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My apologies for coming late.

I missed my plane last night!
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Outline

Motivation: mixed mode oscillation, in particular in
neuronal models

Folded node vs. folded saddle node

Analysis – slow passage through Hopf bifurcation

Introduction/review

Statement of main resuts

Conclusions/implications

Manchester • 2009 – p. 3/45



Mixed mode oscillations

Mixed mode oscillations are a mixture of small amplitude
and large amplitude oscillations.

Example: a voltage trace of a neuron with spikes
interspersed with small amplitude oscillations (STOs).
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Simple MMO
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’Complicated MMO’
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One simple mechanism: a combination of a subcritical Hopf
bifurcation and a return mechanism:
J. Guckenheimer and A. Willms, Asymptotic analysis of
subcritical Hopf-homoclinic bifurcation, Physica D 139
(2000), pp. 195–216.
In a similar way, Shilnikov phenomenon was used to explain
mixed mode oscillations:
M. Koper and P. Gaspard, The modeling of mixed-mode
and chaotic oscillations in electrochemical systems, J.
Chem. Phys 96 (1992), pp. 7797–7813
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Canard mechanisms

The idea of canard mechanism was introduced by

A. Milik, P. Szmolyan, H. Loeffelmann, E. Groeller,
Geometry of mixed-mode oscillations in the 3d
autocatalator, Int. J. of Bifurcation and Chaos 8 (1998),
505-519

in the context of the autocatalator. Two basic
ingredients: folded saddle node and a global return
mechanism. The term folded saddle node was first
used by these authors.

Canard mechanism applies to the context of singularly
perturbed equations.

In simple terms: slow passage through canard
explosion plus a drift.

Manchester • 2009 – p. 8/45



References

Jonathan Drover, Jonathan Rubin, Jianzhong Su, and Bard
Ermentrout. Analysis of a canard mechanism by which
excitatory synaptic coupling can synchronize neurons at
low firing frequencies. SIAM J. Appl. Math. 65 (2004), 65-92.
G. Medvedev, J. Cisternas, Multimodal regimes in a
compartmental model of the dopamine neuron, Physica D 194
(2004), 333-356.
H. Rotstein, M. Wechselberger, N. Kopell, Canard induced
mixed-mode oscillations in a medial entorhinal cortex layer
II stellate cell model, SIAM J. Appl. Dyn. Syst. (2008), Vol.
7, No. 4, 1582-1611.
J. Rubin, M. Wechselberger, Giant Squid - Hidden Canard:
the 3D Geometry of the Hodgkin Huxley Model, Biological
Cybernetics (2007), Vol. 97, No. 1, 5-32.

Manchester • 2009 – p. 9/45



Folded node vs folded saddle node

Folded node is in a sense more typical than folded
saddle node

Folded node has been used in some of the literature to
explain mixed mode oscillations.

Both provide a mechanism for small oscillations

In this talk we attempt to make a comparison between
the two.

Recall: either of these singularities lives in the context
of singularly perturbed systems.
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Singular Perturbation Theory
εẋ = f(x, y) x′ = f(x, y)

ẏ = g(x, y) x ∈ R
n, y ∈ R

m y′ = εg(x, y),

slow equation fast equation

0th order approximations are given by:

f(x, y) = 0 x′ = f(x, y)

ẏ = g(x, y) y′ = 0,

reduced equation layer equation

• The set S0 = {(x, y) : f(x, y) = 0} is called the critical
manifold (fast nullsurface).
• S0 is the phase space for the reduced problem and the set
of equilibria for the layer problem.
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Fenichel Theorem
x′ = f(x, y)

y′ = εg(x, y).

Normal hyperbolicity Suppose S̃0 is an open subset of S0.
Then S̃0 is normally hyperbolic if for every (x, y) ∈ cl (S̃0) the
matrix Dxf has no eigenvalues on the imaginary axis.

Theorem If S̃0 is normally hyperbolic then, for ε > 0, there
exists a locally invariant manifold Sε close to S̃0 and the flow
on Sε is close to the flow of the reduced equation on S0.
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Non-hyperbolic points
Simplest example: fold. The following equations give an
example:

εẋ = −y + x2

ẏ = g(x, y), g(0, 0) < 0.

S a S r

x

y

(a) relaxation oscillation(a) simple fold
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Canard point
Canard point is a degenerate fold defined by the condition
g(0, 0) = 0 The following equations give an example:

εẋ = −y + x2

ẏ = x − λ λ ≈ 0

r
a ,ε

x

y
S ,εS
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Unfoldings of a canard point
r

a

S a S a

S r

S r S

S

canard solution
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Folded node/folded saddle node

Folded node is an example of a folded singularity

Folded node can be understood as canard point with a
drift

Fsn is the limiting case corresponding to the speed of
the slow drift going to 0
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λ unfoldings of a canard point
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λ

y′ = x − λ

y = x2

λ′ = 0
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Folded node
’Local normal form’:

x′ = −y + x2

y′ = ε(x − z)

z′ = εµ
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Folded saddle node
’Local normal form’:

x′ = −y + x2

y′ = ε(x − z)

z′ = ε(µ + ax + bz), µ ≈ 0
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µ unfoldings of fsn,µ < 0

z
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µ unfoldings of fsn,µ > 0

z
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Folded node,ε > 0

z

The green trajectory and the magenta trajectory are called
primary canards
The black trajectory is a secondary canard
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Folded node versus folded saddle node

Near folded saddle node trajectories move slower
through the fold region, so that small oscillations play a
more prominent role

The maximal number of small oscillations is bounded
for folded node and not bounded for folded saddle node

an equilibrium is always present near the fold. This is
the case in many (all?) of the examples coming from
the applications.
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Argument against folded node

M. Brons, M. Krupa, and M. Wechselberger, Mixed mode
oscillations due to the generalized canard phenonenon,
Fields Institute Communications 49 (2006), pp. 39–63.

In this paper we show simulations for a ’real’ folded node,
i.e. µ � √

ε (will explain this estimate later). The
simulations show that most of the small oscillations are so
small that they cannot be seen.
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Folded saddle-node

Some advances on folded saddle node:

M. Krupa, M. Wechselberger, Local analysis near a folded
saddle-node singularity, submitted to JDE, (2008)
In the remainder of the talk we discuss this work.
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Rescaling

x = r2x2, y = r2
2y2, z = r2z2, ε = r2

2, µ = r2µ2.

x′

2 = r2(−y2 + x2
2)

y′2 = r2(x2 − z2)

z′2 = r2
2(µ2 + ax2 + bz2)

Manchester • 2009 – p. 30/45



’cancel’ r2 (time rescaling)

x′

2 = −y2 + x2
2

y′2 = x2 − z2

z′2 = r2(µ2 + ax2 + bz2)

slow/fast problem

1D slow manifold defined by x2 = z2, y2 = z2
2

Assume (a + b) < 0. Then, for µ2 > 0,

there is an equilibrium on the slow manifold with z2 > 0

there is a delayed Hopf bifurcation
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Delayed Hopf – references

Neishtadt A I (1987), Persistence of stability loss for dynamic
bifurcations. I, Differential Equations 23: 1385-1390.

Neishtadt A I (1988), Persistence of stability loss for dynamic
bifurcations. II, Differential Equations 24: 171-176.

Wallet G (1986), Entrée-sorte dans un tourbillon, Annales de
l’institut Fourier 36, 157-184
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Delayed Hopf – review

Given is a problem of the form:

z′ = λ(σ)z + f(σ, z)

c.c.

σ′ = ε z ∈ C, σ ∈ R

with λ(σ) ∈ C and satisfying

Re λ < 0 for σ < 0

Re λ = 0 for σ = 0

Re λ > 0 for σ > 0

λ, f analytic
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Way in/way out function
Given is an initial condition (σ0, z0), σ0 < 0, |z0| = 1 and the
corresponding trajectory z(σ).

The way in/way out function assigns to σ0 the value σ∗, such
that, asymptotically in ε, z(σ) is repelled from the vicinity of
0 near σ∗.

For σ0 < 0 let σ∗ = Φ0(σ0) be defined by
∫

σ∗

σ0

Re λ(s)ds = 0

Φ0(σ) is the way in/way out function for σ small.
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Method of analysis

Fundamental problem: exponential contraction and then
expansion along real time.

Solution:

Complexify time σ

Track solutions along eliptic paths in the complex plane.
Eliptic paths are integral curves for the Hamiltonian
system with Hamiltonian

H(σ) =

∫
σ

Re λ(s)ds.

Along the eliptic paths there is no
contraction/expansion, just very fast rotation.
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Buffer points
Buffer points correspond to saddle type equilibria of the
Hamiltonian system for elliptic paths.

 0σ

If there is a buffer point the way in/way out function is given
by

Φ(σ) = Φ0(σ) for σ0 < σ < 0

Φ(σ) = Φ0(σ0) for σ < σ0.

Remark Φ becomes constant for σ < σ0
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Way in/ way out for fsn – why?

We wish to compute the way in/ way out function for fsn, but
why?

If we know the relation between the incoming and the
outgoing trajectories for the passage near the fold, and
we know the return mechanism, then we can analyze
the global dynamics (in particular MMOs). In fact,
knowing the way in/way out function we can also
determine the phase (angle) of the outgoing trajectory.

Maybe even the local problem is interesting by itself?
Recently I have heard of work claiming functional
significance of STOs.
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Important assumptions for Neistadt theory:

λ(σ) must not be real for σ ∈ R

the flow in the σ direction is non-singular.

Features of fsn delayed Hopf

there are no buffer points

eigenvalues become real

there is a singularity due to the equilibrium on the slow
manifold
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Eigenvalue sequence

Fsn
Real negative → Complex with negative real part → Complex with
positive real part → Real positive

In Neistadt’s theory only the shorter sequence
Complex with negative real part → Complex with positive real part

is considered.
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For fsn there exist σ− < 0 and σ+ > 0 such that

For σ < σ− there are two real negative eigenvalues
λss(σ) < λs(σ) < 0

For σ−1 < σ < σ+1 the eigenvalues are complex and the
Neistadt case occurs.

For σ > σ+ there are two real positive eigenvalues
λuu(σ) > λu(σ) > 0.

Remark The behavior of the system has charactericts of a
node equilibrium.
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Important feature

∫
σ−

−∞

λs(σ)dσ

is finite. This means that there is a ’finite amount of
contraction’ on the stable side!

On the repelling side the ’amount of expansion’ goes to
infinity, because of the equilibrium.
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New way in/way out function, 3 cases
Case 1 If σ0 > σ− we can still use Φ0, defined by

∫
σ∗

σ0

Re λ(s)ds = 0

Case II If σ0 < σ− we define Φ implicitly using the equation
∫

σ−

σ0

λs(σ)dσ +

∫
σ∗

σ−

Re λ(s)ds = 0

This works as long as σ∗ < σ+.
Case III For σ0 so small that Case II fails we use the
equation

∫
σ−

σ0

λs(σ)dσ +

∫
σ+

σ−

Re λ(s)ds +

∫
σ
∗

σ+

λuu(s)ds = 0
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Gist of the results

Way in/way out function works well for cases I and II

For case III the way in/way out function works well only
on a ’good set’ of µ values. This set is a complement of
the union of a finite set of intervals. However, as ε → 0
the number of ’bad intervals’ goes to infinity. The total
length of the ’bad set’ is uniformly small in comparison
to the size of the ’good set’.

We have proved the existence of a family of secondary
canards. The number of canards in this family
increases to ∞ as ε → 0 (and µ → 0)
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Conclusions/Conjectures

For cases I and II we have good control over the
transition through the fold region and there is good
hope for analyzing global dynamics.

Case III corresponds to a transition to folded node. The
problem with the way in/way out function corresponds to
resonances in foded-node (the maximal number of
small oscillations jumps by 1). This kind of resonance
must cause a complication in the global dynamics. We
have reasons to believe that case III is not very
significant.

Complications in global dynamics arise due to the
passage of returning trajectories near secondary
canards (but there are many secondary canards).
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