MANCHESTER 1824 of Manchester of Manchester

A Model Reduction Technique for linear Model Predictive Control for Non-linear Large Scale Distributed Systems

Weiguo Xie and Constantinos Theodoropoulos

School of Chemical Engineering and Analytical Science University of Manchester, Manchester M60 1QD, UK

Overview

- Motivation
- Existing technologies
- Our proposed technique
- Case studies
- Conclusions
- Further work

Motivation

- Model Predictive Control (MPC)
 - Linear MPC is widely used in industries
 - Few nonlinear MPC applications
- Nonlinear large scale distributed system
 - Attracting more interest among researchers
 - Few well-established methods available
- Model reduction techniques
 - Great potential industrial applications
 - Relatively new

Existing technologies

- Feedback linearisation
 - Parametric control
- Adaptive control (self-tuning control)
- Artificial neural network
- Non-parametric methods

Our proposed technique

- Aims
 - Applicable to complex dynamic systems
 - Automatic procedure
 - Good approximation of the original full-scale model
 - Explicit parametric dependence
 - High computational efficiency
- Our new method
 - 1st step: POD (proper orthogonal decomposition) -based projection
 - onto low-dimensional hyperspace
 - 2nd step: TPWL (Trajectory Piece-wise linearisation)
 - on time coefficients
 - 3rd step: QP (Quadratic programming) applied to obtain control law

The University of Manchester

of Manchester Manchester

Model reduction

Proper Orthogonal Decomposition (POD)

Detailed dynamic model (N equations)

Linearisation of POD-based constraints for MPC

Reduced model

MANCHESTER

The University of Manchester

$$\frac{da_i}{dt} = f(a_i, t) \qquad (equation 1)$$
$$u(x,t) = \sum_{i=1}^{m} a_i \phi_i + \overline{u} \qquad (equation 2)$$

- Idea: can linearise in terms of α_i :
 - Irrespective of (high physical) dimensionality of the problem
 - Linearisation always 1-dimensional

MANCHESTER

Case study 1: ten Tanks Level control

MANCHESTER

Control formulation—10 tanks

• Objective function $\min_{Y} (Y - Y_{ref})^{T} Q(Y - Y_{ref}) + DU^{T} RDU$

 $k = 1, \Lambda, 10$

(equation 3)

• s.t.

Mass Balance of tank 1: $A_1 \frac{dh_1}{dt} = F_0 - F_1$ (equation 4)Mass balance of tank 2- tank 10: $A_i \frac{dh_i}{dt} = F_{i-1} - F_i$ (equation 5) $i = 2, \Lambda, 10$ (equation 6)

Non-linear model

- Non-linear model control
 - based on non-linear objective function (non-quadratic)
 - with nonlinear constraints.
- Non-linear dynamic optimisation
 - Multiple shooting (based on a set of time intervals)
 - Some kind of successive substitution
 - or better Sequential Quadratic Programming

POD model reduction

- Using $F_1 = c_1 * h_1^{1/2}$ then
 - $\frac{\partial F_1}{\partial t} \frac{F_0 \cdot c_1^2}{F_1 \cdot 2A_1} + \frac{c_1^2}{2A_1} = 0$ (Equation 7)
- Similar equations can be obtained by the above method

$$\frac{\partial F_i}{\partial t} - \frac{F_{i-1} \cdot c_i^2}{F_i \cdot 2A_i} + \frac{c_i^2}{2A_i} = 0 \qquad i = 2, \Lambda, 10$$
 (Equation 8)

- Apply method of snapshots to get basis functions $\varpi_k(x)$
- Calculate time coefficients $\alpha_k(t)$
 - using Galerkin projection on the m POD eigenfunctions as above
- The system dynamics are then retrieved as: $F_i(x,t) = v(x,t) + \overline{F_i}$ $i = 1, \Lambda, 10$ (Equation 9)

TPWL method

• The piecewise linear interpolation is built as follows.

$$L_{i}(z) = a_{i} + b_{i}(z - x_{i})$$
 (Equation 10)

$$a_{i} = y_{i} b_{i} = \frac{y_{i+1} - y_{i}}{x_{i+1} - x_{i}} i \in [1, n-1]$$

$$L(z) = \begin{cases} L_{1}(z) & \text{if } \alpha = x_{1} \le z < x_{2} \\ L_{2}(z) & \text{if } x_{2} \le z < x_{3} \\ & M \\ L_{n-1}(z) & \text{if } x_{n-1} \le z \le x_{n} = \beta \end{cases}$$
 (Equation 11)

• Apply mean value theorem:

 $f(z) = L(z) + \frac{f^{(2)}(\eta)}{2}(z - x_i)(z - x_{i+1}) \qquad z \in [x_i, x_{i+1}] \qquad \eta \in [x_i, x_{i+1}] \qquad (\text{Equation 12})$

• Then,

$$|f(z) - L(z)| \le \frac{M_2 h_m^2}{8} \le \delta$$
 (Equation 13)
where, the second derivative of *f* is bounded by M_2

The University of Manchester

MANCHESTER

The University of Manchester

Static and adaptive TPWL

• Static TPWL based on uniform partition

$$n \ge 1 + (\beta - \alpha) \sqrt{\frac{M_2}{8\delta}}$$

(Equation 14)

where δ is a given positive tolerance.

- Adaptive TPWL method
 - We propose that the subinterval [xL, xR] is acceptable if

$$\left| f(\frac{xL+xR}{2}) - \frac{f(xL) + f(xR)}{2} \right| \le \delta$$
 (Equation 15)

Or, $xR - xL \le h_{\min}$ (Equation 16)

- A partition $x_1 < \Lambda < x_n$ is acceptable if each subinterval is acceptable.

POD basis functions-ten tanks

TPWL time coefficients-ten tanks

t

Static Adaptive delta= 1.0000 Static n=29 basis= 1 delta= 1.0000 Adapt n=15 basis= 1 20 20 5 5 -20 -20 -40-40 5 10 15 5 10 15 0 0 delta= 1.0000 Static n=29 basis= 2 delta= 1.0000 Adapt n= 2 basis= 2 20 20 0 n 32 32 -20 -20 -40 -40 0 5 10 15 0 5 10 15 t delta= 1.0000 Static n=29 basis= 3 delta= 1.0000 Adapt n= 2 basis= 3 20 20 0 0 3 S -20 -20 -40 -40 0 5 10 15 0 5 10 15

Left-hand side are static TPWL for POD time coefficients with TPWL (29 intervals), and right-hand side are adaptive TPWL (15 intervals)

The University of Manchester

MANCHESTER

Results of TPWL with POD for 10 tanks

15

15

15

15

Static

MANCHESTER

The University of Manchester

10 tanks (showing 1, 2, 9, and 10) w.r.t. time using PODs, $F_0=16$, $\delta = 0.1$ and dt = 0.15

Left-hand side static TPWL, right-hand side are adaptive TPWL

The University of Manchester

Control formulation—10 tanks with POD method

• Objective function: quadratic due to POD formulation

$$J = \min_{du} \left(\left(\sum_{k=1}^{m} \alpha_{k}(t) \varpi_{k}(x) + \overline{F_{10}} \right) - Y_{ref} \right)^{T} Q \left(\left(\sum_{k=1}^{m} \alpha_{k}(t) \varpi_{k}(x) + \overline{F_{10}} \right) - Y_{ref} \right) + DU^{T} RDU$$
(Equation 17)

• s.t.

$$\int_{0}^{\Omega} \{\phi_{i}(x) \cdot \left[\frac{\partial \left(\sum_{k=1}^{m} \alpha_{k}(t) \overline{\varpi}_{k}(x) + \overline{F_{i}}\right)}{\partial t} - \frac{\left(\sum_{k=1}^{m} \alpha_{k}(t) \overline{\varpi}_{k}(x) + \overline{F_{i-1}}\right) \cdot c_{i}^{2}}{\left(\sum_{k=1}^{m} \alpha_{k}(t) \overline{\varpi}_{k}(x) + \overline{F_{i}}\right) \cdot 2A_{i}} + \frac{c_{i}^{2}}{2A_{i}}]\} \cdot \overline{\varpi}_{j}(x) dx = 0$$

(Equation 18)

where,
$$i = 1, \Lambda, 10$$
, $\Omega = \sum_{i=1}^{10} dx_i$, and $j = 1, \Lambda, m$

The University of Manchester

Control formulation—10 tanks with TPWL method

• Piece-wise linear form on State Space Model:

 $\alpha(t+1) = L_1 \alpha(t) + B_1 F_0(t)$

 $\alpha(t + p/t_n) = L_p \alpha(t + (p-1)/t_n) + B_p F_0(t + (p-1)/t_n)$

 $y(t) = H\alpha(t) + F_m(x_{10})$

(Equation 19)

where,

$$H = [\varpi_1(x_{10}), \varpi_2(x_{10}), \Lambda \ \varpi_m(x_{10})]^T$$

The University of Manchester

Control law for TPWL model

Quadratic Programming applied to obtain the control law:

 $DF_0 = (G_{y_1}^T Q G_{y_1} + rI)^{-1} G_{y_1}^T Q [Y_{ref} - G_1 \alpha(t) - G_{u_1} F_0(t-1)]$ (Equation 20) Where, r = 1 because only one output;

$$G_{y1} = \begin{bmatrix} HB_{1} & 0 & K & 0 \\ HB_{2} + HL_{2}B_{1} & HB_{2} & 0 & 0 \\ M & M & K & 0 \\ HB_{n} + HL_{n}B_{n-1} + \Lambda + HL_{n}L_{n-1}\Lambda L_{2}B_{1} & HB_{n} + HL_{n}B_{n-1} + \Lambda + HL_{n}L_{n-1}\Lambda L_{3}B_{2} & K & HB_{n} \end{bmatrix}$$

$$G_{u1} = \begin{bmatrix} HB_{1} \\ HB_{2} + HL_{2}B_{1} \\ M \\ HB_{n} + HL_{n}B_{n-1} + \Lambda + HL_{n}L_{n-1}\Lambda L_{2}B_{1} \end{bmatrix} \text{ and } G_{1} = \begin{bmatrix} HL_{1} \\ HL_{2}L_{1} \\ M \\ HL_{n}L_{n-1}\Lambda L_{1} \end{bmatrix}$$

Then the output variables can be calculated using $Y = G_1 \alpha(t) + G_{y1} DF_0(t) + G_{u1} F_0(t-1) + F_m(x_{10})$ (Equation 21)

MANCHESTER

SQP results of nonlinear model—10 tanks using direct ODE solver, dt=0.15sec

Results of nonlinear case using direct ODE's solver and (1-10) liquid level of tank

1-10;

(11) control input;

(12) output of tank ten compared to reference output

Size of problem: 10*100 Number of ODEs: 10

MANCHESTER

SQP results of nonlinear model—10 tanks

(3 basis functions) using direct ODE solver, dt=0.15sec

Results of nonlinear reduced model using direct ODE's solver and (1-10) liquid level of tank

- 1-10;
- (11) control input;

(12) output of tank ten compared to reference output

Size of problem: 3*100 Number of ODEs: 3

MANCHESTER

TPWL results of nonlinear model—10 tanks using 3 basis functions, dt=0.15sec

Results of nonlinear case using PWL POD solver and (1-10) liquid level of tank 1-10;

(11) control input;

(12) output of tank ten compared to reference output

Size of problem: 3*100 Number of ODEs: 3

MANCHESTER

Case study 2: Tubular reactor

Tubular reactor

- PDE-based model
- Complex dynamics
 - Rich parametric space, bifurcations
 - Saddle nodes
 - Sustained oscillations
- Appropriate control problem
 - Through a number of system parameters
 - Recycle
 - Jacket temperature

• For r=0 stable behaviour

MANCHESTER

The University of Manchester

- For r=0.5 Hopf bifurcation – Sustained oscillations
- Use a set of cooling zones
 stabilise system at r=0.5
 - To behave like system at r=0

MANCHESTEF

Sampling

- Heaviside functions
 - for example: 3 actuators have
 8 states and 5 actuators have
 32 states
- 11 samples for every Heaviside functions
 - Temperature [-0.999,1]
 - Concentration [0,1]

So, 8 x 11=88 samples for 3 actuators, and 32 x 11=352 samples for 5 actuators

$\left[0 \right]$	0	0^{-}
0	0	1
0	1	0
1	0	0
0	1	1
1	0	1
1	1	0
1	1	1

Tubular reactor

- 6 POD basis functions for temperature
- With 5 actuators and Heaviside functions

Tubular reactor

- 6 POD basis functions for concentration
- With 5 actuators and Heaviside functions

Tubular reactor: Time coefficients

Temperature with r=0.5

Concentration with r=0.5

Full vs. reduced model

Temperature with r=0.5

Concentration with r=0.5

The University of Manchester

MANCHESTER

Linearisation of temperature time coefficients

Static

MANCHESTER

Adaptive

MANCHESTER The University of Manchester Linearisation of concentration time coefficients

Static

10

10

10

10

MANCHESTER

Control formulation—tubular reactor with POD method

• Objective function: quadratic due to POD formulation

$$J = \min_{du} \left(\left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(x) + \overline{T_{16}} \right) - T_{ref}(t) \right)^{T} Q \left(\left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(x) + \overline{T_{16}} \right) - T_{ref}(t) \right) + DU^{T} RDU$$
where, $T_{ref}(t)$ is the reference state with r=0, (equation 24)
$$DU \text{ is control on actuators}$$
• s.t.
$$\frac{\partial \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right)}{\partial t} = -\frac{\partial \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right)}{\partial z} + \frac{1}{Pe_{c}} \frac{\partial^{2} \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right)}{\partial z^{2}} - B_{c} \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right) \exp\left(\frac{\gamma \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{1 + \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)} \right)$$

$$\frac{\partial \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right)}{\partial t} = -\frac{\partial \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z} + \frac{1}{Pe_{T}} \frac{\partial^{2} \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z^{2}} + B_{r} B_{c} \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right) \exp\left(\frac{\gamma \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z} + \frac{1}{Pe_{T}} \frac{\partial^{2} \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z^{2}} + B_{r} B_{c} \left(\sum_{k=1}^{m} \alpha_{k_{-C}}(t) \overline{\omega}_{k_{-C}}(z) + \overline{C(z)} \right) \exp\left(\frac{\gamma \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z} + \frac{1}{Pe_{T}} \frac{\partial^{2} \left(\sum_{k=1}^{m} \alpha_{k_{-T}}(t) \overline{\omega}_{k_{-T}}(z) + \overline{T(z)} \right)}{\partial z^{2}} \right)$$

Control formulation—POD method with TPWL method

• Piece-wise linear form on State Space Model:

 $\alpha(t+1) = L_1 \alpha(t) + B_1 U(t)$

MANCHESTER

The University of Manchester

$$\alpha(t + p/t_n) = L_p \alpha(t + (p-1)/t_n) + B_p U(t + (p-1)/t_n)$$

$$y(t) = H\alpha(t) + \overline{T_{16}}$$
 (equation 26)

where, $\alpha(t)$ includes time coefficients for concentration and temperature,

$$H = [0, 0, 0, \sigma_{1_T}(z_{16}), \sigma_{2_T}(z_{16}), \Lambda \sigma_{m_T}(z_{16})]^T$$

The University of Manchester

Control law for TPWL model

Quadratic Programming applied to obtain the control law:

 $DU = (G_{y1}^{T}QG_{y1} + rI)^{-1}G_{y1}^{T}Q[Y_{ref} - G_{1}\alpha(t) - G_{u1}U(t-1)] \quad (equation 27)$ Where, r = 1 because only one output; $G_{y1} = \begin{bmatrix} HB_{1} & 0 & K & 0 \\ HB_{2} + HL_{2}B_{1} & HB_{2} & 0 & 0 \\ M & M & K & 0 \\ HB_{n} + HL_{n}B_{n-1} + \Lambda + HL_{n}L_{n-1}\Lambda L_{2}B_{1} & HB_{n} + HL_{n}B_{n-1} + \Lambda + HL_{n}L_{n-1}\Lambda L_{3}B_{2} & K & HB_{n} \end{bmatrix}$ $G_{u1} = \begin{bmatrix} HB_{1} & \\ HB_{2} + HL_{2}B_{1} & \\ HB_{2} + HL_{2$

$$G_{u1} = \begin{bmatrix} M & & \\ HB_n + HL_nB_{n-1} + \Lambda + HL_nL_{n-1}\Lambda L_2B_1 \end{bmatrix} \text{ and } G_1 = \begin{bmatrix} M & \\ HL_nL_{n-1}\Lambda L_1 \end{bmatrix}$$

Then the output variables can be calculated using

$$Y = G_1 \alpha(t) + G_{y1} DU(t) + G_{u1} U(t-1) + \overline{T_{16}}$$
 (equation 28)

Conclusions

- A POD-based method has been developed
 - with static or adaptive TPWL
 - for non-linear large scale distributed systems
- Our method catches the dynamics of systems
- Significantly reduces computation time
 - compared to SQP method.
- Applied to both discretised and continuous systems

Future work

- Piece-wise affine reduced model
 - Use PAROS software for parametric control
- Other cases study
 - Microfiltration process
 - Lyophilisation process

Acknowledgements

- The financial contribution of the EU Programme CONNECT [COOP-2006-31638]
 CONFECT
- The financial contribution of the EU Progamme CAFE [KBBE-212754]

