can one recover high accuracy from the given expansion?
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A New Method
A fundamentally new approach. Based on the interpretation of the
Gibbs phenomenon as the result of a poor basis in which to
represent the function f .
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Left: Fourier series of f (x) = I[− 1
2
, 1

2
](x) sin(cos x). Right: Fourier series (black) and

the reconstruction using m = 25 (blue) and m = 50 (red) Fourier samples.

I Using only 50 Fourier samples, we obtain ≈ 14 digits of accuracy.

In fact, this method is just one example of a general framework for
solving the so-called sampling and reconstruction problem.
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The Sampling and Reconstruction Problem
Suppose that we have access to the fixed samples of an object f ,
(e.g. a signal/image), with respect to some orthonormal basis:

f̂j = 〈f , ψj〉, j = 1, 2, . . . .

I The sampling scheme is typically specified by some physical device.
I E.g. Fourier samples in MRI.

Many physical signals/images are poorly represented in terms of
the sampling basis {ψj}∞j=1.

I i.e. f̂j → 0 very slowly.

However, suppose we know that f can be better represented in a
new basis {φj}∞j=1.

I i.e. f =
∑∞

j=1 αjφj with αj → 0 rapidly.

This leads to the sampling and reconstruction problem:

How can one recover f in terms of {φj}∞j=1 from its given samples?
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Generalised Sampling

A new method for the sampling and reconstruction problem.

Benefits include:

I Numerical stability.

I Linear, and easy to implement.

I Optimal in the sense that the accuracy of the reconstruction is

predominantly determined by the reconstruction basis and not by

the nature of the sampling.
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Resolution of the Gibbs Phenomenon

The resolution of the Gibbs phenomenon is just one example of
this general framework.

The resulting method possesses

I numerical stability.

I root-exponential convergence in the number of given samples m.

I exponential convergence in the number of degrees of freedom

n = O
(√

m
)

in the final approximation.

I a computational complexity of O (nm).

Moreover, the method

I is optimally stable for this problem.

I often outperforms other methods in numerical examples.
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The Importance of Numerical Stability

Numerical stability is vital to avoid large output errors, due to

I round-off error.

I noise in the samples: f̂j → f̂j + εj .

I sampling errors: e.g. jitter in MRI machines.

I model error: in practice, we compute with some perturbation
f̃ of f , which may not be well represented in {φj}∞j=1, e.g.
shock capturing.
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Outline
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Hilbert Space Formulation
Let H be a separable Hilbert space over C with inner product 〈·, ·〉
and norm ‖·‖.

I Let ψ1, ψ2, . . . be sampling vectors that form an orthonormal basis

of H.

I Let Tn ⊆ H be a subspace of dimension n, the reconstruction space,

and φ1, . . . , φn a basis for Tn.

The Sampling and Reconstruction Problem

Given a subspace Tn ⊆ H and the first m samples f̂j = 〈f , ψj〉,
j = 1, . . . ,m, of f ∈ H, compute a reconstruction fn,m ∈ Tn.

I Naturally we want fn,m ≈ f to high accuracy.

I We also want numerical stability.

Key idea: allow the number of samples m to differ from the
number of degrees of freedom n in fn,m.

11 / 36



Hilbert Space Formulation
Let H be a separable Hilbert space over C with inner product 〈·, ·〉
and norm ‖·‖.

I Let ψ1, ψ2, . . . be sampling vectors that form an orthonormal basis

of H.

I Let Tn ⊆ H be a subspace of dimension n, the reconstruction space,

and φ1, . . . , φn a basis for Tn.

The Sampling and Reconstruction Problem

Given a subspace Tn ⊆ H and the first m samples f̂j = 〈f , ψj〉,
j = 1, . . . ,m, of f ∈ H, compute a reconstruction fn,m ∈ Tn.

I Naturally we want fn,m ≈ f to high accuracy.

I We also want numerical stability.

Key idea: allow the number of samples m to differ from the
number of degrees of freedom n in fn,m.

11 / 36



Best Possible Reconstruction and Generalised Sampling
The best (error minimising) approximation to f from Tn is the
orthogonal projection Qnf .

I Qnf is defined by the equations

〈Qnf , φ〉 = 〈f , φ〉, ∀φ ∈ Tn, Qnf ∈ Tn. (1)

I If we knew 〈f , φj〉, j = 1, . . . , n, then we could compute Qnf .

I However, we only have access to f̂j , j = 1, . . . ,m.

Instead, we let Pm : H→ Sm := span{ψ1, . . . , ψm} by

Pmg =
m∑
j=1

〈g , ψj〉ψj , g ∈ H,

and define fn,m by

〈Pmfn,m, φ〉 = 〈Pmf , φ〉, ∀φ ∈ Tn, fn,m ∈ Tn. (2)

Intuitive explanation: Pm → I strongly on H. Thus, for large m,
(2) resembles (1), and hence fn,m ≈ Qnf .
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Analysis of Generalised Sampling
Let Cn,m = inf {‖Pmφ‖ : φ ∈ Tn, ‖φ‖ = 1}.

I Key point: for fixed n, Cn,m → 1 as m→∞.

Theorem (BA, Hansen)

For each n ∈ N, there exists an m0 ∈ N such that fn,m exists and is
unique for all m ≥ m0, and satisfies the sharp bounds

‖f −Qnf ‖ ≤ ‖f − fn,m‖ ≤
1

Cn,m
‖f −Qnf ‖.

Specifically, m0 is the least m such that Cn,m > 0.

I B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the

resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to

appear), 2011.

I B. Adcock and A. C. Hansen, Sharp bounds and optimality for generalised

sampling in Hilbert spaces. In preparation, 2011.

13 / 36



Geometric Interpretation
The map f 7→ fn,m is precisely the oblique projection onto Tn along
[Pm(Tn)]⊥. Moreover,

Cn,m = cos θ,

where θ is the angle between the subspaces Tn and Pm(Tn).

Tn

Pm(Tn)
f

fn,m

[Pm(Tn)]⊥

Qnf

θ

0

I Tn and Pm(Tn) cannot be near-perpendicular for large m. Hence

fn,m is well-defined, and fn,m ≈ Qnf .
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Numerical Implementation
If fn,m =

∑n
j=1 αjφj , then we solve the overdetermined least

squares problem

Uα ≈ f̂ , where f̂ = (f̂1, . . . , f̂m), α = (α1, . . . , αn),

and U ∈ Cm×n has (j , k)th entry 〈φk , ψj〉.

The condition number κ(U) determines numerical stability:

Lemma (BA, Hansen)

If A is the Gram matrix for the vectors {φ1, . . . , φn} then

κ(U) ≤ 1

Cn,m

√
κ(A).

I If {φ1, . . . , φn} are orthonormal, then A = I , and hence stability.

I If m is also chosen so that (Cn,m)−1 is bounded, then the

computational cost in forming fn,m is O (nm).
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The Stable Sampling Rate
For a given n, we need m to be sufficiently large. To quantify this,
we define the stable sampling rate

Θ(n; θ) = min {m ∈ N : Cn,m > θ} , θ ∈ (0, 1).

For given n, setting m ≥ Θ(n; θ) ensures

I Existence and uniqueness of fn,m.

I Stability up to the choice of reconstruction basis: κ(U) ≤ 1
θ

√
κ(A).

I Quasi-optimality: ‖f − fn,m‖ ≤ 1
θ‖f −Qnf ‖.

The stable sampling rate is completely computable. Indeed,

Lemma (BA, Hansen)

Cn,m is precisely the minimum singular value of U.

I In many important cases, one can also derive analytic bounds.

This is a fundamentally new viewpoint to sampling.
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Generalised Sampling

Resolution of the Gibbs Phenomenon

Operator-Theoretic Techniques
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Locating Discontinuities

−1 1x1 x2 xl−1 xl

f (x)

Given {f̂j} (Fourier/orthogonal polynomial coefficients) it is first
necessary to locate x1, . . . , xl to high accuracy.

I Known as edge detection.
I E.g. concentration kernels (Gelb, Tadmor, Tanner,...).
I Typically nonlinear.

We consider the reconstruction step, and assume that x1, . . . , xl
have already been computed.

I However, edge detection is an important source of errors.
I Any reconstruction method must be robust w.r.t. such errors.
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Methods for Reconstruction
Filters/Mollifiers (Fejér, Vandeven, Gottlieb, Tadmor,...)

I Stable, and do not require singularity location step.

I However, high accuracy only in regions away from discontinuities.

I Based on interpreting the Gibbs phenomenon as noise polluting the

coefficients f̂j .

Spectral reprojection (Gottlieb, Shu, Gelb, Tanner,...)

I Exponentially convergent throughout the domain (in many cases).

I Widely used, but issues with both stability and convergence. Careful

selection of parameters required to avoid the Runge phenomenon.

I Based on the existence of a Gibbs complementary basis.

Inverse/Extrapolation methods (Boyd, Eckhoff, Fornberg,...)

I Exponentially convergent (in some cases), but typically exponentially

ill-conditioned. Also susceptible to the Runge phenomenon.

I Based on the particular structure of the Gibbs phenomenon.
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The Generalised Sampling Approach

Based on a different viewpoint: the Gibbs phenomenon is the
result of a poor basis in which to represent f .

Since f is piecewise analytic, its orthogonal projection Qnf onto

Tn =
{
φ : φ|[xr ,xr+1) ∈ Pnr , r = 0, . . . , l

}
, n = (n0, . . . , nl) ∈ Nl+1,

converges exponentially fast as n0, . . . , nl →∞.

We can now apply generalised sampling, and expect exponential
convergence and stability, provided m ≥ Θ(n; θ).

Key questions:

1. How do we select a basis φ1, . . . , φn∗ (n∗ = n0 + . . .+ nl) for Tn?

2. How does the stable sampling rate Θ(n; θ) behave?
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Choice of Piecewise Polynomial Basis
If A is the Gram matrix for {φ1, . . . , φn∗}, recall that

κ(U) ≤ 1

θ

√
κ(A).

Consider the Fourier case with no jumps.

I Legendre polynomials: A = I – perfect conditioning.

I Conversely, Chebyshev polynomials yield κ(A) = O (n).

I In general, if {φ1, . . . , φn} are Gegenbauer polynomials with

parameter λ > − 1
2 , then κ(A) = O

(
n|2λ−1|).

Perfect conditioning can be achieved with Gegenbauer polynomials
by specifying fn,m as follows:

〈Pmfn,m,Pmφ〉λ = 〈Pmf ,Pmφ〉λ, ∀φ ∈ Tn, fn,m ∈ Tn,

where 〈g , h〉λ =
∫ 1
−1 g(x)h(x)(1− x2)λ−

1
2 dx .

I This is based on a modification of generalised sampling that allows

one to sample and reconstruct in different Hilbert spaces.
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The Stable Sampling Rate

Theorem (BA, Hansen)

The stable sampling rate Θ(n; θ) satisfies

Θ(n; θ) = O
(
n2

1, . . . , n
2
d

)
.

In the case of Fourier samples, if cr = 1
2 (xr+1 − xr ) then

Θ(n; θ) ≤

⌈
1

2
+

2(π − 2)

π2(1− θ)

l∑
r=0

n2
r

cr

⌉
,

Θ(n; θ) ≤ 4

π2(1− θ)

l∑
r=0

n2
r

cr
+O (1) , n0, . . . , nl →∞.

Thus, m = O
(
n2

0, . . . , n
2
l

)
for stable, quasi-optimal recovery.

Hence root-exponential convergence in m.
I B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the

resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to

appear), 2010.
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Comparison of Bounds
These bounds (in blue and red) are also reasonably sharp:
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Is the scaling m = O
(
n2
)

optimal?

Theorem (Platte, Trefethen, Kuijlaars)

Under a number of assumptions, any stable method (linear or
nonlinear) for recovering an analytic function f from its values at
m equispaced nodes in [−1, 1] can converge at best
root-exponentially fast in m. In fact, any method with a
convergence rate of order ρ−m

τ
for some τ ∈ ( 1

2 , 1] and ρ > 1

must have a condition number of order Cm2τ−1
for some C > 1.

I The proof is based on certain extremal behaviour of polynomials

(Schönhage, Coppersmith & Rivlin, Rakhmanov,...).

This result also extends to reconstructions from Fourier samples (a
continuous analogue). Thus, generalised sampling is an optimal
stable method.

I B. Adcock and A. C. Hansen, Sharp bounds and optimality for generalised

sampling in Hilbert spaces. In preparation, 2011.
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Numerical Example I: Fourier Samples
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Left: f (x) = I[− 1
2
, 1

2
](x) sin(cos x). Right: Fourier series (black), generalised sampling

with m = 25, n0 = n2 = 5, n1 = 10 (blue) and m = 50, n0 = n2 = 7, n1 = 14 (red).
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Numerical Example II: Fourier Samples
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Left: f (x). Right: Fourier series (black), generalised sampling (blue) with m = 100,

n0 = . . . = n4 = 13 (blue) and m = 200, n0 = . . . = n4 = 18 (red).
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Numerical Example III: Legendre Polynomial Samples
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Left: f (x) = I[− 1
2
, 1

2
](x) sin(cos x). Right: Legendre polynomial expansion (black),

generalised sampling with m = 25, n0 = n2 = 5, n1 = 10 (blue) and m = 50,

n0 = n2 = 7, n1 = 14 (red).
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Numerical Comparison
Consider the function

f (x) =

{
2e2π(x+1)−1−eπ

eπ−1 x ∈ [−1,− 1
2 )

− sin( 2πx
3 + π

3 ) x ∈ [− 1
2 , 1] -1.0 -0.5 0.5 1.0
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Comparison of (a) generalised sampling (black) and (b) spectral reprojection (blue).
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Robustness I: Noise
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Top row: f (x). Bottom row: the error ‖f − fn,m‖ against m with noise at amplitudes

ε = 0, 10−12, 10−8, 10−4.
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Robustness II: Shock Capturing Errors
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Top row: f (x). Bottom row: the error ‖f − fn,m‖ against m with shock capturing

errors of magnitude ε = 0, 10−12, 10−8, 10−4.

I It can be shown that there is at worst linear drift in n =
√

m.
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Infinite-dimensional Formulation of Reconstruction
Let f̂ = {f̂j}∞j=1 be given and suppose that

f =
∞∑
j=1

αjφj .

The coefficients α = {αj}∞j=1 can be recovered exactly from f̂ via

Uα = f̂ ,

where

U =

 〈φ1, ψ1〉 〈φ2, ψ1〉 · · ·
〈φ1, ψ2〉 〈φ2, ψ2〉 · · ·

...
...

. . .

 .

Note that U : l2(N)→ l2(N) is bounded, invertible and unitary.

How do we discretise the equations Uα = f̂ ?

I B. Adcock and A. C. Hansen, A generalized sampling theorem for

reconstructions in arbitrary bases. Submitted, 2010.
32 / 36



Finite Sections of Infinite Matrices
Take the n × n leading submatrix of U, and solve

PnUPnα
[n] = Pn f̂ ,

where Pn : l2(N)→ span{e1, . . . , en} is the orthogonal projection.

Finite sections are very widely used (equivalent to consistent
reconstructions in sampling applications). However,

1. PnUPn need not be invertible for any n.

2. Even if (PnUPn)−1 exists, ‖(PnUPn)−1‖ may blow up as n→∞.

3. If Uα = f̂ and PnUPnα
[n] = Pn f̂ , then α[n] 9 α in general.

E.g. let ψj(x) = 1√
2
eijπx , φj(x) = (j + 1

2 )
1
2 Pj(x) and f (x) = x

1+16x2 .

n 25 50 100 200
‖(PnUPn)−1‖ 7.64e2 6.59e7 3.97e16 2.05e34

‖α− α[n]‖ 1.31e-1 4.56e0 6.15e2 8.74e3
‖α− Pnα‖ 1.10e-3 2.91e-6 1.23e-11 6.73e-23
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Uneven Sections
Replace the n × n square section by an m × n uneven section
PmUPn, and solve

PnU∗PmUPnα
[n,m] = PnU∗Pm f̂ .

Let fn,m =
∑m

j=1 α
[n,m]
j φj . This is precisely generalised sampling.

Intuitive explanation: For large m (and fixed n) we have

(PmUPn)∗PmUPn ≈ PnIPn,

where I : l2(N)→ l2(N) is the identity.

I Hence PmUPn inherits the unitary structure of U.

E.g. let ψj , φj and f be as before, and set n = d
√

8me:

n 25 50 100 200 400
‖(PmUPn)†‖ 4.3e0 4.86e0 4.53e0 4.63e0 4.38e0

‖α− α[n,m]‖ 1.01e-2 2.20e-3 2.50e-4 1.12e-5 4.12e-7
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Other Applications

1. Compressed sensing

I Suppose that f is sparse in {φj}∞j=1.

I Form the uneven section PmUPn, where m represents the range from

which samples are drawn, and subsample randomly from its rows.

I Allows one to extend finite-dimensional compressed sensing

techniques to infinite-dimensional problems.

2. Solving linear systems in infinite dimensions

I Suppose that Tx = y , where T : l2(N)→ l2(N) is bounded, but not

necessarily invertible, and consider inf{‖z‖lp(N) : Tz = y}, p ≥ 1.

I Replace this with inf{‖z‖lp(N) : PnTPkz = y} where k > n.

3. Ill-posed problems

4. Computing spectra and pseudospectra
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Conclusions

The sampling and reconstruction problem can be viewed as a
question of how to discretise certain infinite-dimensional operators.

I Careful selection of two discretisation parameters leads to structure

preservation and, in turn, good numerical behaviour.

The result is a fundamentally new approach to sampling and
reconstruction, with numerical stability playing a central role.

I The key idea is the (completely computable) stable sampling rate.

I Both sharp bounds and a geometric interpretation for the

reconstruction.

The application to orthogonal series leads to a new interpretation
and method for the Gibbs phenomenon and its removal.

I Yields a simple, effective and optimally stable method.
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