Catastrophic Interface Debonding in Energetic Materials

Henry Tan Lecturer in Explosion Engineering

School of Mechanical, Aerospace and Civil Engineering University of Manchester

Solid Propellant Rocket Burning Rate – Chamber Pressure

NASA space shuttle

Solid propellant rocket

• The burning rate increases with the chamber pressure, and the chamber pressure increases with the burning rate.

Microstructure of Solid Propellant

Microstructure of solid propellant material Ide *et al.*, 1999

- Particle/binder with interfaces
- Bimodal particle size distribution
- Large particle volume fraction
- Fracture mainly along interfaces

Crack Propagation along Particle/Binder Interfaces

• Cracks propagate mainly through interface debonding.

Pressure – Burn – Microstructure

• Relatively small defects, like debonded interfaces and cracks, can lead to catastrophic failure.

Objective

To establish a **stability criterion**

for interface debonding in plastic bonded energetic materials

What Do Simulations Tell Us?

Inglis, Geubelle, Matous, Tan and Huang, 2007, Mech. Mater.

- Macroscopic strain imposed as a body force applied at microscale
- 4-noded cohesive element at interfaces
- Periodic boundary conditions

Material Subject to Increased Loading

- Material subjects to equibiaxial strain
- Color-scale represents von Mises stress

Catastrophic Interface Debonding

Increasing equibiaxial load

Uniform debonding

Sudden non-uniform debonding

Collapse of interface debonding

Pa

2.00e+04

1 000+04

 \rightarrow Crack formation

Sudden interface debonding under quasi-static loading

Deflagration to Detonation Transition

Increasing chamber pressure

- Sudden interface debonding -> hot spots
- Pressurised cracks

Strain Energy Density in Hydrostatic Tension

ł

 $\rightarrow \overline{\varepsilon}$ displacement jump [*u*] at interfaces.

• Determine [**u**] by minimizing Π([**u**])

Tan *et al.*, 2005. *AIAA* Tan *et al.*, 2006. *Int. J. Multiscale Comput. Eng.*

Homogenization Methods in Micromechanics

• Mori-Tanaka method is extended to account for nonlinear interface debonding.

Tan *et al.*, 2005. *Int. J. Plasticity* Tan *et al.*, 2007. *Int. J. Fract.*

Determine Interface Cohesive Law for High Explosives

$$\Pi = \frac{1}{\Omega} \left\{ \frac{1}{2} \int_{\Omega} \sigma_{ij} \varepsilon_{ij} dV + \int_{S_{int}} \phi dA \right\}$$

Macroscopic cohesive law

PBX 9501 Specimen CCD Camera When $\Delta = 0.53$ mm When ∆=0.65mm (x10⁻³) When ∆ = 0.80mm Cohesive stress, σ/E 0.5 -0.5 0.05 0.1 0.15 0.2 Opening displacement, δ (mm)

Interface cohesive law

softening modulus: interface strength: $\widetilde{k}_{\sigma} = 17MPa / mm$ $\sigma_{\rm max} = 1.66MPa$

Interface Displacement Jumps

Goal:
$$\Pi([\mathbf{u}]) = \frac{1}{\Omega} \left\{ \frac{1}{2} \int_{\Omega} \sigma_{ij} ([\mathbf{u}]) \varepsilon_{ij} ([\mathbf{u}]) dV + \int_{S_{int}} \phi([\mathbf{u}]) dA \right\}$$

Interface opening [*u*]

$$\frac{[u]}{a} = A_0 + \begin{cases} A_u \cos \theta & \theta \in [0, \pi/2] \\ 0 & \theta \in [\pi/2, \pi] \end{cases}$$

Quadratic Form of Total Potential Energy

• Total potential energy density can be expressed in a **quadratic** form of *A_u* when subject to hydrostatic loading

$$\Pi(A_u) = c_0 + c_u A_u + c_{uu} A_u^2$$

For rigid particle embedded in incompressible matrix under hydrostatic tension:

$$c_{uu} = \frac{3}{2} \mu_m \left(1.0225 - f - \frac{\tilde{k}_\sigma a}{6\mu_m} \right)$$

- f: particle volume fraction
- \widetilde{k}_{σ} : interface softening modulus
- *a*: particle radius
- μ_m : shear modulus of matrix

Stability Criterion for Interface Debonding

A_u: Magnitude of non-uniform interface opening

Case Study I: Particle Size Effect

Plastic Bonded Explosives

interface softening modulus:	$\widetilde{k}_{\sigma} = 0.017 MPa / \mu m$	Tan <i>et al.</i> , 2005
large particle volume fraction:	f = 69.5%	Skidmore et al., 1997
matrix modulus:	$\mu_m = 0.334 MPa$	Cady et al., 2000

 $a_{cr}^{stability} \approx 39 \mu m$

Performance versus Sensibility

 $a_{cr}^{stability} \approx 39 \mu m$

Balancing the performance and sensibility through changing the particle size distribution

Size Effect on DDT

→ Deflagration to Detonation Transition (DDT)

Case Study II: Macroscopic Deformation during Compression

8% volume increase when HMX particles transfer from β -phase to δ -phase. PBX 9501 High Explosive

Average radius of coarse particles is 125µm.

- Microscopically, each particle may debond suddenly in a random direction.
- Macroscopically, deformation field is chaotic.

Experimental Setup for Slow Heating of PBX 9501 Sample

- Cubic sample of size 12.7mm
- Free standing sample
- Temperature ramps from 33°C to 195°C in one hour

Evolution of the Deformation Field

Strain Field

below transformation temperature

around transformation temperature

• low strain -> chaotic deformation field

Summary

• A stability criterion for interface debonding is established for energetic composite materials.

• Catastrophic interface debonding is observed in numeric simulations.

 Catastrophic interface debonding contributes to the chaotic deformation during the phase transformation of HMX particles.

• Application: safety of solid rocket propellant.

