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Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

Consider

d,m ∈ N, T ∈ (0,∞) and a probability space (Ω,F ,P) with a
normal filtration (Ft)t∈[0,T ],

an (Ft)t∈[0,T ]-Brownian motion W : [0, T ]× Ω → Rm,

continuous functions µ : Rd → Rd , σ : Rd → Rd×m and

an F0/B(Rd)-measurable ξ : Ω → R with E∥ξ∥p <∞∀ p ∈ [1,∞).

Let X : [0, T ]× Ω → R be an up to modifications unique adapted
stochastic process with continuous sample paths satisfying

Xt = ξ +

∫ t

0
µ(Xs) ds +

∫ t

0
σ(Xs) dWs

P-a.s. for all t ∈ [0, T ]. Short form:

dXt = µ(Xt) dt + σ(Xt) dWt , X0 = ξ, t ∈ [0, T ].
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Consider the SDE
dXt = µ(Xt) dt + σ(Xt) dWt (1)

with X0 = ξ and t ∈ [0, T ].

The goal of this talk is to solve (1).

A central motivation for solving (1) comes from financial engineering,
see, e.g., Lewis (2000), Glasserman (2004) and Higham (2004).

Since explicit solutions are typically not available, we want to solve (1)
approximatively: Computational Stochastics.

Problem (1) is not contained in the standard literature in computational
stochastics, e.g.,

Kloeden & Platen (1992) and
Milstein (1995)

since µ and σ are not assumed to be globally Lipschitz continuous.
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.. Examples of SDEs

Black-Scholes model; µ̄, σ̄, x0 ∈ (0,∞):

dXt = µ̄ Xt dt + σ̄ Xt dWt , X0 = x0, t ∈ [0, T ].

Lewis stochastic volatility model; µ̄, µ̂, µ̃, σ̃ ∈ (0,∞) appropriate:

dX
(1)
t = µ̄ X

(1)
t dt +

(
X
(2)
t

)1
2

X
(1)
t dW

(1)
t

dX
(2)
t = X

(2)
t

(
µ̂− µ̃ X

(2)
t

)
dt + σ̃

(
X
(2)
t

)3
2

dW
(2)
t

with X0 = x0 ∈ (0,∞)2 and t ∈ [0, T ].

An SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1].
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Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

The explicit Euler scheme Y N
n : Ω → Rd , n ∈ {0, 1, . . . ,N}, N ∈ N, is

given by Y N
0 = ξ and

Y N
n+1 = Y N

n +
T

N
· µ

(
Y N

n

)
+ σ

(
Y N

n

) (
W (n+1)T

N

− W nT
N

)
for all n ∈ {0, 1, . . . ,N − 1}, N ∈ N.
.
Theorem (Maruyama 1955; Kloeden and Platen 1992)
..

......

Let µ and σ be globally Lipschitz continuous. Then there exists a real number
C ∈ [0,∞) such that(

E
[ ∥∥XT − Y N

N

∥∥2
])1

2

≤ C · N− 1
2

for all N ∈ N.

Convergence of Euler’s method is well understood in the Lipschitz case.
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Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

Convergence of Euler’s method

lim
N→∞

E
[ ∥∥XT − Y N

N

∥∥2
]
= 0, lim

N→∞

∣∣∣E[∥XT∥2
]
− E

[
∥Y N

N ∥2
]∣∣∣ = 0

for SDEs with superlinearly growing coefficients such as

an SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

remained an open problem.
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Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

Gyöngy (1998) established pathwise convergence, i.e.

lim
N→∞

∥∥XT − Y N
N

∥∥ = 0 P-a.s..

Higham, Mao and Stuart (2002) showed a conditional result: If Euler’s
method has bounded moments

sup
N∈N

E
[

sup
0≤n≤N

∥∥Y N
n

∥∥(2+ε)
]
< ∞

for some ε > 0, then Euler’s method converges

lim
N→∞

E
[ ∥∥XT − Y N

N

∥∥2
]
= 0, lim

N→∞

∣∣∣E[∥XT∥2
]
− E

[
∥Y N

N ∥2
]∣∣∣ = 0.

“In general, it is not clear when such moment bounds can be expected
to hold for explicit methods with f , g ∈ C1.“
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.
Theorem (Hutzenthaler, J & Kloeden 2009, 2011)
..

......

Let d = m = 1, let µ, σ ∈ C1, let P
[
σ(ξ) ̸= 0

]
> 0 and let α, c > 1 be

such that
|µ(x)|+ |σ(x)| ≥ |x|α

c

for all |x| ≥ c. If the exact solution of the SDE satisfies E
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.. Examples of SDEs

Divergence of Euler’s method

lim
N→∞

E
[ ∣∣XT − Y N

N

∣∣2
]
= ∞, lim

N→∞

∣∣∣E[(XT )
2
]
− E

[(
Y N

N

)2
]∣∣∣ = ∞

holds for:

A SDE with a cubic drift and additive noise:

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1].

Variance process in the Lewis stochastic volatility model:

dXt = Xt

(
µ̂− µ̃ Xt

)
dt + σ̃ (Xt)

3
2 dWt , X0 = x0, t ∈ [0, T ].
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.. Some ideas in the divergence proof of Euler’s method

Fix large N ∈ N and consider

dXt = −X 3
t dt, X0 = ξ = N, t ∈ [0, 1].

The well known instability of Euler’s method then gives

Y N
0 =N positive,

Y N
1 = Y N

0 − 1
N (Y N

0 )
3 = N − N2 ≈−N2 negative,

Y N
2 = Y N

1 − 1
N (Y N

1 )
3 ≈ −N2 + N5 ≈ N5 >N4 positive,

...

|Y N
k |' N(2k ) ∀ k ∈ {0, 1, 2, . . . ,N}

and, in particular, |YN
N| ' N(2N) (at least double exponential growth in N).
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Now consider the SDE

dXt = −X 3
t dt + dWt , X0 = 0, t ∈ [0, 1]

and define “events of instabilities”

ΩN :=

{
ω ∈ Ω: sup

1≤k≤N−1

∣∣∣W k+1
N
(ω)− W k

N
(ω)

∣∣∣ ≤ 1, W 1
N
(ω)− W0(ω) ≥ 3N

}
for all N ∈ N. Estimates on the previous slide then indicate that∣∣YN

N(ω)
∣∣ ≥ N(2(N−1)) (2)

for all ω ∈ ΩN , N ∈ N. Moreover,

e−cN3 ≤ P
[
ΩN

]
≤ e−c̃N3

(3)

for all N ∈ N with c, c̃ ∈ (0,∞) appropriate. Combining (2) and (3) shows

E
[
|Y N

N |
]
≥ P

[
ΩN

]
· N(2(N−1)) ≥ e−cN3 · N(2(N−1)) N→∞−−−→∞.

This gives lim
N→∞

E
[
|XT − Y N

N |2
]
=∞ , lim

N→∞

∣∣E[|XT |2
]
− E

[
|Y N

N |2
]∣∣ =∞.
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and define “events of instabilities”

ΩN :=

{
ω ∈ Ω: sup

1≤k≤N−1

∣∣∣W k+1
N
(ω)− W k

N
(ω)

∣∣∣ ≤ 1, W 1
N
(ω)− W0(ω) ≥ 3N

}
for all N ∈ N. Estimates on the previous slide then indicate that∣∣YN

N(ω)
∣∣ ≥ N(2(N−1)) (2)

for all ω ∈ ΩN , N ∈ N. Moreover,

e−cN3 ≤ P
[
ΩN

]
≤ e−c̃N3

(3)

for all N ∈ N with c, c̃ ∈ (0,∞) appropriate. Combining (2) and (3) shows

E
[
|Y N

N |
]
≥ P

[
ΩN

]
· N(2(N−1)) ≥ e−cN3 · N(2(N−1)) N→∞−−−→∞.

This gives lim
N→∞

E
[
|XT − Y N

N |2
]
=∞ , lim

N→∞

∣∣E[|XT |2
]
− E

[
|Y N

N |2
]∣∣ =∞.
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. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

.. Implicitness is a way to overcome this problem

Let µ be globally one-sided Lipschitz continuous, i.e., there exists a real
number c ∈ [0,∞) such that

⟨x − y, µ(x)− µ(y)⟩ ≤ c ∥x − y∥2

for all x, y ∈ Rd .
The implicit Euler scheme Ỹ N

n : Ω → R, n ∈ {0, 1, . . . ,N}, is given by
Ỹ N

0 = ξ and

Ỹ N
n+1 = Ỹ N

n +
T

N
· µ

(
Ỹ N

n+1

)
+ σ

(
Ỹ N

n

) (
W (n+1)T

N

− W nT
N

)
for all n ∈ {0, 1, . . . ,N − 1} and all large N ∈ N. For N ∈ N large
enough, the implicit Euler method is well defined.
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Ỹ N
n+1 = Ỹ N
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Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

.. Convergence of the implicit Euler scheme

.
Theorem (Higham, Mao & Stuart 2002)
..

......

Let σ be globally Lipschitz continuous and let µ be globally one-sided
Lipschitz continuous with an at most polynomially growing continuous
derivative. Then there exists a real number C ∈ [0,∞) such that(

E
[ ∥∥XT − Ỹ N

N

∥∥2
])1

2

≤ C · N− 1
2

for all N ∈ N.

The implicit Euler scheme requires additional computational effort for
computing the zero of a nonlinear equation in each time step.
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Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

Nonlinear SDEs: The implicit Euler method converges but simulations for it on
a computer require additional computational effort. The explicit Euler
method is explicit and easy to simulate but

lim
N→∞

E
[ ∣∣XT − Y N

N

∣∣2 ] = ∞ (4)

Higham (2010) reviews this divergence and a long time divergence result and
states “. . . it is clear that any other explicit numerical method can suffer
the same fate. This brings us to a key point. Unlike in the deterministic ODE
case, for non-linear SDEs, we introduce implicitness not in the hope of
improving efficiency by allowing larger stepsize, but in the hope of obtaining a
method that satisfies the fundamental requirements of accuracy and
stability.” This motivated us to ask:

Is there any explicit numerical method which does not suffer from (4)?

Is there any explicit and easily simulatable numerical method which
converges strongly for SDEs with superlinearly growing coefficients?

Answer: Yes
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given by Ȳ N
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n +
T
N · µ(Ȳ N
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N · ∥µ(Ȳ N
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) (
W (n+1)T
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− W nT
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for all n ∈ {0, 1, . . . ,N − 1}, N ∈ N.
.
Theorem (Hutzenthaler, J & Kloeden 2010)
..

......

Let σ be globally Lipschitz continuous and let µ be globally one-sided
Lipschitz continuous with an at most polynomially growing continuous
derivative. Then there exists a real number C ∈ [0,∞) such that(

E
[ ∥∥XT − Ȳ N

N

∥∥2
])1
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≤ C · N− 1
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0 = ξ and
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n )∥
+ σ

(
Ȳ N

n

) (
W (n+1)T

N

− W nT
N

)
for all n ∈ {0, 1, . . . ,N − 1}, N ∈ N.
.
Theorem (Hutzenthaler, J & Kloeden 2010)
..

......

Let σ be globally Lipschitz continuous and let µ be globally one-sided
Lipschitz continuous with an at most polynomially growing continuous
derivative. Then there exists a real number C ∈ [0,∞) such that(

E
[ ∥∥XT − Ȳ N

N

∥∥2
])1

2

≤ C · N− 1
2

for all N ∈ N.

Arnulf Jentzen Nonlinear SDEs



. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

The tamed Euler scheme Ȳ N
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Ȳ N
n+1 = Ȳ N

n +
T
N · µ(Ȳ N
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0 = ξ and
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.. Some related results in the literature

More results on implicit methods in Hu (1996), Szpruch (2010), Mao
and Szpruch (2011), . . .

In the setting of the Langevin equation (dXt = −∇U(Xt) dt + dWt ):

A similar approximation step in Roberts and Tweedie (1996) as a
proposal for the Metropolis-Hastings method (MALTA).
Bou-Rabee, Hairer and Vanden-Eijnden (2010) shows exponential
moment bounds and convergence in a weak sense (total variation
distance) of a “patched” MALA.

Milstein, Platen and Schurz (1998) considers a related class of
numerical methods in the global Lipschitz case (BIM).

In the setting of nonlinear SDEs considered here, the tamed Euler method, is
- to the best of our knowledge - the first explicit numerical approximation
method that has been shown to converge strongly to the exact solution of the
SDE.
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.. Some ideas in the convergence proof of the tamed Euler scheme

In the case σ(x) = 0 for all x ∈ R we have
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for all n ∈ {0, 1, . . . ,N − 1} and therefore
∥∥YN

N

∥∥ ≤ ∥ξ∥+ N for all
N ∈ N (at most linear growth in N).

Recall |YN
N| ' N(2N) (at least double exponential growth in N) for the ODE

dXt = −X 3
t dt, X0 = ξ = N, t ∈ [0, 1].
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n )

1 + T
N · ∥µ(Ȳ N
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n )∥

≤
∥∥Ȳ N
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∥∥Ȳ N

n

∥∥+ 1

for all n ∈ {0, 1, . . . ,N − 1} and therefore
∥∥YN

N

∥∥ ≤ ∥ξ∥+ N for all
N ∈ N (at most linear growth in N).

Recall |YN
N| ' N(2N) (at least double exponential growth in N) for the ODE

dXt = −X 3
t dt, X0 = ξ = N, t ∈ [0, 1].

Arnulf Jentzen Nonlinear SDEs



. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

.. Some ideas in the convergence proof of the tamed Euler scheme

In the case σ(x) = 0 for all x ∈ R we have

∥∥Ȳ N
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n )∥

∥∥∥∥ ≤
∥∥Ȳ N
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∥∥Ȳ N
n+1

∥∥ =

∥∥∥∥Ȳ N
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n )

1 + T
N · ∥µ(Ȳ N
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n )∥
1 + T

N · ∥µ(Ȳ N
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∥∥Ȳ N

n

∥∥+ 1

for all n ∈ {0, 1, . . . ,N − 1} and therefore
∥∥YN

N

∥∥ ≤ ∥ξ∥+ N for all
N ∈ N (at most linear growth in N).

Recall |YN
N| ' N(2N) (at least double exponential growth in N) for the ODE

dXt = −X 3
t dt, X0 = ξ = N, t ∈ [0, 1].

Arnulf Jentzen Nonlinear SDEs



. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

.. Some ideas in the convergence proof of the tamed Euler scheme

In the case σ(x) = 0 for all x ∈ R we have

∥∥Ȳ N
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The tamed Euler method may still behave badly on appropriate events of
instabilities! However, on such events it behaves (at most linear growth in
N) not as bad as the explicit Euler method (at least double exponential
growth in N). This and some other arguments yield

sup
N∈N

E

[
sup

0≤n≤N

∥∥Ȳ N
n

∥∥p

]
< ∞ (5)

for all p ∈ [1,∞). Moreover, note that

Ȳ N
n+1 = Ȳ N

n +
T

N
· µ

(
Ȳ N

n

)
+ σ

(
Ȳ N

n

) (
W (n+1)T

N

− W nT
N

)
−

(
T

N

)2 µ(Ȳ N
n ) · ∥µ(Ȳ N

n )∥
1 + T

N · ∥µ(Ȳ N
n )∥

(6)

for all n ∈ {0, 1, . . . ,N − 1}, N ∈ N, i.e., tamed Euler method coincides
with explicit Euler method up to terms of second order. Using ideas in
Higham, Mao & Stuart (2002), (5) and (6) yields lim

N→∞
E[∥XT − Ȳ N

N ∥2] =0.
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n )∥
1 + T

N · ∥µ(Ȳ N
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Ȳ N
n+1 = Ȳ N
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n +
T

N
· µ

(
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n )∥
1 + T

N · ∥µ(Ȳ N
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Ȳ N

n

) (
W (n+1)T

N

− W nT
N

)
−

(
T

N

)2 µ(Ȳ N
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Ȳ N

n

)
+ σ

(
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∥∥Ȳ N
n

∥∥p

]
< ∞ (5)

for all p ∈ [1,∞). Moreover, note that
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Ȳ N
n+1 = Ȳ N
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∥∥Ȳ N
n

∥∥p

]
< ∞ (5)

for all p ∈ [1,∞). Moreover, note that
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n ) · ∥µ(Ȳ N
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N ∥2] =0.

Arnulf Jentzen Nonlinear SDEs



. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

The tamed Euler method may still behave badly on appropriate events of
instabilities! However, on such events it behaves (at most linear growth in
N) not as bad as the explicit Euler method (at least double exponential
growth in N). This and some other arguments yield

sup
N∈N

E

[
sup

0≤n≤N

∥∥Ȳ N
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n )∥

(6)

for all n ∈ {0, 1, . . . ,N − 1}, N ∈ N, i.e., tamed Euler method coincides
with explicit Euler method up to terms of second order. Using ideas in
Higham, Mao & Stuart (2002), (5) and (6) yields lim

N→∞
E[∥XT − Ȳ N
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n +
T

N
· µ

(
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N ∥2] =0.

Arnulf Jentzen Nonlinear SDEs



. . . . . .

Stochastic differential equations (SDEs)
Convergence for SDEs with globally Lipschitz continuous coefficients

Convergence for SDEs with superlinearly growing coefficients

The tamed Euler method may still behave badly on appropriate events of
instabilities! However, on such events it behaves (at most linear growth in
N) not as bad as the explicit Euler method (at least double exponential
growth in N). This and some other arguments yield

sup
N∈N

E

[
sup

0≤n≤N

∥∥Ȳ N
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Ȳ N
n+1 = Ȳ N
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.. dXt = −X 5
t dt + Xt dWt , X0 = 1, t ∈ [0, 1].
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.. Summary and message of the talk

For the nonlinear SDEs considered here:

The explicit Euler scheme, does, in general, not converge strongly to
the exact solution of the SDE (see Hutzenthaler, J & Kloeden 2009).

This is in fundamentral constrast to the convergence of the explicit Euler
method to the exact solution in the deterministic case.

There exist explicit numerical approximation methods which
overcome the lack of convergence of the explicit Euler method and
which converge strongly to the exact solution of the SDE (see
Hutzenthaler, J & Kloeden 2010). For convergence, there is thus no
need of implicitness.
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Many thanks for your attention!
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