CICADA workshop on Hybrid Systems and Model Reduction 19, 20 March 2009

Model Reduction of Hybrid Systems

H. R. Shaker

Hybrid Systems Research Group Section for Automation and Control Institute of Electronic Systems Aalborg University

Outline:

- Hybrid Systems and Complexity
- Model Reduction: Combinatorial Reduction and Order Reduction
- Hybrid Systems Classification : Model Reduction Viewpoint
- Future Works

Intuitive Introduction to Hybrid Systems

- Discrete program with an analog environment.
- What does it mean?

Sequence of discrete steps – in each step the system evolves continuously according to some dynamical law until a transition occurs. Transitions are instantaneous.

A Motivating Example: Thermostat

- The heater can be on or off.
- When the heater is on, the temperature increases continuously according to some formula.
- When the heater is off, the temperature decreases.
- Thermostat keeps the temperature within some limit by putting the heater on or off.

Complexity

Complexity, by J. David Sweatt

Combinatorial Part

Model Reduction: strategy for automatic simplification of very complicated systems

Model Order Reduction



Some reasons :

- A high order system is expensive to simulate and store in computers memory
- Simulation and Analysis is time consuming
- Design procedure and control is complicated

Application Example

Realistic Simulation of Heart

Arteries to head and arms Superior vena cava Aortic arch Pulmonary artery Left atrium Coronary artery Left ventricle Right ventricle

from heart to heart artery vein e 2006 Encyclopædia Britannica, Inc.

Exterior structures of the heart

Objective: reducing the order of dynamic systems

Nonlinear MOR

Linear MOR

NOT SO RICH!!

Moment Matching Based

Model Reduction of Hybrid Systems

- Luc C.G.J.M. Habets and Jan H. van Schuppen. Reduction of affine systems on polytopes. In Proceedings of the International Symposium MTNS, 2002.
- H. Gao, J. Lam, C. Wang "Model simplification for switched hybrid systems" Systems & Control Letters, Vol. 55, No. 12. 2006, pp. 1015-1021.
- E. Mazzi, A. S. Vincentelli, A. Balluchi, and A. Bicchi. "Hybrid system model reduction" *IEEE Int. Conf. on Decision and Control*, 2008.
- Y. Chahlaoui, "Model reduction of switched dynamical systems", 4th Conference on Trends in Applied mathematics in Tunisia, Algeria and Morocco., Morocco, Kenitra,2009.

Hybrid System Classification

- Autonomous Switched Systems
- -switching time/frequency is known.
- -switching signal is known
- State-based Switches
- Switched systems with known switching sequence

Model Reduction of Hybrid Systems: Autonomous Switched Systems

 For some classes of Autonomous Switched Systems : Ordinary MOR Techniques.
 Reduction in one shot?!

$$\mathbf{x} = \begin{cases} f_1(x,u) & u < 1 \\ f_2(x,u) & 1 < u < 10 \\ f_3(x,u) & u > 10 \end{cases}$$

Model Reduction of Hybrid Systems: Autonomous Switched Systems

- For some classes of Autonomous Switched Systems : Some MOR Techniques are preferred.
 Accuracy Enhancement
- **One Shot Reduction**

$$\mathbf{x} = \begin{cases} A_1 x + B_1 u & t < 1 \\ A_2 x + B_2 u & 1 < t < 10 \\ A_3 x + B_3 u & t > 10 \end{cases}$$

Model Reduction of Hybrid Systems: Autonomous Switched Systems

For Autonomous Switched Systems with known switching signal we can treat the signal as a parameter : PVL Model Reduction can be used

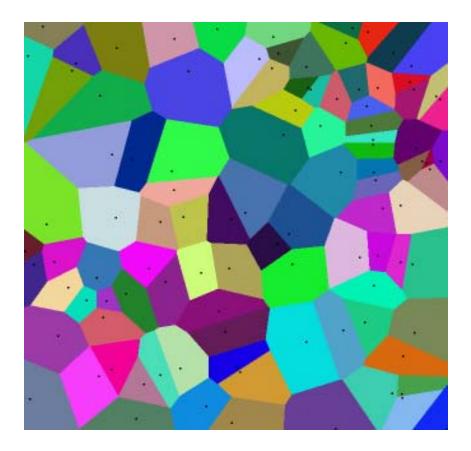
It is usually not feasible or very restrictive

Model Reduction of Hybrid Systems: State based Switches

- Switched Systems with Guard: If the states are in switching inequality.
- Challenge 1: How to Approximate The Guard
- Challenge 2: Which Approximation is suitable

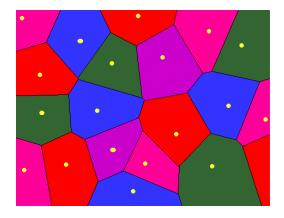
General form:

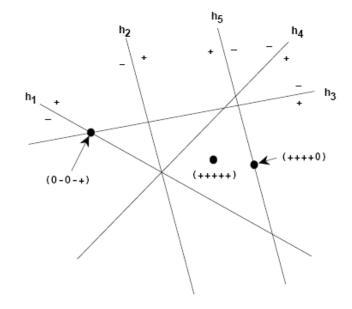
$\mathcal{K} = f_i(x, u) : x \in R_i$ $1 \le i \le n$



Model Reduction of PWA systems:

$$S_{k}:\begin{cases} \mathbf{x}_{k}^{*}(t) = A_{k}x_{k} + B_{k}u_{k} + E_{k} \\ y_{k} = C_{k}x_{k} + D_{k}u_{k} \end{cases} \qquad x_{k} \in P_{k}, u_{k} \in U, y_{k} \in Y \quad P_{k} \subset \mathbf{j}^{d}$$





Model Reduction of PWA systems:

$$P_k \subset i^{d}$$

$$S_k : \begin{cases} \mathcal{K}_k(t) = A_k x_k + B_k u_k + E_k \\ y_k = C_k x_k + D_k u_k \end{cases} \quad x_k \in P_k, u_k \in U, y_k \in Y$$

AFFINE SYSTEMS to LINEAR SYSTEM:

new input vector : W

$$V_k \coloneqq \begin{bmatrix} u_k \\ E_k \end{bmatrix}$$

$$S_k : \begin{cases} \mathbf{x}_k(t) = A_k x_k + \begin{bmatrix} B_k & I \end{bmatrix} W_k \\ y_k = C_k x_k + \begin{bmatrix} D_k & O \end{bmatrix} W_k \end{cases} \qquad x_k \in P_k, \ y_k \in Y$$

Polytopes:

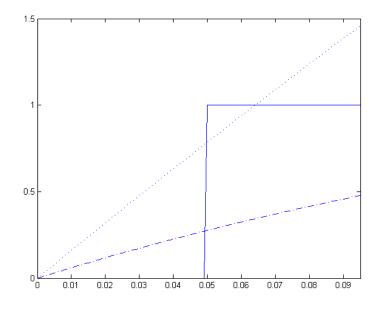
New Output:
$$Y_i \coloneqq \begin{bmatrix} y_i \\ M_i x \end{bmatrix} = \begin{bmatrix} C_i \\ M_i \end{bmatrix} x = W_i x$$

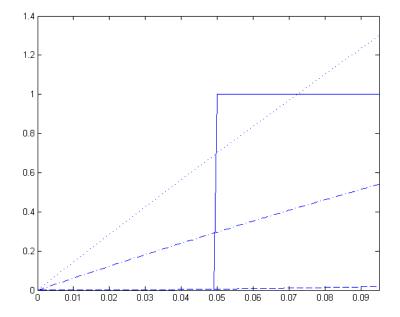
Now we can use linear techniques for both exact and approximate reduction

example:

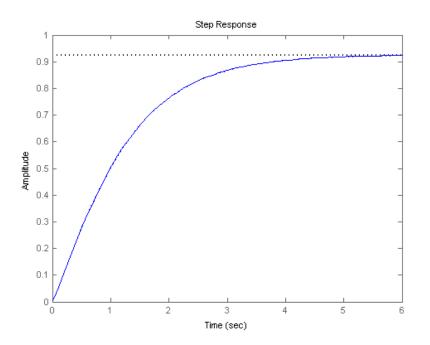
$$\begin{cases} \mathbf{x} = \begin{bmatrix} -1.119 & 0.2557 & -0.01542 \\ 0.2557 & -1.892 & 0.1438 \\ -0.01542 & 0.1438 & -1.889 \end{bmatrix} x + \begin{bmatrix} 1.444 \\ 0 \\ 0.6232 \end{bmatrix} u \\ y = \begin{bmatrix} 0.799 & 0.9409 & -0.9921 \end{bmatrix} x$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -1 & -1 \end{bmatrix} x \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$



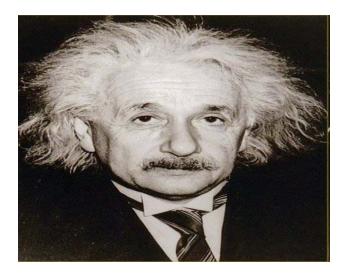


$$\begin{cases} \mathbf{x} = \begin{bmatrix} -1.034 & 0.01587 \\ -0.7875 & -2.046 \end{bmatrix} x + \begin{bmatrix} 1.614 \\ 0.6135 \end{bmatrix} u \qquad \begin{bmatrix} 0.8679 & 0.0655 \\ 0.0892 & -0.2289 \\ 0.2731 & 0.2993 \\ -1.2302 & -0.1359 \end{bmatrix} x \leq \begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$



Try to simplify as much as possible but not more

Stability



Generalized Gramian Framework for Model Reduction of Switched Systems

$$AP + PA^* + BB^* = 0$$
$$A^*Q + QA + C^*C = 0$$

 $AP_g + P_g A^* + BB^* \le 0$ $A^* Q_g + Q_g A + C^* C \le 0$

Gramian

Generalized Gramian

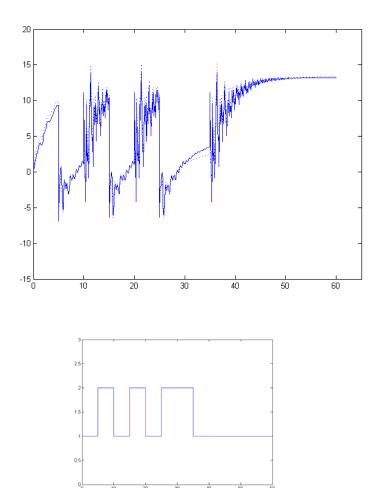
Procedure:

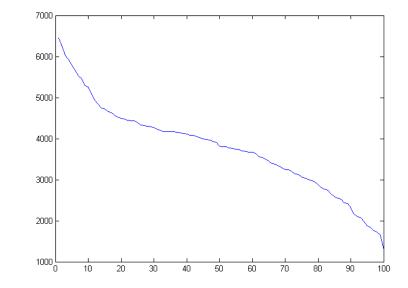
- Derive Lyapunov Inequalities of the linear reduction method
- Compute common grammian
- Build Petrov-Galerkin Projection based on them.

$$\begin{cases} A_{\sigma}\hat{P}_{cg}(\omega_{1},\omega_{2}) + \hat{P}_{cg}(\omega_{1},\omega_{2})A_{\sigma}^{*} + \hat{B}_{\sigma}\hat{B}_{\sigma}^{*} < 0 \\ \forall \sigma \in \mathbf{K} \end{cases}$$

$$\begin{cases} A_{\sigma}^{*} \hat{Q}_{cg}(\omega_{1}, \omega_{2}) + \hat{Q}_{cg}(\omega_{1}, \omega_{2})A_{\sigma} + \hat{C}_{\sigma}^{*} \hat{C}_{\sigma} < 0 \\ \forall \sigma \in \mathbf{K} \end{cases}$$

Reduction of Bimodal Switched linear System of order 100 to the order 87:





- Framework is a general framework for gramian based reduction methods.
- This is stability preserving reduction technique under arbitrary switches.
- On shot reduction
- It can be extended
- It is not always feasible

Future work:

- Using Lyapunov like function instead of common quadratic lyapunov function for improvement of the feasbility
- Extensions
- Other representations
- Application of model reduction theory in control of hybrid sytems.

Thank you