The Painlevé Paradox *slip and stick with impact as a hybrid system*

Alan Champneys, Arne Nordmark (KTH) & Harry Dankowicz (UIUC)

Engineering Mathematics Dept, University of Bristol

Motivation

di Bernardo, Budd, C. & Kowalczyk (2008) Springer book General theory of piecewise smooth hybrid systems, e.g.

Impacting systems e.g. bouncing ball

Filippov systems e.g. Coulomb friction oscillators

and study via discontinuity-induced bifurcation but what if have Filippov + Impact?

1. Lagrangian mechanics with impact and friction

Contents

- 1. Lagrangian mechanics with impact and friction
- Just 2. Unfolding the impact phase
 - impact law via new time-scaling
 - discontinuity induced bifurcation

Contents

- 1. Lagrangian mechanics with impact and friction
- 2. Unfolding the impact phase
 - impact law via new time-scaling
 - discontinuity induced bifurcation
- 3. Painlevé paradoxes
 - unfolding via smoothing and taking the limit
 - a. to impact or lift off at end of stick?
 - b. to transition to stick or to reverse chatter?

Contents

- 1. Lagrangian mechanics with impact and friction
- Junifolding the impact phase
 - impact law via new time-scaling
 - discontinuity induced bifurcation
- 3. Painlevé paradoxes
 - unfolding via smoothing and taking the limit
 - a. to impact or lift off at end of stick?
 - b. to transition to stick or to reverse chatter?
- 4. Conclusion

1. A hybrid Lagrangian systems

● $q \in \mathbb{R}^n$, with rigid contact in 2D + Coulomb friction

$$M(q,t) \ddot{q} = f(q,\dot{q},t) + \lambda_T c_u^T(q,t) + \lambda_N c_v^T(q,t),$$

- Scalar constraint $y \ge 0$, $y \in \mathbb{R}$ normal distance; $\lambda_N \ge 0$, $\lambda_T \in \mathbb{R}$ normal and tangential forces;
- Coulomb friction, $|\lambda_T| \le \mu \lambda_N$, $\lambda_T = -\text{sign}(u)\mu \lambda_N$ if $u \ne 0$
- e.g. rod & table Painlevé 1905, Brogliato et al.

Project Lagrangian onto u and v directions:

$$\dot{u} = a \left(q, \dot{q}, t \right) + \lambda_T A \left(q, t \right) + \lambda_N B \left(q, t \right),$$

$$\dot{v} = b \left(q, \dot{q}, t \right) + \lambda_T B \left(q, t \right) + \lambda_N C \left(q, t \right),$$

 $A = c_u \cdot M^{-1} \cdot c_u^T, \ B = c_u \cdot M^{-1} \cdot c_v^T, \quad C = c_v \cdot M^{-1} \cdot c_v^T,$

● positive definite $M \Rightarrow A > 0$ C > 0, $AC - B^2 > 0$

- Special case B = 0 ⇒ "independent" normal and tangential motion ⇒ can use Newtonian restitution $v \rightarrow -rv$ at impact (well posed)
- what if $B \neq 0$?, e.g. for rod example (l = 2, m = 2): $A = 1 + 3 \sin^2 \theta, B = 3 \sin 2\theta, C = 1 + 3 \cos^2 \theta$

4 modes of sustained motion

free flight: y > 0. No contact forces:

$$(\lambda_T, \lambda_N) = (0, 0).$$

positive/negative slip: y = 0, v = 0, $\lambda_N > 0$, $u \neq 0$. Full friction $\lambda_T = -\text{sign}(u)\mu\lambda_N$.

$$(\lambda_T, \lambda_N) = \frac{b}{C - \operatorname{sign}(u)\mu B}(\operatorname{sign}(u)\mu, -1).$$

stick: y = 0, v = 0, $\lambda_N > 0$, u = 0, $|\lambda_T| < \mu \lambda_N$.

$$(\lambda_T, \lambda_N) = \frac{1}{AC - B^2} (bB - aC, aB - bA)$$

Friction cone for stick

2. Impacts

- **Def:** impact phase infinitesimal time intervals in which λ_N and λ_T are impulses (distributions)
- key idea: rescale $\tau = t/\varepsilon$, $\Lambda_{N,T} = \varepsilon \lambda_{N,T} = O(1)$ and let $\varepsilon \to 0$.
- impact-phase dynamics: q' = 0 and

$$u' = A\Lambda_T + B\Lambda_N, \qquad v' = B\Lambda_T + C\Lambda_N$$

(A, B, C are constant during impact since q' = 0.

• integrating $I_{N,T} = \int_{\text{impact}} \Lambda_{N,T} d\tau$ gives: $(I_T, I_N) = \frac{1}{AC - B^2} (C\Delta u - B\Delta v, A\Delta v - B\Delta u).$ Change in \dot{q} is then: $\Delta \dot{q} = M^{-1} (c_u^T I_T + c_v^T I_N)$

But how to compute Δu , Δv ?

$$u' = A\Lambda_T + B\Lambda_N, \quad v' = B\Lambda_T + C\Lambda_N,$$

 \Rightarrow 3 modes of impulsive motion:

impulsive positive slip: u > 0. Full friction $\lambda_T = -\mu \lambda_N$. impulsive negative slip: u < 0. Full friction $\lambda_T = \mu \lambda_N$. impulsive stick: u = 0, $|\lambda_T| < \mu \lambda_N$. Only possible if $|B| < \mu A$. \Rightarrow For all modes: $u' = k_u \lambda_N$, $v' = k_v \lambda_N$ where

$$(k_u, k_v) = (k_u^+, k_v^+) = (B - \mu A, C - \mu B) \text{ for pos. slip}$$
$$(k_u, k_v) = (k_u^-, k_v^-) = (B + \mu A, C + \mu B) \text{ for neg. slip}$$
$$(k_u, k_v) = (k_u^0, k_v^0) = (0, \frac{AC - B^2}{A}) \text{ for stick}$$

When is the impact finished?

3 possibilities :

- **1. Newtonian coefficient of restitution** Relate post-impact velocities to pre-impact: $v_1 = -rv_0$
- 2. Poisson coefficient of restitution (Glocker) Relate normal impulses during compression and restitution: $I_r = -rI_c$
- 3. Energetic coefficient of restitution (Stronge) Relate normal-force work during compression and restitution: $W_r = -r^2 W_c$

If impact phase has a sinlge mode \Rightarrow all 3 agree. But (Stewart) 1 & 2 may increase kinetic energy for r < 1. Hence we use 3 & derive explicit formulae (cf. Stronge)

Impulsive motion follows straight lines

Expressions for the impact law

Mapping \mathbf{g}_I Two segments, one in compression and one in restitution

$$u_{1} = u_{0} - (1+r) \frac{k_{u}}{k_{v}} v_{0}$$
$$v_{1} = -rv_{0}$$

Mapping g_{II} Three segments, one in compression and two in restitution

$$u_{1} = \frac{k'_{u}}{k'_{v}} \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0} + \sqrt{\left(1 - \frac{k'_{v}}{k_{v}}\right) \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0}\right)^{2} + r^{2} \frac{k'_{v}}{k_{v}} v_{0}^{2}} \right)$$

$$v_{1} = \sqrt{\left(1 - \frac{k'_{v}}{k_{v}}\right) \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0}\right)^{2} + r^{2} \frac{k'_{v}}{k_{v}} v_{0}^{2}}{k_{v}^{2}} \frac{1}{k_{v}^{2}} \frac{1}{k_{v}^{2$$

$$u_{1} = \frac{k'_{u}}{k'_{v}} \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0} + r \sqrt{\left(1 - \frac{k'_{v}}{k_{v}}\right) \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0}\right)^{2} + \frac{k'_{v}}{k_{v}} v_{0}^{2}} \right)$$
$$v_{1} = r \sqrt{\left(1 - \frac{k'_{v}}{k_{v}}\right) \left(\frac{k_{v}}{k_{u}} u_{0} - v_{0}\right)^{2} + \frac{k'_{v}}{k_{v}} v_{0}^{2}}$$

Dependence on A, B, C and μ

discontinuity-induced bifurcation

- dynamics cross region boundary as parameters vary
- hybrid flow map can be C^1 (no bifurcation) or C^0 (jump in multipliers)
- e.g. loss of period-one impacting periodic orbit

rod example with Van-der-pol type forcing: $S_x = -k_1(x - u_{dr}t) - c_1(u - u_{dr})$ $S_y = -k_2(y - y_0) - c_2(y - y_0)^2 - y_1^2)v R = -k_3(\theta - \theta_0) - c_3\dot{\theta}$

3. Ambiguities during sustained motion

To to simulate as a hybrid system, need to resolve:

- A. Painlevé paradox for slip If y = 0, v = 0, b > 0 and $C \mu B < 0$, u > 0 (or $C + \mu B < 0$, u < 0), then motion could continue with
 - Sustained free flight
 - Sustained positive (negative) slip
 - An impact with zero initial normal velocity
- B. Painlevé paradox for stick lf y = 0, v = 0, u = 0, b > 0, $|bB - aC| < \mu(aB - bA)$ and $C - \mu B < 0$, (or $C + \mu B < 0$), then motion could continue with
 - Sustained free flight
 - Sustained stick

Show consistency via smoothing

- Introduce constitutive relation $\lambda_N(y, v)$ that is "stiff", "restoring", and "dissipative".
- Case A slip (WLOG positive slip),

$$\dot{y} = v, \quad \dot{v} = b + (C - \mu B)\lambda_N(y, v).$$

 $b > 0, C - \mu B < 0 \Rightarrow$ large negative stiffness, \Rightarrow slipping will never occur, must immediately lift off (y > 0) or take impact (y < 0)

Solution Case B stick $\dot{v} = \frac{(bA-aB)+(AC-B^2)\lambda_N(y,v)}{A}$ ⇒ always large positive "stiffness" hence vertical motion is asymptotically stable (evenifies > 0)

Ambiguities at mode transitions

Sustained motion is consistent BUT what about transitions

• Case a. approach to the Painlevé boundary $(C - \mu B = 0)$ during (positive) slip.

previous analysis shows: can't actually reach $C - \mu B = 0$, so what happens instead?

Case b. transitions into stick or chatter

Def: chattering (also known as zeno-ness) is accumulation of impacts. No contradiction if accumulate in forwards time. But can get reverse chatter.

a. Unfolding $C - \mu B \rightarrow 0$ while slipping

cf. Genôt & Brogliato

• Rescale time $t = (C - \mu B)s \Rightarrow$

$$\frac{d}{ds} \left(\begin{array}{c} C - \mu B \\ b \end{array} \right) = \left(\begin{array}{c} \alpha_1 & 0 \\ \alpha_2 & \alpha_3 \end{array} \right) \left(\begin{array}{c} C - \mu B \\ b \end{array} \right)$$

• Eigenvector $(0,1)^T \Rightarrow$ trajectory tend to $C - \mu B = 0$, only if b = 0

Approaching the singular point

What happens after singular point?

- could lift off, or take a (zero-velocity) impact.
- e.g. simulate example for stiff, compliant contact force

$$\lambda_N(y,v) = \frac{(1+r^2) - (1-r^2) \tanh\left(\frac{v}{\delta}\right)}{2} \left(-\frac{y}{\varepsilon}\right)$$

for small δ , ε

resolvable (ongoing work) \Rightarrow (?) impact always occurs

b. Transition into stick or chatter

e.g. nearby initial conditions with b < 0

... Define multiplier $e: v \rightarrow ev$ after impact + lift off.

• Find parameter regions in which e > 1 (reverse chatter) despite r < 1 - even in the "non-Painlevé" case

- Find parameter regions in which e > 1 (reverse chatter) despite r < 1 even in the "non-Painlevé" case
- then we would have "infinite" non-uniqueness in forwards time -:(

- Find parameter regions in which e > 1 (reverse chatter) despite r < 1 even in the "non-Painlevé" case
- then we would have "infinite" non-uniqueness in forwards time -:(
- but can such transitions occur?

- Find parameter regions in which e > 1 (reverse chatter) despite r < 1 even in the "non-Painlevé" case
- then we would have "infinite" non-uniqueness in forwards time -:(
- but can such transitions occur?
- analysis of smoothed "stiff" systems suggest yes ...

- Find parameter regions in which e > 1 (reverse chatter) despite r < 1 even in the "non-Painlevé" case
- then we would have "infinite" non-uniqueness in forwards time -:(
- but can such transitions occur?
- analysis of smoothed "stiff" systems suggest yes ...
- it depends how you take the smoothing -:(

- Find parameter regions in which e > 1 (reverse chatter) despite r < 1 even in the "non-Painlevé" case
- then we would have "infinite" non-uniqueness in forwards time -:(
- but can such transitions occur?
- analysis of smoothed "stiff" systems suggest yes ...
- it depends how you take the smoothing -:(
- ongoing work . . .

even "classical" hybrid mechanical systems have many subtleties left

- even "classical" hybrid mechanical systems have many subtleties left
- by moving to "infinitesimal time" can define and analyse impact consistently in the presence of Coulomb friction (Stronge)

- even "classical" hybrid mechanical systems have many subtleties left
- by moving to "infinitesimal time" can define and analyse impact consistently in the presence of Coulomb friction (Stronge)
- by smoothing the hybrid system and passing back to the limit can resolve the Painlevé paradoxes for sustained motion

- even "classical" hybrid mechanical systems have many subtleties left
- by moving to "infinitesimal time" can define and analyse impact consistently in the presence of Coulomb friction (Stronge)
- by smoothing the hybrid system and passing back to the limit can resolve the Painlevé paradoxes for sustained motion
- however there remain ambiguities in transitions including

- even "classical" hybrid mechanical systems have many subtleties left
- by moving to "infinitesimal time" can define and analyse impact consistently in the presence of Coulomb friction (Stronge)
- by smoothing the hybrid system and passing back to the limit can resolve the Painlevé paradoxes for sustained motion
- however there remain ambiguities in transitions including ...
- the possibility of reverse chattering ...

- even "classical" hybrid mechanical systems have many subtleties left
- by moving to "infinitesimal time" can define and analyse impact consistently in the presence of Coulomb friction (Stronge)
- by smoothing the hybrid system and passing back to the limit can resolve the Painlevé paradoxes for sustained motion
- however there remain ambiguities in transitions including ...
- the possibility of reverse chattering ...
- could this explain why it's easy to drag chalk across a blackboard but hard to push it ?
 University of