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MotivationMotivation

The construction of a steady-state optimisation framework
gradient-based (deterministic)
constrained 
for large-scale systems
including a few degrees of freedom compared with dependent variables

Typical situation in engineering design problems

using steady-state, iterative simulators
computationally efficient for large-scale non-linear problems  

Wraps around existing (e.g. commercial/black-box) simulators
Computationally efficient

Based on model reduction technology

Extend the optimisation schemes designed for dynamic simulators*

*Luna-Ortiz, E. and C. Theodoropoulos (2005) Multiscale Modeling & Simulation 4(2): 691-708. 
*C. Theodoropoulos and Luna-Ortiz (2006) in Model reduction and coarse-graining approaches for multiscale phenomena, p.535-560.
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The optimisation problemThe optimisation problem

The algorithm presented here:
deals with the optimisation problem:

min f(x)    
s.t. G(x) = 0,

H(x) ≤ 0  and  
xL ≤ x ≤ xU

where x: xT = [uT zT], is the joint vector of:
the dependent (u) and 
the independent (z) variables:

An input/output simulator is used for the solution of G(x) = 0
A formula for the calculation of H(x) need not be explicitly provided as well
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The reduced Hessian methodThe reduced Hessian method

Evaluate f, f, G, G

Calculate the bases Z, Y:   Z =  - (xGT)-1 zGT Y =   I
I               0

Calculate the reduced Hessian, BR = ZT B Z 
and search direction: py = - (GTY)G

Solve the QP subproblem:  
min (ZTf + ZTBY py)T pZ*+ ½ pZ

TBRpZ
s.t. ZT(xL - x) ≤ pZ ≤ ZT(xU - x) 

Calculate the Lagrange multipliers, λ:
(YTBYpy + YTBZpz + YTf) λ = - ΥΤf

Update solution: x = x + (Y py +Z pZ)

ConvergenceEND

Initial guess:
x0, B0 = I

This method:
decomposes the search space in two 

subspaces, with bases Z & Y
Z spans the tangent space of (xG)T

It employs the solution of a QP 
subproblem in every iteration

The QP is based on a reduced 
Hessian, of size equal to the number of 
degrees of freedom

If steady states are calculated in 
every step, py = 0

Problems
Expensive for large problems
Based on handling of large matrices
Requires inverting the Jacobian in 

each step

*e.g.: Biegler, et al. (1995). Siam Journal on Optimization 5(2): 314-347
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Model Reduction TechnologyModel Reduction Technology
The separation of scales is exploited for model reduction*

Nominally, two clusters of eigenvalues 
in the eigenspectrum

There is a gap in between
The rightmost eigenvalues are the 
domimant ones

We can work merely on the low-
dimensional dominant subspace

Good approximation of the system 
Jacobians (H) and Hessians (BR) involved in this formulation

low-dimensional
projections of the original ones onto the dominant subspace (P)
this subspace can be identified using subspace iterations

*Meerbergen, K., et al,Bit, 1994. 34(3): p. 409-423; Shroff, G.M. and H.B. Keller, Siam Journal on Numerical Analysis, 1993. 30(4): p. 1099-1120. 

Cluster of right-most 
(dominant) eigenvalues

Bulk of eigenvalues

Eigenspectrum of a steady-state model
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The proposed algorithmThe proposed algorithm
The algorithm presented:

Is model reduction-based

Employs a 2-step projection
1. onto the dominant system 

subspace
2. onto the subspace of the 

degrees of freedom

Only low-dimensional Jacobians
(H) and Hessians (BR) are used

Those are calculated through 
numerical perturbations

A QP subproblem is solved in 
every iteration, using projection of f

Steady state simulation
Evaluate x, f and f

Calculate the basis Z*: Z* = - ZH-1ZTzG
I

Calculate the reduced Hessian, BR = Z*T B Z*  

Solve the QP subproblem:  
min(Z*Tf) pZ*+pZ*TBRpZ*    s.t. (xL - x) ≤ Z*pZ*≤ (xU - x) 

Calculate the Lagrange multipliers, φ: HTφ = - Z*TΥΤf

Update solution: x = x + Z* pZ*

ConvergenceEND

Initial guess:
x0, B0

Model reduction
Compute Z and H
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An improved versionAn improved version
The reordering:

Implemented to reduce 
computational cost

Lagrange multipliers are 
calculated before updating BR

No need to update the basis after 
the QP step

Subspace iterations are used only 
once per iteration

Is based on assumption: 
the basis for the dominant 

subspace after QP step good 
approximation of the basis for the 
feasible point of the next iteration

This incurs loss of accuracy
For the first iterations we use the 

reordered version of the algorithm
Near the optimum point we revert 

to the standard algorithm
Computational gain: ~10-20%

Steady state simulation
Evaluate x, f and f

Calculate the basis Z*: Z* = - ZH-1ZTzG
I

Calculate the reduced Hessian, BR = Z*T B Z*  

Solve the QP subproblem:  
min(Z*Tf) pZ*+pZ*TBRpZ*    s.t. (xL - x) ≤ Z*pZ*≤ (xU - x) 

Calculate the Lagrange multipliers, φ: HTφ = - Z*TΥΤf

Update solution: x = x + Z* pZ*

ConvergenceEND

Initial guess:
x0, B0

Model reduction
Compute Z and H
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ProjectionsProjections
First Projection: 

P the low-dimensional dominant subspace 
identified adaptively through subspace iterations
Let Z an low-dimensional orthonormal basis for this subspace
Z is extended to include the subspace of the independent variables:
Zext =   Z  0 

0   I

So the 1st projection is onto the dominant subspace and is orthogonal

Second Projection:
Onto the subspace of degrees of freedom

Also low-dimensional but non-orthogonal
The corresponding basis Zr now only based on H

Zr =  - H-1 ZTzG
I
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The 2The 2--step projectionstep projection

The basis for the overall projection is Z* = ZextZr =             
Z   0  - H-1 ZTzG =   - Z H-1 ZT zG
0    I             I I

where H is the projection of the Jacobian 
onto the dominant subspace P: H = ZT uGT Z

So reduced Hessian is now computed:
BR = Z*TBZ* = Zr

T(Zext
TBZext)Zr

Computation of the low-dimensional Hessian 
based on numerical directional perturbations to the direction of Z

Lagrange multipliers are also needed to calculate B
In reduced Hessian calculated by:   λ = - (uG)-1 uf , λ  N

where N is the number of dependent variables
Here projection of λ onto P:  φ = Zλ = -(HT)-1 ZTuf φ  m

where m is the size of the basis Z
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Handling of inequality constraintsHandling of inequality constraints

The inequality constraints are aggregated using a KS function*
For a set of inequality constraints, hj(x) ≤ 0, the KS function is:

The 2 forms are equivalent, the second achieving better numerical robustness
2 important properties of KS: 

So the optimisation problem becomes:

The objective function can be modified to include the KS function**
Eliminating all inequality constrains

In the proposed optimisation scheme
The inequality constraints are aggregated following the KS approach
The projection of the KS function is added to the objective function
Hence the extra computational cost is minimal

*   C.G.Raspanti, et al, Computers and Chemical Engineering 24 (2000) 2193-2209
** G.C.Itle et al, Computers and Chemical Engineering 28 (2004) 291-302.

   j jj j
KS(x, ) max h (x) , 0 and lim KS(x, ) max h (x)

ρ
ρ ρ ρ
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jmin f(x) s.t. h (x) 0 min f(x) s.t. KS(x, ) 0ρ  
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Case study I: The tubular reactorCase study I: The tubular reactor

The model of the reactor consists of two PDEs*. At s.s.:

where x1: dimensionless reactant concentration and 
x2: dimensionless temperature,

Boundary conditions:

Parameter values
Le = 1.0, Pe1 = Pe2 = 5.0, γ = 20.0, β = 1.50, C  = 12.0, Da = 1.0

Discretized in 250 nodes using Finite Differences producing 500 unknowns

A → B

*Jensen, K. F. and W. H. Ray (1982). Chemical Engineering Science 37(2): 199-222

2
1 1 2

12
1 2

2
2 2 2 2w

2 12
2 2

x x x1 Da(1 x )exp 0
Pe y y 1 x

x x x x1 1 Cx Da(1 x )exp 0
LePe y Le y Le Le 1 x Le

  
        

   
          

1 2 1 2
1 1 2 2

x x x xPe x 0, Pe x 0 at y 0 and 0, 0 at y 1
y y y y

   
       

   
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Optimisation  with 1 degree of freedomOptimisation  with 1 degree of freedom

Problem statement 

Dominant subspace size: m=10 

Results
Convergence in 9 iterations
Optimal Da = 0.1139 
Optimal dimensionless T = 6.055 

Only equality constraints
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Convergence dataConvergence data
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Reactor with 3 degrees of freedomReactor with 3 degrees of freedom

Tubular reactor with 3 cooling zones

In this case the x2w is given by:

the 3 wall temperatures (x2w) are the independent variables

Problem Formulation

Numerical Details
Discretization using Finite Differences over a mesh of 250 nodes

500 dependent variables (dimensionless concentrations and temperatures)
3 independent ones (dimensionless temperatures of the cooling zones)

w w

3

2 j 1 j 2 j 1 2 3
j 1

1 2x (y) [H(y y ) H(y y )]x y , y , y 13 3


      





k,x,x
,F,F.t.s

xmax

kk

exitx jw
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ResultsResults
Size of the dominant subspace: m=10
Convergence in 10 iterations
Optimal values found:

x2w,1 = 2.483, x2w,2 = 0.5254, x2w,3 = 4.000.
Optimal x1|exit = 0.99868

Dimensionless concentration profile
for the optimum x2w

Dimensionless temperature profile
for the optimum x2w

0

0,2

0,4

0,6

0,8

1

1,2

0,00 0,20 0,40 0,60 0,80 1,00

Dimensionless length (y)

D
im

en
si

on
le

ss
  c

on
ce

nt
ra

tio
n 

(x
1)

0
1
2
3
4
5
6
7
8
9

0,00 0,20 0,40 0,60 0,80 1,00

Dimensionless length (y)

D
im

en
si

on
le

ss
  t

em
pe

ra
tu

re
 (x

2)

Reactor Temperature
Wall Temperature



Th
e 

U
ni

ve
rs

ity
of

 M
an

ch
es

te
r

Convergence dataConvergence data
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Optimisation including inequality constraintsOptimisation including inequality constraints

Problem Statement (1DOF)              Problem Statement (3DOFs)

Dominant subspace size: m=10 for both cases

Implementation
The inequality constraints were treated using the KS approach. 
Scaled variables are defined:
A vector function for the nonlinear inequality constraints is defined:

The KS function can now be computed: 
The equivalent optimisation problem solved, is:

2
1max

w j
exitx
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j j jj
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Results for 1 Results for 1 dofdof case studycase study

Objective 

Dominant subspace size: m=10 
The inequality constraints were treated 

using the KS approach (Case B).

Results
Convergence in 9 iterations

12 if inequality constraints are considered
The constraints are active and met
Optimal Da found:

Case A: 0.1139 Case B: 0.1114
Optimal dimensionless temperatures:

Case A: 6.055 Case B: 5.092
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Results for 3 Results for 3 dofdof case studycase study

12 iterations for convergence
10 iterations for the equality constraints 

case
The constraints are active and met
Optimal values found:

x2w,1 = 1.7915, x2w,2 = 0, x2w,3 = 0.
Optimal x1|exit = 0.9932

0

0.2

0.4

0.6

0.8

1

1.2

0.00 0.20 0.40 0.60 0.80 1.00

Dimensionless length (y)

Di
m

en
si

on
le

ss
  c

on
ce

nt
ra

tio
n 

(x
1)

Only equality constraints
Optimal with all constrains

-2

0

2

4

6

8

10

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Di me nsi onl e ss l e ngt h ( y )

Only equality constraints
Inequality constraints
Optimal w ith all constrains
Cooling Zone Tempereture

Dimensionless concentration profile
for the optimum x2w

Dimensionless temperature profile
for the optimum x2w

-2.00E+00

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

1 3 5 7 9 11

Iteration

||Z
*p

Z*
||

Convergence curve



Th
e 

U
ni

ve
rs

ity
of

 M
an

ch
es

te
r

Case study II: The Case study II: The counterflowcounterflow jet reactorjet reactor

Problem statement:
maximize the yield of AsH w.r.t. the velocity of the upper stream

s.t. the momentum and energy balances are satisfied
This implies:

maximal decomposition of the tert-butylarsine (TBA)
minimal production of the toxic by-product arsine (AsH3) 

*Safvi, S.A. and T.J. Mountziaris, AIChE Journal, 1994. 40(9): p. 1535-1548.

xTBA=0.001, xN2
=0.999

T=300K

xN2
=1. T=990K, VLJ=0.1cm/s

p=0.1bar

Schematic of the 
conceptual reactor

Formulation of the model of the counterflow jet reactor

Carrier Gas
+

Reactant
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The blackThe black--box codebox code

The model for the reactor was set up using MPSalsa*

State-of-the-art massively parallel CFD code 
developed at SANDIA National Laboratories

Implements the Finite Element Method
Unstructured meshes
Inexact Newton with iterative linear solvers (GMRES, CG, etc.)

MPSalsa was used by our optimisation scheme as black-box
The model of the counter flow jet reactor 

consists of 19040 dependent variables:
temperatures, 
concentrations,  
pressures and 
velocities

1 degree of freedom (the velocity of the upper stream)

* Shadid J, Hutchinson S, Hennigan G, Moffat H, Devine K, Salinger AG, Parallel Computing 1997. 23: 1307-1325
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ResultsResults

m=12 
The proposed algorithm converged in 9 iterations
The optimal inlet velocity found was -0.8193cm/s
Optimal yield of AsH: 80.34%
Convergence behaviour:

could possibly be enhanced by implementing line searches
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Variable profiles at the optimumVariable profiles at the optimum

Temperature at the optimum VUS

x-velocity profile at the optimum VUS

xAsH3
profile at the optimum VUS

y-velocity profile at the optimum VUS

xTBA profile at the optimum VUS xAsH profile at the optimum VUS



Th
e 

U
ni

ve
rs

ity
of

 M
an

ch
es

te
r

ConclusionsConclusions
Optimisation framework for large scale steady-state problems

Including both equality and inequality constraints
With few degrees of freedom 
Using input/output iterative steady state solvers 

It employs a 2-step projection scheme:
Firstly onto the low-dimensional dominant subspace of the system
Secondly onto the subspace of the few degrees of freedom

Only low-order Jacobians and Hessians need to be computed 
Calculated through few directional numerical perturbations,  
Good scaling-up with problem size
Significant speedup and lower memory requirements 

in comparison to methods that utilize full Jacobians
An improved, less expensive version, has also been developed
This algorithm has been applied for the optimisation of:

a tubular reactor where an exothermic reaction A → B takes place
a counter flow jet reactor for the decomposition of TBA

Using a state-of-the art FEM code based on iterative linear algebra solvers
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