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The low-rank picture



The low-rank picture

Given a matrix X, compute its low-rank approximation. |

e Why low rank?
- Like sparsity, low rank is a popular parsimonious structure.
- Unlike sparsity, it can have global support.

e Why not SVD?
- Assume that X is available.
- Does not work if (some of) the entries of X are unavailable.

e Typical application: matrix equations and matrix completion.



The low-rank picture

Define the set
Si(k,n)={X: X eR™" X=XT, X =0, rank(X) = k}.
Our low-rank solver in [V./Vandewalle '10] is based on

m)}n f(X) subject to X € S;(k, n). (1)

Key points:
e Exploit smoothness of Sy (k, n) as a Riemannian manifold.
e Solve (1) using Riemannian optimization.

e Make the algorithm efficient: precondition the Hessian.



The Lyapunov equation



Matrix equations

e Matrix equations: Lyapunov, Sylvester, Riccati

Abound in Hy-control, model reduction by balanced
truncation, stability analysis [Moore '81], [Antoulas '05],
[Benner/Mehrmann/Sorensen ’05], [Meerbergen/Spence '10], e

e The generalized symmetric Lyapunov equation:
AXMT + MXAT = C

Given A, M, C € R™" solve for unknown matrix X € R"*"
- Assume symmetry: A= AT M=MT C=CT = X=XT
- Assume coercivity: AM>=0,C>0=X >0

e Matrix X is not directly available without first solving the
Lyapunov equation.



Large-scale matrix equations

Matrix equations applied to large-scale problems, e.g. PDEs
e FEM discretized system A and mass M matrix
e rhs (load) matrix C = bbT, b € R"™¥ke,

A X MT M X AT = C

Main problem

sparse A, M is O(n) <«  solving dense X is O(n?) memory
and O(n3) flops [Bartels/Stewart '72]

~= 50 n > 1000 is problematic



Low-rank approximation
Under reasonable conditions, we have the low-rank phenomenon:
the singular values of X decay exponentially fast.

~~ Decay depends on rank rhs C, spectrum of A — AM,
see [Penzl ’OO], [Antoulas/Sorenson/Zhou '02], [Grasedyck ’04], -

This means that X has low numerical rank k for a precision e.

~> A has conditioning x(A): k = O(log(1/¢)log(x(A))

T truncate to rank k >
x=LY] L2 J[Y X =

Main problem

Compute the “best” rank-k approximation X
efficiently in O(nk€).




Existing methods

n < O(10%) Schur form [Bartels/Stewart '72]
Hammarling, Jonsson, Kagstrom, Sorensen, Zhou,
Quintana-Orti, van de Geijn, Granat, Kressner, ...
store A~1  Sign function iteration [Roberts '71]
Beavers, Denman, Byers, Benner, Quintana-Orti,
Grasedyck, Bauer, ...
apply (A—ol)~* ADI [Wachspress '88]

Penzl, Li, White, Gugercin, Simoncini, Hodel, Saak, ...

apply A Krylov subspace [Saad '90]
Hu, Reichel, Jaimoukha, Kasenally, Hochbruck,
Starke, Simoncini, Kressner, . ..

levels A;  Multilevel methods [Rosen-Wang '95]
Penzl, Grasedyck, Hackbusch, V., Vandewalle, ...

... many other solvers and hybrid combinations



Krylov methods

Krylov subspace methods for AX + XAT = bbT
e construct a Krylov basis V/
V) = span{A’b} with i=0...kori=—k...k
e Galerkin condition: solve small Lyapunov equation for x
(VI AV x4 (V] AV T = E,
e Approximation is Xy = Vjxx VkT with x; such that the energy

norm is minimized for the basis Vj ® V/

Drawbacks (and similar for most other methods):
e Compute low-rank solutions as a (deliberate) side-effect
e Factors V are not very good: only x; optimized
e Slow convergence ~ high-rank factors ~~ needs truncation

Proposed solution: improve factors by optimizing V) directly. J




Optimization on the manifold of low-rank matrices



QOutline of the method

The method we proposed in [V./Vandewalle '10] will

e minimize the energy norm,
e over the manifold of positive semidefinite (PSD) matrices of
fixed rank k.

min f:S4(k,n) = R, X — tr(XAXM) — tr(XC),
st. Si(k,n)={X: X eR™" X >0, rank(X) = k}.

Scalability constraint for each step
e all operations,
e all data structures

must be O(nk€), ¢ small.



The objective function

The objective function
f:Si(k,n) = R, X — tr(XAXM) — tr(XC),

reflects a weighted norm of the error.

Proof:

e The vec(-) operator gives the isomorphism R™ ~ R"™*" a5
tr(XTY) = vec(X) T vec(Y).
e AXM+ MXA = C is a linear system of size n’:

Lvec(X) =vec(C) with L=A M+ M A.



The objective function

e Take L-norm of the error E = X — Xi,:

| vec(E) || = vec(E)" £ vec(E)
=vec(E)T(A®@ M+ M ® A) vec(E)
= 2tr(EMEA).

e Work out the error E:

[vec(E) [|7 = 2tr[(X = X )M(X — X.)A]
= 2tr(XMXA) — 2tr(XC) + 2tr(X, MX,A)
= 2f(X) + 2tr(X, MX,A).

Minimizing f(X) <= minimizing || vec(E(X)) ||z ]

Does || vec(E) ||z make sense? If A, M = 0, then L > 0.



Riemannian optimization

How do we optimize over

Si(k,n) = {X: X €R™" X + 0, rank(X) = k}?

Main obstacle: S, (k, n) is not a vector space since

AX,Y €Sp(k,n) = X+Y ¢S, (k n).

In general, rank constraints are very difficult. Existing approaches
e Factoring X = YY'T (non-local optimizers YQ)
e SDP relaxation (drop rank constraint)

are not suitable.



Optimization on manifolds

Problem: How to optimize on the curved space Sy (k, n)?

St(k,n)isa C™
smooth manifold.

Manifold property is well known in [algebraic geometry] and
[Helmke/Moore '94].



Riemannian algorithms

The idea of exploiting the geometry of manifolds turns up in
several areas: geometric integration, Lie group methods, ...

Riemannian optimization: several “classic” algorithms for
unconstrained optimization have been adapted to smooth
manifolds
e Steepest descent, conjugate gradients (CG), Newton
o See: [Luenberger '72], [Gabay '82], [Shub '86], [Smith '93],
[Udriste '94], [Helmke/Moore '94], [Mahony '94],
[Owren/Welfert '96], [Edelman/Arias/Smith '98], ...,
[Adler et.al. '02], [Absil/Mahony/Sepulchre '08], ...

Relies on a few basic principles from differential geometry.

We need new derivations for the geometry of Si(k, n).



Riemannian optimization?

Classic unconstrained optimization: find min f on R”

Level curves of f

- :

&) =

R"

At the current iterate x

@ Determine a step p
e.g. steepest descent, conjugate gradient, newton direction

® Compute a better point x;y = x+p
robust with line-search or trust region

© Loop: x + x4



Optimization on manifolds

e What are the steps p ?

steepest descent: grad f(x)

Newton direction: second-order model with Hess f(x)
e Howtoget x, =x+p?

every iterate x,y € Sy (k,n) but x + y ¢ Si(k, n)



Optimization on manifolds

Property: S, (k,n) is locally Euclidean = tangent space

TS, (k. n) ﬁ%sz
oy

A2

AN

Properties of the tangent space T,.S. (k, n):
e Contains tangent vectors
4(0) = £ with a curve 7(t) on Sy (k, n)
e Linear space: £ +n € T, S4(k,n) for all £,n € T S4(k,n)
e We can go back to the manifold by retracting, e.g., projecting
retraction Ry is a smooth map T,Sy(k,n) — Sy(k,n)



Optimization on manifolds

Result: Standard unconstrained optimization

At the current iterate x in the tangent space T,Si(k,n):

@ Determine a step & € T, Sy (k,n)
steps are based on the Riemannian gradient and Hessian

® Compute a better point x; = Ry(§)
© Loop: x < x4

Optimize f., the pullback of f through T.Sy(k,n):

fo: TuSy(k,n) = R, € foR,.




The embedded geometry of Sy (k, n)



S.(k, n) as an embedded submanifold

Elements of S, (k,n): X = VDV as EVD,

o e

X=v VL][O of VI

] . D e RF*¥ diagonal.

Tangent space at X € Sy (k, n),

S Cchvr
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T.Si(k,n)=[V V] { ] S =S8T e RF*k C e Rkxk

The Euclidean metric (-, ) restricted to TS+ (k, n)

(& m)x = tr(an)'



Retraction

Retraction: orthogonal projection onto a non-convex set

Ry : T S4(k,n) = Sy (k,n)
€ P3+(k7n)(X +&) =argmin{||X +&—Z|g: Z € St(k,n)}.

In [V./Vandewalle '10] we showed:
e Locally, well-defined and C*°.
e Since rank(X + &) = 2k, can be computed in O(nk?).

e Second-order approximation of the geodesic with expansion
Rx(&) = X + &+ PL() XT PR + O([I¢]1°)

Useful for deriving the Riemannian Hessian ...



Riemannian gradient

The Newton step £ is the minimizer of the second-order model
1
mi(€) = f(Xic) + (grad £(Xk), €) x, + 5 (Hess F(Xi)[E]. €) x,

e The Euclidean metric (-,-) on each TxSy(k, n):

(& myx = tr(¢n).
e The Riemannian gradient of f is the vector grad f such that

grad f(X)
T T 70T = _ DF(X)Ie].
[grad F(X)] ~ 28 MaXeeTusS (k) il =1 (X)E]

e Gradient is the direction of steepest ascent w.r.t. (-, -)x.



Riemannian Hessian

The Newton step & is the minimizer of the second-order model

me(€) = F(Xe) + (grad F(Xe), E)x, + 5 (Hess F(XIE], Ex,

e The Riemannian Hessian of f is the unique linear and
symmetric mapping Hess f

Hess f : TxSi(k,n) — TxS+(k,n),

such that
d2
(Hess f(X)[€], &) x = f(Rx(t§)).

T de2
dt t=0

e Valid because Rx is a second-order appr. to geodesic!



Second-order model

Applied to f(X) = tr(XAXM) — tr(XC), we obtained analytical
expressions for

e the gradient of f(X)
grad f(X) = Pr(R), R:=AXM + MXA - C,

with Pr(Z) := PyZPy + Py ZPy + Py ZPy; the orthogonal
projection onto TxS+(k, n).

e the Hessian as matrix vector product
Hess £(X)[€] = Pr(AEM+MEA)+PE(RPE(€)XT+XTPE(£)R)

with P2(Z) := Py ZPy + Py ZPy,

~~ second-order model can be evaluated in O(nk?) flops.



Trust-Region Newton on the manifold



RLyap
RLyap: final algorithm to solve for low-rank approximation of X.

e Choose! a rank k, minimize

min _tr(XAXM) — tr(XC).
X€S+(k,n)

by the Riemannian Trust-Region (RTR) method of
[Absil /Baker/Gallivan '07].

o Key step: solve Newton system
my : Tx, Sy(k,n) = R,
€ F(X) + (Brad F(Xi),€) + o (Hess FXOIEL )
with truncated PCG to obtain step

Nk = arg minm (&)  s.t. ||€]] < Ag.

!perform an outer loop to get the minimum rank for a desired residual



Experimental results for RTR

Superlinear convergence of TR Newton
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Test problem: 1D Laplace with n = 1000, ranks k = 5,10, 15, 20.



Experimental results for RTR

Relative error of low-rank approximations for different ranks
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Comparing truncated SVD (o), min fg (o),
CFADI?(5,20,10) (x), CFADI*(10,50,25) (o), and KPIK? (o).
Test problem: RAIL benchmark [Benner/Saak '04] with n = 1357.

21Penz| '99] [Li/White '04]  2[Simoncini '07]



Preconditioning



Preconditioning

RTR uses (truncated) CG to solve the Newton system.

e Too many iterations for PDEs.
Example RTR for 2D Laplace, k = 15, tol. gradient = 1071°:

n 1502 2002 2502 3002 3502 4002 450° 5002

Nouter 46 44 49 44 43 44 56 48
S Mimmer 1913 2173 2984 3158 4076 4185 5375 5622
max Minner 414 5290 624 731 757 858 1004 1080

e Can we precondition CG?

The Riemannian Hessian is a modified Euclidean Hessian:
Hx = Px (A® M+ M ® A) Px + PR(X' ® R+ R e X1)P§.

L

e Neglect curvature ~» precondition with Px L Px.
o PxLPx is the (first-order) Gauss—Newton model of f(X) on
S+(k, n), cfr. [Adler/Dedieu/Margulies/Martens/Shub '02].



Preconditiong with Gauss—Newton

Does it reduce the number of iterations?

e Observed to be mesh-independent.

e Same 2D Laplace example:

prec. | 150 200% 250° 300% 3502

Nouter 46 44 49 44 43 44 56 48
none > Minner 1913 2173 2984 3158 4076 4185 5375 5622
max Mnner 414 529 624 731 757 858 1004 1080

Nouter 39 40 42 46 47 48 47 49

PyLPy | > Ninner 83 83 91 94 96 101 88 93

maxX Ninner 14 13 15 13 13 13 12 10

4002 4502 5007

Is it faster?

e Can be solved analytically [V./Vandewalle '10] for M = I.
e Assuming (A+ M)~1is O(n), total cost is O(nk?) ~ AMG.

e Gauss—Newton as solver is not efficient (not small residual).



Numerical results for RLyap

Performance of the Riemannian optimization approach is
comparable with the state-of-the-art, yet more general.

RLyap compared with CFADI [Penzl '99],[Li/White '04] and KPIK
[Simoncini '07] for 2D Laplace, rank one rhs.

PCG with AMG
RLyap ADI Krylov
o [ 08
n = 10002 t;r:i S-) 113 312 1;2
n = 15002 :!:E S-) 44112 81; 32;1

Tol. on rel. residual = 107%; (A + \/)~! solved by PCG+AMG.



Numerical results for RLyap

When the r.h.s. C is not of low rank, RLyap can be more efficient.

e Laplace; full matrix C, rank k approximated Cj.

solver RLyap CF-ADI RLyap CF-ADI RLyap
rhs C C15 C15 C30 C30
n=40000 | time (s.) 70.3 (38.7) 48.9 111.2 61.6
7T=1e—6 rank X 23 35 25 49 27

residual | 9.87e—7 2.67e—6 9.30e—7 8.6le—7 9.86e—7
n = 80000 time (s.) 169.7  (103.1) 116.8  (232.1) 128.4
7 =1e—6 rank X 25 35 25 50 25
residual | 9.89e—7 2.68e—6 9.8le—7 2.98e—6 9.90e—7
n=160000 || time (s.) 176.8 139.5 104.7 300.9 125.5
7 =5e-5 rank X 12 33 12 48 12
residual | 1.44e—5 3.57e—5 3.35e—5 3.47e—5 1.44e-5

e RLyap can use a matrix-free C, other methods can not.



Thank you for your attention



Second-order model

Accuracy of models with different Hessians
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Figure: Relative error of the linear and quadratic models. The triangles
indicate the second and third order convergence of the error.

Optimization problem is non-convex ~» robustify Newton by TR!



