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Solid Propellant Rocket
Burning Rate – Chamber Pressure

NASA space shuttle Solid propellant rocket

• The burning rate increases with the chamber pressure, and
the chamber pressure increases with the burning rate.
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Microstructure of Solid Propellant

Microstructure of solid propellant material
Ide et al., 1999

Solid rocket

• Particle/binder with interfaces
• Bimodal particle size distribution
• Large particle volume fraction

• Fracture mainly along interfaces



Crack Propagation along Particle/Binder Interfaces

Rae et al. 2002. Cavendish Laboratory, Cambridge

• Cracks propagate mainly through interface debonding.
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Pressure – Burn – Microstructure

• Relatively small defects, like debonded interfaces and cracks,
can lead to catastrophic failure.
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Objective

To establish a stability criterion
for interface debonding in plastic bonded energetic materials



What Do Simulations Tell Us?

• Macroscopic strain imposed as a body force applied at microscale
• 4-noded cohesive element at interfaces
• Periodic boundary conditions

particles

Inglis, Geubelle, Matous, Tan and Huang, 2007, Mech. Mater.
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Material Subject to Increased Loading

• Material subjects to equibiaxial strain
• Color-scale represents von Mises stress



Catastrophic Interface Debonding

Uniform debonding Sudden non-uniform
debonding

Collapse of interface
debonding
→ Crack formation

Increasing equibiaxial load

• Sudden interface debonding under quasi-static loading



Deflagration to Detonation Transition

• Sudden interface debonding -> hot spots
• Pressurised cracks

Increasing chamber pressure



Strain Energy Density in
Hydrostatic Tension

 is a functional of
displacement jump [u] at interfaces.

strain energy in the
matrix and particles

interface cohesive
energy

• Determine [u] by minimizing ([u])

Tan et al., 2005. AIAA
Tan et al., 2006. Int. J. Multiscale Comput. Eng.
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Homogenization Methods in Micromechanics

Generalized Self
Consistent Method

Mori-Tanaka Method

• Mori-Tanaka method is extended to account for nonlinear interface
debonding.
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Determine Interface Cohesive Law
for High Explosives
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softening modulus:

MPa66.1max interface strength:

Tan et al., 2005. J. Mech. Phys. Solids

Macroscopic cohesive law Interface cohesive law



Interface Displacement Jumps

Interface opening [u]
 
 













,2/0

2/,0cos][
0

uA
A

a

u

averaged
matrix stress

       
int

1 1
[ ] [ ] [ ] [ ]

2
ij ij S

dV dA  


 
   

  
 u u u uGoal:



Quadratic Form of Total Potential Energy
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• Total potential energy density can be expressed in a
quadratic form of Au when subject to hydrostatic loading
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For rigid particle embedded in incompressible matrix under hydrostatic tension:
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Stability Criterion for Interface Debonding
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Au: Magnitude of non-uniform interface opening

cuu > 0: stable debonding
cuu < 0: unstable debonding



Case Study I: Particle Size Effect
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interface softening modulus:

large particle volume fraction:

matrix modulus:

Plastic Bonded Explosives

critical particle radius
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Performance versus Sensibility

ma stability
cr 39

Balancing the performance and sensibility through
changing the particle size distribution
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Coarse particles

Size Effect on DDT

→ Deflagration to Detonation Transition (DDT)

higher pressure



Case Study II:
Macroscopic Deformation during Compression

8% volume increase
when HMX particles transfer
from -phase to -phase.

Average radius of coarse particles is 125m.

ma stability
cr 39

• Microscopically, each particle may debond suddenly in a random direction.
• Macroscopically, deformation field is chaotic.



Experimental Setup for
Slow Heating of PBX 9501 Sample

• Cubic sample of size 12.7mm
• Free standing sample
• Temperature ramps from 33ºC to 195ºC in one hour



Evolution of the Deformation Field



Strain Field

• low strain -> chaotic deformation field

below transformation temperature around transformation temperature



Summary
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• A stability criterion for interface debonding is established
for energetic composite materials.

• Catastrophic interface debonding is observed in numeric
simulations.

• Catastrophic interface debonding contributes to the
chaotic deformation during the phase transformation of
HMX particles.

• Application: safety of solid rocket propellant.


