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The Gibbs Phenomenon

Occurs in the expansion of a piecewise smooth function in an
orthogonal series of smooth functions.
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Graphs of f(x) — fy(x), where n = 200, f(x) = I_1 ;](x) sin (cos x) and f,(x) is the
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truncated Fourier/Chebyshev series of f.

Both poor local and poor global approximation:
> O (1) oscillations near each discontinuity.

» No uniform convergence of the approximation.
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Notable Examples

Spectral methods for PDEs

> Spectral methods converge spectrally (or even exponentially) fast
whenever the PDE has smooth (analytic) solution.

> Far less efficient for PDEs that develop discontinuities (shocks), e.g.
hyperbolic conservation laws.

Image and signal processing
> Known as the ringing artifact.

> In particular, Magnetic Resonance Imaging (MRI).

This leads naturally to the following question:

How can one recover high accuracy from the given expansion?
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A New Method

A fundamentally new approach. Based on the interpretation of the
Gibbs phenomenon as the result of a poor basis in which to

represent the function f.
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Left: Fourier series of f(x) = I_1 l](x) sin(cos x). Right: Fourier series (black) and
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the reconstruction using m = 25 (blue) and m = 50 (red) Fourier samples.
> Using only 50 Fourier samples, we obtain ~ 14 digits of accuracy.

In fact, this method is just one example of a general framework for

solving the so-called sampling and reconstruction problem.
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The Sampling and Reconstruction Problem

Suppose that we have access to the fixed samples of an object f,
(e.g. a signal/image), with respect to some orthonormal basis:

F= (), j=1,2,....

» The sampling scheme is typically specified by some physical device.

> E.g. Fourier samples in MRI.
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The Sampling and Reconstruction Problem

Suppose that we have access to the fixed samples of an object f,
(e.g. a signal/image), with respect to some orthonormal basis:

F= (), j=1,2,....

» The sampling scheme is typically specified by some physical device.
> E.g. Fourier samples in MRI.

Many physical signals/images are poorly represented in terms of
the sampling basis {1;}7°;.

A

> ie. f; — 0 very slowly.
However, suppose we know that f can be better represented in a
new basis {¢;}7°;.

> e f =37 ;¢ with a; — 0 rapidly.

This leads to the sampling and reconstruction problem:

How can one recover f in terms of {¢j}j’i1 from its given samples?
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Generalised Sampling

A new method for the sampling and reconstruction problem.

Benefits include:
> Numerical stability.
» Linear, and easy to implement.

» Optimal in the sense that the accuracy of the reconstruction is
predominantly determined by the reconstruction basis and not by
the nature of the sampling.
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Resolution of the Gibbs Phenomenon

The resolution of the Gibbs phenomenon is just one example of
this general framework.

The resulting method possesses
> numerical stability.
> root-exponential convergence in the number of given samples m.
> exponential convergence in the number of degrees of freedom
n= O (y/m) in the final approximation.

> a computational complexity of O (nm).

Moreover, the method
> is optimally stable for this problem.

» often outperforms other methods in numerical examples.
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The Importance of Numerical Stability

Numerical stability is vital to avoid large output errors, due to

» round-off error.
> noise in the samples: lA‘J — ?j—l— €.
» sampling errors: e.g. jitter in MRl machines.

» model error: in practice, we compute with some perturbation
f of f, which may not be well represented in {¢;}°;, e.g.
shock capturing.
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Generalised Sampling
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Hilbert Space Formulation

Let H be a separable Hilbert space over C with inner product (-, -)
and norm ||-||.

> Let 1,17, ... be sampling vectors that form an orthonormal basis
of H.

» Let T, C H be a subspace of dimension n, the reconstruction space,
and ¢1,..., ¢, a basis for T,,.

The Sampling and Reconstruction Problem

Given a subspace T,, C H and the first m samples AJ = (f,¢j),
Jj=1,...,m, of f € H, compute a reconstruction f, ,, € Tp,.
> Naturally we want f, ,, = f to high accuracy.

> We also want numerical stability.
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Hilbert Space Formulation

Let H be a separable Hilbert space over C with inner product (-, -)
and norm ||-||.

> Let 1,17, ... be sampling vectors that form an orthonormal basis
of H.

» Let T, C H be a subspace of dimension n, the reconstruction space,
and ¢1,..., ¢, a basis for T,,.

The Sampling and Reconstruction Problem

A

Given a subspace T, C H and the first m samples f; = (f, ),
Jj=1,...,m, of f € H, compute a reconstruction f, ,, € Tp,.

> Naturally we want f, ,, = f to high accuracy.

> We also want numerical stability.

Key idea: allow the number of samples m to differ from the
number of degrees of freedom n in f, .
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Best Possible Reconstruction and Generalised Sampling
The best (error minimising) approximation to f from T, is the
orthogonal projection Q,f.

» Q,f is defined by the equations

(Qnf, @) = (f, ), Vo € T, Q,f €T, (1)
> If we knew (f,¢;), j=1,...,n, then we could compute Q,f.
» However, we only have access to ;A‘J j=1...,m.
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Best Possible Reconstruction and Generalised Sampling
The best (error minimising) approximation to f from T, is the
orthogonal projection Q,f.

» Q,f is defined by the equations

(Qnf, @) = (f, ), Vo € T, Q,f €T, (1)
> If we knew (f,¢;), j=1,...,n, then we could compute Q,f.
» However, we only have access to ;A‘J j=1...,m.

Instead, we let Py, : H — Sy, := span{¢1,...,¥m} by

m

ng = Z(&%WJJ; g € Ha

j=1
and define f, ,, by
(Pmfnm, ®) = (Pmf,¢), Yo € Th, fo.m € Th. (2)

Intuitive explanation: P, — Z strongly on H. Thus, for large m,
(2) resembles (1), and hence f, p, = Q,f.
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Analysis of Generalised Sampling
Let Com = inf{[|Pmoll : ¢ € Th, |6 =1}
» Key point: for fixed n, Cp ; — 1 as m — 0.

Theorem (BA, Hansen)

For each n € N, there exists an mg € N such that f, ,, exists and is
unique for all m > mq, and satisfies the sharp bounds

1
If = Qnfll < I = fomll < Z—IIf = Qnf].

n,m

Specifically, mg is the least m such that Cp, m > 0.

» B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the
resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to
appear), 2011.

»> B. Adcock and A. C. Hansen, Sharp bounds and optimality for generalised
sampling in Hilbert spaces. In preparation, 2011.
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Geometric Interpretation

The map f — f, m is precisely the oblique projection onto T, along
[Pm(T,)]-. Moreover,

Cn,m = cos b,
where 0 is the angle between the subspaces T, and P, (T,).

[pm(Tn)]L f Por(T)

Th

0 an fn,m

» T, and P,(T,) cannot be near-perpendicular for large m. Hence
fn,m is well-defined, and f, ,, = Q,f.
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Numerical Implementation

If fom = 2}7:1 a;j¢j, then we solve the overdetermined least

squares problem

Uam?,  where F= (R Fu), 0= (on,.. ).

and U € C™" has (j, k)™ entry (DK, Yj).
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Numerical Implementation

If fom = Zf:l a;j¢j, then we solve the overdetermined least
squares problem

Uam?,  where F= (R Fu), 0= (on,.. ).

and U € C™" has (j, k)™ entry (K, Vj).

The condition number x(U) determines numerical stability:

Lemma (BA, Hansen)

If A is the Gram matrix for the vectors {¢1,...,¢n} then
1
k(U) < k(A).
Cn,m
> If {¢1,...,0,} are orthonormal, then A =/, and hence stability.

» If mis also chosen so that (C, )" is bounded, then the
computational cost in forming f, , is O (nm).
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The Stable Sampling Rate
For a given n, we need m to be sufficiently large. To quantify this,
we define the stable sampling rate

©(n0) =min{meN:C,,, >0}, 6€(0,1).

For given n, setting m > ©(n; 0) ensures
> Existence and uniqueness of f, .
> Stability up to the choice of reconstruction basis: xk(U) < 5+/k(A).
» Quasi-optimality: ||f — fom|| < 5[|f — Qnf]|.
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The Stable Sampling Rate

For a given n, we need m to be sufficiently large. To quantify this,
we define the stable sampling rate

©(n0) =min{meN:C,,, >0}, 6€(0,1).

For given n, setting m > ©(n; 0) ensures
> Existence and uniqueness of f, .

> Stability up to the choice of reconstruction basis: xk(U) < 5+/k(A).
» Quasi-optimality: ||f — fom|| < 5[|f — Qnf]|.

The stable sampling rate is completely computable. Indeed,
Lemma (BA, Hansen)

Cn.m Is precisely the minimum singular value of U.

> In many important cases, one can also derive analytic bounds.

This is a fundamentally new viewpoint to sampling.
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Resolution of the Gibbs Phenomenon
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Locating Discontinuities

£

Given {13} (Fourier/orthogonal polynomial coefficients) it is first
necessary to locate xi, ..., x; to high accuracy.

> Known as edge detection.

> E.g. concentration kernels (Gelb, Tadmor, Tanner,...).

» Typically nonlinear.

We consider the reconstruction step, and assume that xi, ..., X
have already been computed.

» However, edge detection is an important source of errors.

» Any reconstruction method must be robust w.r.t. such errors.
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Methods for Reconstruction
Filters/Mollifiers (Fejér, Vandeven, Gottlieb, Tadmor,...)
» Stable, and do not require singularity location step.
» However, high accuracy only in regions away from discontinuities.
> Based on interpreting the Gibbs phenomenon as noise polluting the

coefficients .

Spectral reprojection (Gottlieb, Shu, Gelb, Tanner,...)
> Exponentially convergent throughout the domain (in many cases).

> Widely used, but issues with both stability and convergence. Careful
selection of parameters required to avoid the Runge phenomenon.

» Based on the existence of a Gibbs complementary basis.

Inverse/Extrapolation methods (Boyd, Eckhoff, Fornberg,...)

> Exponentially convergent (in some cases), but typically exponentially
ill-conditioned. Also susceptible to the Runge phenomenon.

» Based on the particular structure of the Gibbs phenomenon.
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The Generalised Sampling Approach

Based on a different viewpoint: the Gibbs phenomenon is the
result of a poor basis in which to represent f.

Since f is piecewise analytic, its orthogonal projection Q,f onto

: I+1
T, = {(b'(b‘[xrzxﬂrl) G]Pn,a rZO,...,/}, n:(no,...,n/) e N'* ,
converges exponentially fast as ng, ..., nj = oco.

We can now apply generalised sampling, and expect exponential
convergence and stability, provided m > ©(n; ).

Key questions:
1. How do we select a basis ¢1,...,¢, (n* =ng+ ...+ nj) for T,)?
2. How does the stable sampling rate ©(n; ) behave?
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Choice of Piecewise Polynomial Basis
If A'is the Gram matrix for {¢1, ..., dn}, recall that

K(U) < % =(A).

Consider the Fourier case with no jumps.
» Legendre polynomials: A = | — perfect conditioning.
> Conversely, Chebyshev polynomials yield k(A) = O (n).
> In general, if {¢1,...,d,} are Gegenbauer polynomials with
parameter A > —1, then x(A) = O (n/2*~1).

Perfect conditioning can be achieved with Gegenbauer polynomials
by specifying f, m as follows:

<,men,m77)m¢>)\ - <,me,’Pm¢>)\, V¢ S Tm fn,m S Tn,
where (g, h)\ = f_ll g(x)h(x)(1 — x2)*~2 dx.

» This is based on a modification of generalised sampling that allows
one to sample and reconstruct in different Hilbert spaces.
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The Stable Sampling Rate

Theorem (BA, Hansen)
The stable sampling rate ©(n; 0) satisfies

O(n;0) = O (ni,...,n3).
In the case of Fourier samples, if ¢, = %(X,H — X,) then

! n2

1 7r—2 p;
O(m0) < 2 Z—

I 2
4 ny
e(";9)57r2(1—9);:0c,+0(1)’ no, ..., Ny — oo.

Thus, m = O (n3,...,n?) for stable, quasi-optimal recovery.
Hence root-exponential convergence in m.
» B. Adcock and A. C. Hansen, Stable reconstructions in Hilbert spaces and the

resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal. (to

appear), 2010.
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Comparison of Bounds
These bounds (in blue and red) are also reasonably sharp:
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The quantity n=20(n; ) against n for 0 = % (left) and 0 = % (right).
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The quantity ©(n; §) against 0 for n = 20 (left) and n = 40 (right).
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Is the scaling m = O (n?) optimal?
Theorem (Platte, Trefethen, Kuijlaars)

Under a number of assumptions, any stable method (linear or
nonlinear) for recovering an analytic function f from its values at
m equispaced nodes in [—1,1] can converge at best
root-exponentially fast in m. In fact, any method with a
convergence rate of order p~™" for some T € (%, 1] and p>1
must have a condition number of order C™ " for some C > 1.

» The proof is based on certain extremal behaviour of polynomials
(Schdnhage, Coppersmith & Rivlin, Rakhmanov,...).

This result also extends to reconstructions from Fourier samples (a
continuous analogue). Thus, generalised sampling is an optimal
stable method.
» B. Adcock and A. C. Hansen, Sharp bounds and optimality for generalised
sampling in Hilbert spaces. In preparation, 2011.
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Numerical Example I: Fourier Samples
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Left: f(x) = I_1 ;](x) sin(cos x). Right: Fourier series (black), generalised sampling
272
with m =25, ng = np =5, n; = 10 (blue) and m =50, ng = np =7, n; = 14 (red).
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The quantity Cp,m against m, where ng = np = [v/m], m = 2ng.
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Numerical Example II: Fourier Samples

it e
T

Left: f(x). Right: Fourier series (black), generalised sampling (blue) with m = 100,
no = ...=ng =13 (blue) and m =200, ng = ... = ng = 18 (red).
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The quantity Cp,m against m, where ngp = ... =ng = | %m]
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Numerical Example Ill: Legendre Polynomial Samples
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Left: f(x) = I_1 l](x) sin(cos x). Right: Legendre polynomial expansion (black),
272

generalised sampling with m = 25, ng = n; =5, n; = 10 (blue) and m = 50,

ng =npy =7, n =14 (red).

500 1000 1500 2000

The quantity C,,m against m, where ngp = ny = [v/m], n1 = 2ng.
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Numerical Comparison
Consider the function Lo

500 1000 1500 2000

001
OO
108 cost | O(mz) | O(m?)
ot storage | O(mz) | O(m)
10°4 -

Error against m Cost and storage

Comparison of (a) generalised sampling (black) and (b) spectral reprojection (blue).
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Robustness |: Noise

~10 05 10

50 100 150 200 250

ng = np = ’V\/m,nl :2n0

Top row: f(x). Bottom row: the error ||f — fn, m|| against m with noise at amplitudes

€=0,10"12,10"8,10*.
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Robustness Il: Shock Capturing Errors
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Top row: f(x). Bottom row: the error ||f — f, m|| against m with shock capturing

errors of magnitude ¢ = 0,10 12, 1078,10 4.

» |t can be shown that there is at worst linear drift in n = /m.
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Operator-Theoretic Techniques
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Infinite-dimensional Formulation of Reconstruction
Let 7 = {?J}j’il be given and suppose that

oo
f= Z ;.
j=1

The coefficients v = {a;}72; can be recovered exactly from f via
Ua = f,

where

(P1,91) (P2,¢1)
U= | (¢1,¢2) (¢2,%2)

Note that U : /?(N) — /2(N) is bounded, invertible and unitary.
How do we discretise the equations Ua = 7

» B. Adcock and A. C. Hansen, A generalized sampling theorem for
reconstructions in arbitrary bases. Submitted, 2010.
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Finite Sections of Infinite Matrices
Take the n x n leading submatrix of U, and solve

P,UP, ! = P,

where P, : >(N) — span{es, ..., e,} is the orthogonal projection.

Finite sections are very widely used (equivalent to consistent
reconstructions in sampling applications). However,
1. P,UP, need not be invertible for any n.
2. Even if (P,UP,)™! exists, ||(P,UP,)~1| may blow up as n — ooc.
3. If Ua = f and P,UP,al"l = P,f, then ol - « in general.

E.g. let ¢;(x) = keuﬂxl ¢i(x) = (i + 3)IPi(x) and F(x) = %5

n 25 50 100 200

(P, UP,)7Y| | 7.64e2 | 6.59e7 | 3.97el6 | 2.05e34
la—olT|| [ 1.31e-1 | 456e0 | 6.15e2 | 8.74e3
la —Pyal| | 1.10e-3 | 2.91e-6 | 1.23e-11 | 6.73e-23
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Uneven Sections

Replace the n X n square section by an m X n uneven section
P, UP,, and solve

PaU* PrUP ™™ = P U* P, f.

Let fom = ij 1 J[n m]gZ)J This is precisely generalised sampling.

Intuitive explanation: For large m (and fixed n) we have
(PmUPL)*PmUP, = PpIP,,
where | : [(N) — /?(N) is the identity.

» Hence P,,UP, inherits the unitary structure of U.

E.g. let ¢;, ¢; and f be as before, and set n = [v/8m]:

n 25 50 100 200 400
[(PnUP,)T|| | 43¢0 | 4.86e0 | 4.53¢0 | 4.63e0 | 4.38e0
oo — ™™ [ 1.01e-2 | 2.20e-3 | 2.50e-4 | 1.12e-5 | 4.12e-7

34/36



Other Applications

1. Compressed sensing
> Suppose that f is sparse in {¢;}7°;.

» Form the uneven section P,,UP,, where m represents the range from
which samples are drawn, and subsample randomly from its rows.

> Allows one to extend finite-dimensional compressed sensing
techniques to infinite-dimensional problems.

2. Solving linear systems in infinite dimensions

» Suppose that Tx =y, where T : [>(N) — /?(N) is bounded, but not
necessarily invertible, and consider inf{||z|oa) : Tz =y}, p > 1.

> Replace this with inf{||z||;»(n) : PnTPxz = y} where k > n.

3. lll-posed problems

4. Computing spectra and pseudospectra
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Conclusions

The sampling and reconstruction problem can be viewed as a
question of how to discretise certain infinite-dimensional operators.

» Careful selection of two discretisation parameters leads to structure
preservation and, in turn, good numerical behaviour.

The result is a fundamentally new approach to sampling and
reconstruction, with numerical stability playing a central role.

> The key idea is the (completely computable) stable sampling rate.

» Both sharp bounds and a geometric interpretation for the
reconstruction.

The application to orthogonal series leads to a new interpretation
and method for the Gibbs phenomenon and its removal.

> Yields a simple, effective and optimally stable method.
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