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Introduction

Dynamical systems theory as framework for organizing
empirical time series data

• Upsurge in 1970’s: chaos in fluids, lasers, chemical
reactions

• Bifurcation diagrams for dependence of attractors on
parameters

• Routes to chaos
• Bifurcations of codimension two in multi-parameter studies

Recent work uses theory of multiple time scale systems to
provide context for explaining complex oscillations



Outline

• Examples of empirical observations

• Analysis of bursting: n → n + 1 spikes

• Local behavior of slow-fast systems yielding MMOs



Belousov-Zhabotinksii Reaction

Hudson, Hart, Marinko (1979) J. Chem. Phys. 71:1601-1606
Homogeneous stirred tank reactor varying flow rate



Bursting and MMOs in Neurons
Aplysia R15 Cell (Alevois et al. 1991)

Stomatogastric PD Neuron (Zhang et al. 2003)

Inferior olive subthreshold oscillations (Khosravani et al. 2007)



More Bursting Neurons

Izhikevich: Scholarpedia



Multiple Time Scales in Bursting

Hodgkin-Huxley equations describe action potential

• ODEs have membrane potential and “gating” variables of
channels

• Time constant of sodium current activation ∼ 1msec

• Time constants of sodium inactivation and potassium
currents ∼ 10msec

Slower calcium currents underlie bursting in R15

• First models by Richard Plant

• Rinzel: first explicit connection with slowly varying systems

Bursting viewed as alternation between stable equilibria and
stable periodic orbits in fast subsystems



Classification of Bursting: Individual Neurons

Biological perspective (Rinzel)

• Characterize slow currents

• Membrane potential of equilibria vs. spike burst minima

• Interspike intervals (increasing, decreasing, “parabolic“)

• Amplitudes of spikes

Mathematical perspective

• Bifurcations that initiate and terminate of burst

• Izhikevich: 4 × 4 matrix of possibilities

• Asymptotics of interspike intervals fit to bifurcations

What are bifurcations between bursting orbits



Morris-Lecar as Model System

v̇ = i − 0.5(v + 0.5) − 2w(v + 0.7) − 0.5(1 + tanh(
v − 0.1
0.145

)(v − 1)

ẇ = 1.15(0.5(1 + tanh(
v + 0.1

0.15
) − w)cosh(

v − 0.1
0.29

)

i̇ = ε(k − v)

• Model derived from studies of barnacle muscle

• Slow equation is ad hoc

• Asymptotics of interspike intervals identify slow-fast
transitions

• Terman: analysis of transitions from n → n + 1 spikes/burst



Bursting Oscillation
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Bistable system with periodic orbits having 2/3 spikes per burst



Bifurcation diagram of Morris-Lecar model

Trajectories of full and ”frozen“ system
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Death of Periodicity

Dynamical mechanisms for death of oscillations

• Hopf bifurcation

• Saddle-nodes of limit cycles

• Equilibrium saddle-node in limit cycle

• Homoclinic bifurcation

SNIC’s and Homoclinic bifurcation have unbounded periods
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Aysmptotics of Interspike Intervals

SNIC

• Singular perturbation model: ẋ = ǫt + ax2

• In slowly varying system, frequency declines like
ǫ1/2(tc − t)1/2

• Final cycle occurs for (tc − t) ≈ ǫ2/3

Homoclinic bifurcation

• Homoclinic orbit: trajectory tending to hyperbolic saddle as
t → ±∞

• Bistability and hysteresis in frozen system

• Frequency proportional to −1/ ln ǫ



Interspike Intervals: Homoclinic Death
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Interspike Intervals: SNIC Death
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Computing Slow Manifolds of Saddle Type

Boundary value solver locates slow manifold of ML system
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Initial value solver used to compute stable and unstable
manifolds



Normally Hyperbolic Slow Manifolds

εẋ = f (x , y) x ∈ Rm

ẏ = g(x , y) y ∈ Rn

• Critical manifold: f (x , y) = 0

• Slow flow: ẏ = g(h(y), y) where f (h(y), y) = 0

• Fenichel Theory: Existence of slow manifolds when f = 0
normally hyperbolic

• Uniqueness up to exponentially small terms
• Candidates: Singular limits of trajectories

• Approach along strong stable manifold
• Follow slow flow on critical manifold
• Depart along strong unstable manifold



Algorithms for Slow Manifolds of Saddle Type

Challenges

• Initial value solvers won’t track manifold in forward or
backward time

• Boundary conditions yielding points on manifold are
unknown

• Manifolds are located distance O(ε) from critical manifold

Boundary Value Strategy

• Choose boundary values (almost) orthogonal to flow

• Include segments of arrival and departure

• Respect transversality to attracting and repelling manifolds
of slow manifold

• Use simple collocation scheme



Boundary Conditions for Slow Manifold of Saddle Type
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Slow Manifold Accuracy

• Test accuracy by
integrating trajectories
that straddle numerical
slow manifold in
attracting and repelling
directions

• Distance from slow
manifold is 10−4 − 10−11

• Fast instability in both
forward and backward
directions
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Mixed Mode Oscillations

Multiple mechanisms

• Alternation between two limit cycle families of fast
subsystems

• Subcritical Hopf bifurcation produces oscillations of
growing amplitude

• "Local” mechanisms that produce small amplitude
oscillations

• Folded nodes
• Singular Hopf bifurcations



Subcritical Hopf Bifurcation

• Guckenheimer,
Harris-Warrick, Peck and
Willms study of
interspike intervals

• 14 dimensional model of
STG LP neuron

• Trajectories funneled
toward equilibrium:
saddle with complex
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positive real parts 200
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Slow-Fast Systems: ”Desingularized“ Slow Flow

εẋ = f (x , y)

ẏ = g(x , y)

• Solve f = 0 for x except at folds : det(fx ) = 0

• Vector (v , w) is tangent to critical manifold if fxv + fyw = 0

• Derive slow flow tangent to critical manifold with projection
parallel to g if

−f †x fyg∂x + det(fx )g∂y

(f †x = 1 when there is only one fast variable)

• Normal crossing condition : −f †x fyg 6= 0 on fold

• Folded Singularities : failure of normal crossing conditions



Example: Forced van der Pol Equation

The original system in which dissipative chaos was discovered
and analyzed by Cartwright and Littlewood

εẋ = y + x −
x3

3
ẏ = −x + a sin(2πθ)

θ̇ = ω

Slow flow

θ′ = ω(x2 − 1)

x ′ = −x + a sin(2πθ)



Phase Portrait: Forced van der Pol Equation
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Two Slow Variables: Folded Singularities

Fold curve fx = 0: assume fxx 6= 0 and fy g = 0

• Model equations for generic folded singularities

εẋ = y − x2

ẏ = −z ± x

ż = a
• Slow flow

ẋ = −z ± x

ż = 2ax

• Rescale (x , y , z, t) = (ε1/2X , εY , ε1/2Z , ε1/2T ) to set ε = 1

• a < 0: saddle; a < 0: node; 0 < a < 1/8: focus 1/8 < a

• Minus sign gives stable equilibrium



Folded Nodes and Saddles

Analysis of Normal Forms

• Maximal canards are quadratic functions of t

• Saddles: slow stable and unstable manifolds along canard
intersect transversally at z = 0 with angle O(ε).

• Nodes
• Rotations around maximal canard, number increases as |a|

decreases
• Slow flow: linear vector field with sector approaching folded

node
• |a| small gives slowly varying vector fields for (x , y): Wallet

“tourbillon”

New numerical computations of flow maps



Intersection of Slow Stable and Unstable Manifolds
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Canard Trajectories at Folded Saddle
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Folded Nodes

Folded nodes induce small scale oscillations of trajectories
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Folded Node Slow Manifold Intersections
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Small amplitude oscillations at folded node

Normal form equation
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Flow Map past Folded Node
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Chaotic MMOs via Folded Nodes

εẋ = y + x −
x3

3
ẏ = −x + a sin(2πθ)

θ̇ = b + ω(1 −
1

1 + (x2 − 1)2 )

Modification of Forced van der Pol equation

• θ̇ increases with distance to fold lines

• Folded nodes with increased linking as b → 0 (a > 1)

Compare with behavior of flow maps in folded node normal
form



Trajectory: Modified Forced van der Pol
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Trajectory Detail: Modified Forced van der Pol
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Singular Hopf bifurcation

Truncated normal form

εẋ = y − x2

ẏ = z − x

ż = −µ − ax − by − cz

• Hopf bifurcation when µ = −(a + c)x − bx2 and

a + 2xb − 2xc2 − ε(2x + 2x2c + bc) − 2ε2xb = 0

• Period-doubling and torus bifurcations of periodic orbits
possible

• Important invariant manifolds
• Stable and unstable manifolds of equilibrium point
• Attracting and repelling manifolds



Intersecting Invariant Manifolds

Mixed mode
oscillations occur
when repelling slow
manifold and unstable
manifold of
equilibrium point
intersect
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Autocatalator

ȧ = µ(κ + c) − ab2 − a

εḃ = ab2 + a − b

ċ = b − c

• System studied by Petrov et
al. and Milik and Szmolyan

• Mixed mode oscillations:
periodic and chaotic

• Singular Hopf bifurcation as
mechanism
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Summary

Complex oscillations are a byproduct of multiple time scales in
dynamical systems

• Bursting: alternation between equilibrium and oscillatory
behavior

• Mixed modes: alternation between oscillations of large and
small amplitude

• Bifurcations of singular limit layer equations locate
transitions in slow-fast decomposition of trajectories

• Small oscillations result from local mechanisms
• Folded nodes
• Singular Hopf bifurcation


