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Motivation

• Model Predictive Control (MPC)

– Linear MPC is widely used in industries

– Few nonlinear MPC applications

• Nonlinear large scale distributed system

– Attracting more interest among researchers

– Few well-established methods available

• Model reduction techniques

– Great potential industrial applications

– Relatively new



Existing technologies

• Feedback linearisation

– Parametric control

• Adaptive control (self-tuning control)

• Artificial neural network

• Non-parametric methods



Our proposed technique

• Aims
– Applicable to complex dynamic systems

– Automatic procedure

– Good approximation of the original full-scale model

– Explicit parametric dependence

– High computational efficiency

• Our new method
– 1st step: POD (proper orthogonal decomposition) -based projection

• onto low-dimensional hyperspace

– 2nd step: TPWL (Trajectory Piece-wise linearisation)
• on time coefficients

– 3rd step: QP (Quadratic programming) applied to obtain control law



Model reduction
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Linearisation of POD-based
constraints for MPC

• Reduced model

(equation 1)

(equation 2)

• Idea: can linearise in terms of i:
– Irrespective of (high physical) dimensionality of the problem

– Linearisation always 1-dimensional
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Case study 1: ten Tanks Level control
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Control formulation—10 tanks

• Objective function
(equation 3)

• s.t.
Mass Balance of tank 1: (equation 4)

Mass balance of tank 2- tank 10: (equation 5)

Flow rates: (equation 6)
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Non-linear model

• Non-linear model control

– based on non-linear objective function (non-quadratic)

– with nonlinear constraints.

• Non-linear dynamic optimisation

– Multiple shooting (based on a set of time intervals)

• Some kind of successive substitution

• or better Sequential Quadratic Programming



POD model reduction

• Using then

(Equation 7)

• Similar equations can be obtained by the above method

(Equation 8)

• Apply method of snapshots to get basis functions

• Calculate time coefficients
– using Galerkin projection on the m POD eigenfunctions as above

• The system dynamics are then retrieved as:

(Equation 9)
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TPWL method

• The piecewise linear interpolation is built as follows.

(Equation 10)

(Equation 11)

• Apply mean value theorem:

(Equation 12)

• Then,

(Equation 13)

where, the second derivative of is bounded by
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Static and adaptive TPWL
• Static TPWL based on uniform partition

(Equation 14)

where is a given positive tolerance.

• Adaptive TPWL method
– We propose that the subinterval is acceptable if

(Equation 15)

Or, (Equation 16)
– A partition is acceptable if each subinterval is acceptable.
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POD basis functions-ten tanks



Left-hand side are
static TPWL for POD
time coefficients with
TPWL (29 intervals),
and right-hand side
are adaptive TPWL
(15 intervals)

TPWL time coefficients-ten tanks
Static Adaptive



10 tanks (showing 1, 2,
9, and 10) w.r.t. time
using PODs, F0=16,
, and

Left-hand side static
TPWL, right-hand side
are adaptive TPWL

15.0dt1.0

Results of TPWL with POD for 10 tanks
Static Adaptive



Control formulation—10 tanks
with POD method

• Objective function: quadratic due to POD formulation

(Equation 17)

• s.t.

(Equation 18)
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Control formulation—10 tanks
with TPWL method

• Piece-wise linear form on State Space Model:

(Equation 19)

where,
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Control law for TPWL model

Quadratic Programming applied to obtain the control law:

(Equation 20)

Where, because only one output;

and

Then the output variables can be calculated using

(Equation 21)
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Results of nonlinear case using
direct ODE’s solver and
(1-10) liquid level of tank

1-10;
(11) control input;
(12) output of tank ten compared to
reference output

Size of problem: 10*100
Number of ODEs: 10

SQP results of nonlinear model—10 tanks
using direct ODE solver, dt=0.15sec



Results of nonlinear reduced model
using direct ODE’s solver and
(1-10) liquid level of tank

1-10;
(11) control input;
(12) output of tank ten compared to
reference output

Size of problem: 3*100
Number of ODEs: 3

SQP results of nonlinear model—10 tanks
(3 basis functions) using direct ODE solver, dt=0.15sec



Results of nonlinear case using
PWL POD solver and
(1-10) liquid level of tank

1-10;
(11) control input;
(12) output of tank ten compared to
reference output

Size of problem: 3*100
Number of ODEs: 3

TPWL results of nonlinear model—10 tanks
using 3 basis functions, dt=0.15sec



Case study 2: Tubular reactor
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Tubular reactor

• PDE-based model

• Complex dynamics

– Rich parametric space, bifurcations

• Saddle nodes

• Sustained oscillations

• Appropriate control problem

– Through a number of system parameters

• Recycle

• Jacket temperature



Control objective

r=0

r=0.5

• For r=0 stable behaviour

• For r=0.5 Hopf bifurcation

– Sustained oscillations

• Use a set of cooling zones

– stabilise system at r=0.5

• To behave like system at r=0



Sampling

• Heaviside functions
– for example: 3 actuators have

8 states and 5 actuators have
32 states

• 11 samples for every
Heaviside functions
– Temperature [-0.999,1]

– Concentration [0,1]
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Tubular reactor
- 6 POD basis functions for temperature

• With 5 actuators and Heaviside functions



Tubular reactor
- 6 POD basis functions for concentration

• With 5 actuators and Heaviside functions



Tubular reactor: Time coefficients

Temperature with r=0.5 Concentration with r=0.5



Full vs. reduced model

Temperature with r=0.5 Concentration with r=0.5



Linearisation of temperature time coefficients
Static Adaptive



Linearisation of concentration time coefficients

Static Adaptive



Control formulation—tubular reactor
with POD method

• Objective function: quadratic due to POD formulation

where, is the reference state with r=0,

is control on actuators
• s.t.
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Control formulation—POD method
with TPWL method

• Piece-wise linear form on State Space Model:

where, includes time coefficients for
concentration and temperature,
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Control law for TPWL model

Quadratic Programming applied to obtain the control law:

Where, because only one output;

and

Then the output variables can be calculated using
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Results
–8 actuators and 15 secs

SQP

Static TPWL Adaptive TPWL



Conclusions

• A POD-based method has been developed

– with static or adaptive TPWL

– for non-linear large scale distributed systems

• Our method catches the dynamics of systems

• Significantly reduces computation time

– compared to SQP method.

• Applied to both discretised and continuous systems



Future work

• Piece-wise affine reduced model

– Use PAROS software for parametric control

• Other cases study

– Microfiltration process

– Lyophilisation process
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