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I M.A. NAIT ABDALLAH, On an application of Curry-Howard correspondence to quantum mechanics.
Dep. Computer Science, UWO, London, Canada; INRIA, Rocquencourt, France.
E-mail: areski@yquem.inria.fr.

We present an application of Curry-Howard correspondence to the formalization of physical processes
in quantum mechanics. Quantum mechanics’ assignment of complex amplitudes to events and its use of
superposition rules are puzzling from a logical point of view.

We provide a Curry-Howard isomorphism based logical analysis of the photon interference problem [1], and
develop an account in that framework. This analysis uses the logic of partial information [2] and requires, in
addition to the resolution of systems of algebraic constraints over sets of λ-terms, the introduction of a new
type of λ-terms, called phase λ-terms. The numerical interpretation of the λ-terms thus calculated matches
the expected results from a quantum mechanics point of view, illustrating the adequacy of our account, and
thus contributing to bridging the gap between constructive logic and quantum mechanics.

The application of this approach to a photon traversing a Mach-Zehnder interferometer [1], which is
formalized by context Γ = {x : s, 〈P , π〉 : s → a? → a, Q : s → b? → b, 〈J, π〉 : a → a′, 〈J ′, π〉 : b →
b′, 〈P ′, π〉 : b′ → c? → c, Q′ : b′ → d? → d, P ′′ : a′ → d′

? → d′, Q′′ : a′ → c′
? → c′, R : c ∨ c′ → C, S :

d ∨ d′ → D, ξ1 : a?, ξ2 : b?, ξ′1 : c?, ξ′2 : d?, ξ′′1 : d′
?
, ξ′′2 : c′

?}, yields inhabitation claims:

R(in1(Q′′(J(P xξ1))ξ′′2 )) +R(in2(P ′(J ′(Qxξ2))ξ′1)) : C

S(in1(P ′′(J(P xξ1))ξ′′1 )) + 〈S(in2(Q′(J ′(Qxξ2))ξ′2)), π〉 : D

which are the symbolic counterpart of the probability amplitudes used in the standard quantum mechanics
formalization of the interferometer, with constructive (resp. destructive) interference at C (resp. D).

[1] P. Grangier, G. Roger, and A. Aspect, Experimental evidence for a photon anticorrelation effect
on a beam splitter: a new light on single-photon interference., Europhysics Letters, vol. 1 (1986), pp. 173–
179.

[2] M.A. Nait Abdallah, The logic of partial information, EATCS Research Monographs in Theo-
retical Computer Science, Springer, 1995.

I RYOTA AKIYOSHI, An extension of the Ωµ+1-Rule.
Graduate School of Letters, Keio University, Tokyo, Mita 2-15-45, Japan.
E-mail: georg.logic@gmail.com.

By the author and G.Mints, Buchholz’s Ω-rule [3] was extended so that the complete cut-elimination
theorem was proved in [2]. That is, any derivation of arbitrary sequent can be transformed into its cut-free
derivation by the standard rules (with induction replaced by ω-rule). The main idea is to reformulate Ω-rule
using Takeuti’s distinction of explicit/implicit inference (cf. [5]).

In this talk we extend this approach to full Π1
1-CA+BI [1]. Basic ideas are as follows. First, we formulate

Buchholz’s iterated Ω-rule using Takeuti’s distinction of explicit/implicit inference. The formal system
introduced is a ramified system based on this distinction. The idea of ramification is due to Buchholz and
Schütte [4]. Second, we translate only implicit logical inferences into the extended iterated Ω-rules while
other explicit rules (especially explicit Π1

1-CA+BI) are preserved. For example, a rule for implicit second-
order universal quantifier is translated into the corresponding “ramified” rule. On the other hand, a rule
for explicit second-order universal quantifier is just preserved. Then we have the complete cut-elimination
theorem for Π1

1-CA+BI.
If time is permitting, we explain what kind of reduction steps for Π1

1-CA+BI are “recovered” from the
cut-elimination steps for the extended iterated Ω-rule.

[1] Ryota Akiyoshi, The complete cut-elimination theorem for Ωn+1-rule, preprint, 2011.
[2] Ryota Akiyoshi and Grigori Mints, Analysis and Extension of Omega-rule, submitted, 2011.
[3] Wilfried Buchholz, Explaining the Gentzen-Takeuti reduction steps, Archive for Mathematical

Logic, vol. 40, pp. 255–272, 2001.
[4] Wilfried Buchholz and Kurt Schütte, Proof Theory of Impredicative Subsystems of Analysis,

Bibliopolis, 1988.
[5] Gaisi Takeuti, Proof Thory, 2nd. edition, Springer, 1987.

I TOSHIYASU ARAI, Proof theoretic bounds of set theories.
Graduate School of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, JAPAN.
E-mail: tosarai@faculty.chiba-u.jp.

I will explain how to describe bounds on provability in set theories.

1Asterisked contributions are by title only.
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I SERIKZHAN BADAEV, MANAT MUSTAFA, ANDREA SORBI, A note on computable Friedberg number-
ings in the Ershov hierarchy.
Department of Mechanics and Mathematics, Al-Farabi Kazakh National University, Al-Farabi ave., 71,
Almaty, 050038, Kazakhstan.
E-mail: serikzhan.badaev@kaznu.kz.
E-mail: manat.mustafa@kaznu.kz.
Dipartimento di Scienze Matematiche ed Informatiche “Roberto Magari”, Università di Siena, 53100 Siena,
Italy.
E-mail: sorbi@unisi.it.

Minimal numberings became a fashionable research topic in the classical theory of numberings at the end
of the sixties. One of the main questions on minimal numberings, that is the problem of finding, up to
equivalence of numberings, the possible number of minimal numberings, was settled by Yu.L. Ershov. A
Friedberg numbering is a special but very important case of minimal numbering. The theory of minimal
numberings, and in particular Friedberg numberings, has many successful applications in classical recursion
theory, recursive model theory ([2], [5]), and theoretical computer science ([6]).The main powerful methods
for constructing families of c.e. sets with a finite number of Friedberg numberings, due to Goncharov [2],use
this he show that numbers of spectrum of the nonautoequivalent constructivizations of recursive models
is equal to {ω, 0, 1, 2 . . . } ([4]). It was the starting point of some of the most important researches on
algorithmic dimension of recursive models. Another application of this results was found by Kummer ([6]).

In [3], S.S. Goncharov showed that there exist classes of recursively enumerable sets admitting up to
equivalence exactly one Friedberg numbering which does not induce the least element in the corresponding
Rogers semilattice. Later, a simple example of a such a class was found by M. Kummer: This example
appears in the paper of S.A. Badaev and S.S. Goncharov ([1]). We generalize this result to all finite levels
of the Ershov hierarchy, by showing that for every n ≥ 1, there exists a Σ−1

n -computable family of sets,
with only one Friedberg numbering up to equivalence, that does not induce the least element in the Rogers
semilattice of the family.

[1] S.A. Badaev, S.S. Goncharov On computable minimal enumerations,.In Algebra. Proceedings of
the Third Internation-al Conference on Algebra, Dedicated to the Memory of M.I. Kargopolov.
Krasnoyarsk, Au-gust 23-28, 1993.- Walter de Gruyter, Berlin- New York, 1995, pp 21-32

[2] S.S. Goncharov Computable single-valued numerations. Algebra and Logic, 1980, v.19, n.5, pp,325–
356.

[3] S.S. Goncharov, The family with unique univalent but not the smallest enumeration., Trudy Inst.
Matem. SO AN SSSR, v.8, pp.42-48, Nauka, Novosibirsk, 1988 (Russian).

[4] Goncharov, S. S. Problem of the number of non-self-equivalent constructivizations. Algebra and
Logic, v.19, n.6(1980), 401-414.

[5] Yu.L. Ershov,Goncharov, S. S.,Constructive models,Transl. from the Russian. (English)
(Siberian School of Algebra and Logic) Siberian School of Algebra and Logic.. New York, NY:
Consultants Bureau. xii, 293 p. (2000) 1980.

[6] M. Kummer, Some applications of computable one-one numberings, Arch. Math. Log., v.30, n.4
(1990), 219-230.

I YERZHAN BAISSALOV, On linearly minimal Lie and Jordan algebras.
Department of Mechanics and Mathematics, Eurasian National University, Astana, Munaitpasov 5, Kaza-
khstan.
E-mail: baisalov@enu.kz.

Let A = 〈A; +, ·〉 be an infinite algebra over field Φ and T(A) be its multiplication algebra [1].
The algebra A is called linearly minimal, if each non-zero element t of T(A) is a surjective linear transfor-

mation of A (i.e. t : A → A is an onto map) with finite kernel. The property of linear minimality is much
weaker than one of definable minimality when we demand each definable (by a formula of first-order logic)
set of the algebra to be finite or co-finite.

The notion of linear minimality can be also defined for rings. It is shown in [2] that the classes of linearly
minimal rings and algebras coincide, and there are two main possibilities for a (non-trivial) linearly minimal
algebra A: either A is field or A is a infinite-dimensional central algebra over finite field Φ. Note also that
when the linearly minimal algebra A has trivial multiplication (i.e. a · b = 0 for all a, b ∈ A) the study of the
algebra is reduced to the study of the definably minimal Abelian group 〈A; +〉 which is done, for example,
in [3].

Theorem 1. Any non-trivial linearly minimal Lie algebra has an infinite locally finite subalgebra, which
is linearly minimal too.

Theorem 2. (1) Any non-trivial linearly minimal Jordan algebra over field Φ with charΦ 6= 2 is unital.
(2) Any linearly minimal unital Jordan algebra is a division algebra. If it is not associative then any

element generates a finite subalgebra.
Remark. When charΦ = 2 the notion of linear minimality can be easily adapted for quadratic Jordan

algebras [4].
Conjecture. Any non-associative linearly minimal Jordan algebra has an infinite locally finite subalgebra,

which is linearly minimal too.
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The following results (obtained jointly with R. Bibazarov, B. Duzban, A. Syzdykova, B. Tuktybaeva)
are the first steps towards the classification of linearly minimal algebras: any non-trivial linearly minimal
alternative algebra is a field, and so is any non-trivial linearly minimal Novikov algebra.

I think that the situation is not so easy and simple in the case of linearly minimal Lie or Jordan algebras.

[1] Nathan Jacobson, Lie algebras, Dover books on Mathematics, Dover, 1979.
[2] Yerzhan Baisalov, On linearly minimal rings and algebras Abstracts of Mal’tsev Meeting 2011,

Novosibirsk, October 11-14, p. 73 (in Russian).
[3] Bruno Poizat, Groups stables, Nur Al-Mantiq Wal-Ma’rifah, Launey, 1987.
[4] Kevin McCrimmon, A taste of Jordan algebras, Universitext, Springer, 2004.

I LIBOR BĚHOUNEK, Infinitesimal calculus over semilinear contraction-free logics.
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 2, 182 07
Prague 8, Czech Republic.
E-mail: behounek@cs.cas.cz.

The original notion of infinitesimal, though inconsistent over classical logic, can be formalized as consis-
tent over suitable weaker logics. In particular, I propose a reconstruction of infinitesimals over semilinear
contraction-free substructural logics (or logics of linear residuated lattices), which is naturally motivated and
turns out to be strong enough for a smooth development of basic notions of classical infinitesimal calculus
(including limits, derivatives, etc.). In this formalization, the truth values in linear residuated lattices are
regarded as the degrees of infinitesimality, with small real numbers approximating infinitesimals to larger or
smaller degrees (though none to the full degree, as there are no true infinitesimals among reals). With a few
technical adjustments to this basic idea, the notions of infinitesimal calculus can formally be defined, and
their properties derived, in first-order (or more conveniently, Henkin-style higher-order) logic MTL of linear
bounded integral commutative residuated lattices. Since it is only the set of infinitesimals that behaves
non-classically in this rendering of the infinitesimal calculus, all algebraic properties of infinitesimals are
obtained for free (as infinitesimals are ordinary real numbers). The basic theorems of the calculus (such
as the uniqueness of limits, the arithmetic of limits and derivatives, etc.) turn out to be easily derivable in
Henkin-style higher-order MTL. If time permits, the connection between this formalization of infinitesimal
calculus and non-classical topology over semilinear contraction-free logics will also be shown in the talk.

(Supported by grant GA ČR P103/10/P234.)

I ANATOLY P. BELTIUKOV ∗, Deductive synthesis of polynomial algorithms on finite partially ordered models
of second-order logic.
Udmurt State University, Universitetskaya 1, Izhevsk, Russia.
E-mail: belt@uni.udm.ru.

A method of constructing formal intuitionistic theories, destined for deductive synthesis of polynomial
algorithms, working on finite realizational models of the second-order predicate logic is proposed. Built
theories suppose some relation of partial order defined on a model.

Formal theories are built in the form of sequent calculi, focused on inverse search of inference. Special
rules are constructed to deal with partial orderings. Cyclic and recursive algorithms are extracted from the
applications of these rules.

Estimating computational complexity of algorithms we consider second-order algorithms, that may have
at entry also algorithms, but working only with data. In addition, if entrance algorithms are time polynomial
then the resulting algorithm is also time polynomial. Degree of this polynom is also limited with a polynom
from degrees of the initial polynoms.

The theories can be applied to programming of information systems. Proposed methods of extract-
ing algorithms are suitable for direct construction of programs on such actual programming languages as
JavaScript.

This work is continuing the works [1, 2, 3].

[1] A. P. Beltiukov, Intuitionistic formal theories with realizability in subrecursive classes, Annals of
Pure and Applied Logic, vol. 89 (1997), pp. 3–15.

[2] A strong induction scheme that leads to polynomially computable realizations, Theoretical
Computer Science, vol. 322 (2004), pp. 17–39.

[3] A Polinomial Programming Language, Transactions of the Institute for Informatics and
Automation Problems of the National Academy of Sciences of Armenia, Mathematical Problems
of Computer Science, vol. 27 (2006), pp. 11–19.

I CAROLINA BLASIO AND JOÃO MARCOS,Logics for discussion, and for agreement.
IFCH / UNICAMP, Campinas–SP, Brazil.
E-mail: carolblasio@gmail.com.
DIMAp / UFRN, Campus Universitário, Natal–RN, Brazil.
E-mail: jmarcos@dimap.ufrn.br.

For a given society of reasoning agents, we will entertain situations in which they are consulted upon their
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opinion about the informational content of logical expressions. In the simplest case, the agents are mere
sources of unstructured sentences that may be used to assert or to deny certain facts. However, invoking a
judgmental attitude on the part of the agent, we will assume instead that such sentences represent informa-
tion that is either accepted or rejected by the agent. For a source immersed in a classic-like environment, for
instance, acceptance may be taken as dual to rejection and these may be reduced to checking satisfiability
of an atom by a given assignment.

When collecting and processing the opinions of given agents, one may adopt several different strategies
in defining the underlying logic of their society. A cautious strategy, for instance, would be one in which
a given sentence is accepted by the society when at least one of the involved agents sees reason to accept
it. The idea of processing the information received from agents involved in a discussion appears, e.g., in
some of the oldest papers on paraconsistent logic: inconsistent opinions should be somehow accommodated
when cautiously collected. In the present contribution we shall show that the correct way of dualizing the
latter approach in terms of a bold collecting strategy would be one in which a given sentence is accepted
when none of the involved agents sees reason to reject it. This will allow us to smoothly accommodate
undeterminedness phenomena, typical of paracomplete logics. For some interesting illustrations we will
concentrate on cases in which agents are classic-like and sentences are structured. As we shall prove, the
natural broadly truth-functional semantics behind such approaches have non-deterministic features, yet is
computationally well-behaved.

I MARIJA BORIČIĆ, Hypothetical syllogism rule probabilized.
Faculty of Organizational Sciences, University of Belgrade, Jove Ilića 154, 11000 Beograd, Serbia.
E-mail: marija.boricic@fon.bg.ac.rs.

Let A,B and C be propositional formulae with the following probabilities of their truthfulness P (A) = a,
P (B) = b and P (C) = c. Then, the probabilistic versions of the hypothetical syllogism inference rule can
be given as follows:

P (A→ B) = r P (B → C) = s

max{r − a, r + s− 1} ≤ P (A→ C) ≤ min{s+ 1− a, r + c}
in Hailperin–style, and

P (A→ B) ≥ 1− ε P (B → C) ≥ 1− ε
P (A→ C) ≥ 1− 2ε

for each 0 ≤ ε ≤ 1
2
, in Suppes–style. These rules contain the probabilistic versions of both modus ponens

(see [1] and [2]), for a = 1, and modus tollens rule (see [3]), for c = 0. We can show that a complete proof–
theoretical treatment of probability operators, considered as a part of a polymodal language containing
formulae of the form Aα, with the intended meaning that P (A) ∈ α, where α is an element of a finite
algebra of subsets of [0, 1], can be based on this approach. On the other side, in case when implication
A→ B is interpreted as conditional probability P (B|A), although the probabilistic versions of modus ponens
and modus tollens are quite natural (see [1], [2] or [3]), there are arguments that probabilistic versions of
the hypothetical syllogism inference rule lose their usual logical sense.

[1] T. Hailperin, Probability logic, Notre Dame Journal of Formal Logic, vol. 25 (1984), pp. 198–212.
[2] P. Suppes, Probabilistic inference and the concept of total evidence, Aspects of Inductive Inference,

(J. Hintikka and P. Suppes, editors), North–Holland, Amsterdam, 1966, pp. 49–55.
[3] C. G. Wagner, Modus tollens probabilized, British Journal for the Philosophy of Science,

vol. 54(4) (2004), pp. 747-753.

I QUENTIN BROUETTE, A nullstellensatz and a positivstellensatz for ordered differential fields.
Université de Mons, 20 Place du Parc, 7000 Mons, Belgique.
E-mail: quentin.brouette@gmail.com.

We consider ordered differential fields endowed with m commuting derivations δ1, . . . ,
δm. Their theory has a model completion called m-CODF. An axiomatisation of m-CODF was given by M.
Singer [3] (in case m = 1) and later by M. Tressl [4] and C. Rivière [2] (in the general case).

We define the differential real radical of a differential ideal I (denoted by Rω(I) below) and note that it
is the smallest differential real ideal containing I.

Throughout K is a model of m-CODF.
We first obtain the analogue in this context of Dubois’ nullstellensatz for real closed fields (see [1]).

Theorem 1 (Nullstellensatz). Let I be a differential ideal of K{X1, . . . , Xn},

I(V(I)) = Rω(I).

For any differential polynomial f , let f∗ be the ordinary polynomial obtained by substituting for each
δe11 . . . δemm Xi a new variable Yk.

Let g1, . . . , gs ∈ K{X1, . . . Xn} and W := {x̄ ∈ Kn : g1(x̄) ≥ 0, . . . , gs(x̄) ≥ 0} and W ∗ := {x̄ ∈ Kd :
g∗1(x̄) ≥ 0, . . . , g∗s (x̄) ≥ 0} and d is such that for all i = 1, . . . , s, gi ∈ K[Y1, . . . , Yd].

Using a result of density of differential tuples, we obtain a differential version of Stengle’s positivstellensatz
(see [1]).
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Theorem 2 (Positivstellensatz). Let f ∈ K{X1, . . . , Xn} and P be the cone of K{X1, . . . , Xn} generated
by g1, . . . , gs.

Suppose that there exists an open set O such that O ⊂W ∗ ⊂ cl(O).

∀x̄ ∈W, f(x̄) ≥ 0⇔ ∃m ∈ N, g, h ∈ P,∀x̄ ∈W : f(x̄).g(x̄) = f2m(x̄) + h(x̄).

[1] J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Springer-Verlag, 1987.
[2] C. Rivière, The theory of closed ordered differential fields with m commuting derivations, Comptes

rendus de l’académie des sciences Paris, ser. I 343 (2006), pp. 151–154.
[3] M. Singer, The model theory of ordered differential fields, Journal of Symbolic Logic, vol. 43

(1978), no. 1, pp. 82–91.
[4] M. Tressl, The uniform compagnion for large differential fields of characteristic zero, Transactions

of the american mathematical society, vol. 357 (2005), pp. 3933–3951.

I MAURICE CHIODO, The computational complexity of recognising embeddings, and a universal finitely
presented torsion-free group ∗.
Department of Mathematics and Statistics, The University of Melbourne, Parkville VIC 3010, Australia.
E-mail: m.chiodo@pgrad.unimelb.edu.au.

We extend a result by Lempp [1] that recognising torsion-freeness for finitely presented groups is Π0
2-

complete; we show that the problem of recognising embeddings of finitely presented groups is at least Π0
2-

hard, Σ0
2-hard, and lies in Σ0

3. We conjecture that this problem is indeed Σ0
3-complete. We give a uniform

construction that, on input of a recursive presentation of a group P , outputs a recursive presentation P tor-free

of a torsion-free group, which is isomorphic to P whenever P is itself torsion-free. We apply our constructions
to form a universal finitely presented torsion-free group.

[1] S. Lempp, The computational complexity of recognising torsion-freeness of finitely presented groups,
Bulletin of the Australian Mathematical Society, vol. 56 (1997), pp. 273–277.

I JOHN CORCORAN, Tarski’s extensional functions ∗.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

“Extensional functions” appear twice in [1]—in different senses. In his 1923 dissertation [1, pp. 1–23],
“functions” are interpretable as type-theoretic mathematical “mappings”: not linguistic expressions [1,
pp. 5, 23]. In Tarski’s 1935 truth-definition paper [1, pp. 152–278], “functions” are expressions containing
free variables. Below mapping and function have contrasting senses: mapping always has the mathematical
sense, function always the linguistic sense. Mappings never contain variables, functions always contain
variables.

Arithmetic languages have the three-character absolute-value function ‘|x|’ associated with the absolute-
value mapping carrying numbers to their absolute values. Set-theoretic languages have the three-character
singleton function ‘{x}’ associated with the singleton mapping carrying sets to their singletons. Functions,
which are not names, convert into names by replacing variables with constants: ‘| − 2|’ names two; ‘{ω}’
names ω’s singleton.

The respective metalanguages have the three-character quotation function ‘ ‘x’ ’ convertible to expression
names: ‘ ‘a’ ’ names the first letter—the one-character expression ‘a’. As Tarski knew, the expression ‘ ‘x’ ’
is ambiguous: in one sense it is a function; in another sense it is a name of the 24th letter, ecks. The
three-character expression ‘ ‘x’ ’ is named with a five-character expression ‘ ‘ ‘x’ ’ ’—applying two-character
single-quotation twice.

The singleton function ‘{x}’ and the absolute-value function ‘|x|’ are both extensional in Tarski’s implicit
sense [1, p. 161]—substituting coextensive names for the variable produces coextensive names: |2| = |1 + 1|
and {ω} = {ω− 1}. However, as Tarski implied, the quotation function ‘ ‘x’ ’ is nonextensional: ‘2’ 6= ‘1 + 1’
and ‘ω’ 6= ‘ω − 1’—no one-character expression is a three-character expression.

[1] Alfred Tarski, Logic, semantics, metamathematics, Hackett, 1983.

I JOHN CORCORAN AND HASSAN MASOUD, Existential-import sentence schemas: classical and rela-
tivized ∗.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

The variable-enhanced-English sentence schema ‘for every integer x P (x)’ translates the first-order schema
‘∀xP(x)’ interpreted in the integers: ‘for every integer x’ translates ‘∀x’ applied to integers.

The Classical Existential-Import Schema, CEIS, has as instances every conditional whose antecedent is
a universal sentence and whose consequent is the corresponding existential—replacing the initial universal
quantifier by the existential.

If for every integer x P(x), then for some integer x P(x).

[∀xP(x)→ ∃xP(x)]
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Obviously every CEIS instance is tautological [logically true].
The Relativized Existential-Import Schema, REIS, has as instances every conditional whose antecedent is a

universalized conditional and whose consequent is the corresponding existentialized conjunction—replacing
the initial universal quantifier by the existential and replacing the conditional connective by conjunction.

If for every integer x [if A(x), then C(x)], then for some integer x [A(x) and C(x)].

[∀x (A(x)→ C(x))→ ∃x (A(x) & C(x))]

Non-tautological REIS instances are familiar. But, contrary to textbook impressions, certain instances of
REIS are tautological. A necessary and sufficient condition for REIS instances to be tautological follows.

Theorem. A REIS instance is tautological iff the existentialization ∃xA(x) of the antecedent condition
A(x) is tautological.

[∀x (A(x)→ C(x))→ ∃x (A(x) & C(x))] is tautological

if and only if

∃xA(x) is tautological.

“If” is obvious. The four key ideas in our “only-if” proof are:

(1) ∃xA(x) is tautological if ∼ ∃xA(x) implies ∃xA(x).
(2) ∼ ∃xA(x) implies ∀x (A(x)→ C(x)).
(3) ∀x (A(x)→ C(x)) implies ∃x (A(x) & C(x)), by the hypothesis.
(4) ∃x (A(x) & C(x)) implies ∃xA(x).

This lecture complements this Bulletin vol. 11 (2005), p. 460; vol. 11 (2005), pp. 554-555; vol. 12 (2006)
pp. 219–240 and vol. 13 (2007) pp. 143–144; and vol. 17 (2011), pp. 324–325.

I JOHN CORCORAN AND JOAQUIN MILLER, Meanings of show ∗.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

We study uses of show in logic: literal, metaphorical, elliptical, etc. Some are confused—through not
distinguishing literal from figurative uses.

A teacher shows students that not every integer is either positive or negative.
An easy proof shows that not every integer is either positive or negative.
Euclid’s construction shows how to construct equilateral triangles.

Zero shows that not every integer is either positive or negative.
Zero is a counterexample for “every integer is either positive or negative”. A counterexample for a given

proposition shows the proposition false. Thus, zero shows “every integer is either positive or negative” to
be false. Compare [1].

The fact that zero is neither positive nor negative shows that not every integer is either positive or
negative.

The theorem that zero is an integer which is neither positive nor negative shows that not every integer is
either positive or negative.

The proposition “zero is zero” does not say that it—the proposition “zero is zero”—is tautological; how-
ever, according to some, it does show that it is. In fact, some logicians say every tautology itself shows that
it is a tautology ([2], 6.127).

The grammatical categories of the verb show are diverse. It occurs as a two-place verb completed by both
subject and direct object, but it also occurs as a three-place verb requiring for its completion an indirect
object as well. Moreover, sometimes it requires a human subject; it is an action verb—like teach and infer.
Other times it requires an inert non-human subject; it is a timeless relation verb—like equal and imply.

[1] John Corcoran, Counterexamples and proexamples, this Bulletin, vol. 11 (2005), p. 460.
[2] Ludwig Wittgenstein, Tractatus Logico-Philosophicus, Kegan Paul, London, 1921.

I JOHN CORCORAN AND SRIRAM NAMBIAR, Conversely: extrapropositional and prosentential ∗.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

This self-contained lecture examines uses and misuses of the adverb conversely with special attention
to logic and logic-related fields. Sometimes adding conversely after a conjunction such as and signals
redundantly that a converse of what preceded will follow.

Tarski read Church and, conversely, Church read Tarski.(1)

In such cases, conversely serves as an extrapropositional constituent of the sentence in which it occurs: delet-
ing conversely doesn’t change the proposition expressed. Nevertheless it does introduce new implicatures:
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a speaker would implicate belief that the second sentence expresses a converse of what the first expresses.
Perhaps because such usage is familiar, the word conversely can be used as “sentential pronoun”—or

prosentence—representing a sentence expressing a converse of what the preceding sentence expresses.

Tarski read Church and conversely.(2)

This would be understood as expressing the proposition expressed by 1.
Prosentential usage introduces ambiguity when the initial proposition has more than one converse. Con-

fusion can occur if the initial proposition has non-equivalent converses.

Every proposition that is the negation of a false proposition is true and conversely.

One sense implies that every proposition that is the negation of a true proposition is false, which is true of
course. But another sense, probably more likely, implies that every proposition that is true is the negation
of a false proposition, which is false: the proposition that one precedes two is not a negation and thus is not
the negation of a false proposition.

The above also applies to synonyms of conversely such as vice versa. Although prosentence has no
synonym, extrapropositional constituents are sometimes called redundant rhetoric, filler, or expletive.

Authors discussed include Aristotle, Boole, De Morgan, Peirce, Frege, Russell, Tarski, and Church.

I JOHN CORCORAN AND DANIEL NOVOTNÝ ∗, Formalizing Euclid’s first axiom.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

Euclid’s Elements divides its ten premises into two groups of five.
The first five (postulates)—applying in geometry but nowhere else—are specifically geometrical. The first:

“to draw a line from any point to any point”; the last: the parallel postulate.
The second five (axioms) apply in geometry and elsewhere. They are non-logical principles governing

magnitude types both geometrical (e.g., lengths, areas) and non-geometrical (e.g., durations, weights). Euclid
called axioms koinai ennoia: koinai (“shared”, “communal”, etc.), ennoia (“designs”, “thoughts”, etc.). The
first axiom is:

Ta toi autoi isa kai allelois estin isa.

Things that equal the same thing equal one another.

One first-order translation in variable-enhanced English (cf. [2, p. 121] is:

Given two things x, y, if for something z, x and y equal z,(1)

then x equals y.

Translation (1) overlooks Euclid’s plural construction not limited to two. Second-order translations avoid
that objection.

For any set S, if for something z, everything x in S equals z,(2)

then anything x in S equals anything y in S.

Translations (1) and (2) are “too broad”: they cover all magnitude types but by amalgamating them into
a hodgepodge universe containing all magnitude types—a universe violating category restrictions and not
itself a magnitude type.

Translation (3) is a second-order axiom schema (cf. [1]) having one instance for each magnitude type.
‘MAG’ is placeholder for magnitude words such as length, area, etc.

For any set S, if for some MAG z, every MAG x in S equals z,(3)

then any MAG x in S equals any MAG y in S.

We treat several other translations and formalizations.

[1] John Corcoran, Schemata, The Bulletin of Symbolic Logic, vol. 12 (2006), pp. 219–240.
[2] Alfred Tarski, Introduction to logic, Dover, New York, 1995.

I JOHN CORCORAN AND JOSÉ MIGUEL SAGÜILLO, Euclid’s weak first axiom ∗.
Philosophy, University at Buffalo, Buffalo, NY 14260-4150, USA.
E-mail: corcoran@buffalo.edu.

“Things that equal the same thing equal one another” [TES] is Euclid’s first axiom in Elements—written
about 300 BCE, some 50 years after Aristotle’s Analytics. There is no trace of TES before Euclid, but
afterward it was often repeated verbatim or nearly verbatim. For example, over 400 years later, Galen
stated it at least three times [1, pp. 430–442]; over 700 years later Proclus stated it several times. It
still influences logic. After distinguishing geometrical equality [“has-the-same-size-as”] from logical identity
[“is-the-same-entity-as”], Tarski adapted TES for line-segment geometry where congruence and equality are
coextensive—“Two segments congruent to the same segment are congruent to each other” [3, p. 121].

TES is the only Elements axiom governing equality alone: three others govern equality with addition,
subtraction, and coincidence, respectively. A closely-related proposition (the first axiom’s twin)—“Things
that the same thing equals equal one another” [TSE]—has similar practical applications. After all, things
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that equal the same thing are things that the same thing equals [TES–TSE], and conversely [TSE–TES];
both are consequences of equality’s symmetry.

Euclid’s first axiom seems poorly chosen if characterizing equality were a goal. It is particularly weak. As
a measure of its weakness, note that it doesn’t imply any of the following: reflexivity, symmetry, transitivity,
TSE (its twin), TES–TSE, and TSE–TES.

The independence results use the counterargument method [2, pp. 32ff] from Aristotle’s Analytics and
available to Euclid—after first-order translations following Tarski’s examples [3, pp. 120–125].

This lecture treats the history, philosophy, and logic of Euclid’s first axiom.

[1] Jonathan Barnes, Truth, etc., Oxford University Press, 2007.
[2] John Corcoran, Argumentations and logic, Argumentation, vol. 3 (1989), pp. 17–43.
[3] Alfred Tarski, Introduction to logic, Dover, 1995.

I JAN DOBROWOLSKI, New examples of small Polish structures.
Instytut Matematyczny, Uniwersytet Wroc lawski, Plac Grunwaldzki 2/4, 50-384 Wroc law, Poland.
E-mail: dobrowol@math.uni.wroc.pl.

We answer some questions from [1] by giving suitable examples of small Polish structures. First, we
present a class of small Polish group structures without generic elements. Next, we give a first example of
a small non-zero-dimensional Polish G-group.

[1] Krzysztof Krupiński, Some model theory of Polish structures, Transactions of the American
Mathematical Society, vol. 362 (2010), no. 7, pp. 3499–3533.

I SEBASTIAN EBERHARD, Applicative theories for logarithmical complexity classes.
Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstr. 10, CH-3012 Bern,
Switzerland.
E-mail: eberhard@iam.unibe.ch.

Applicative systems are a formalisation of the lambda calculus and form the base theory of Feferman’s
explicit mathematics. For many linear and polynomial complexity classes corresponding applicative systems
have already been developed by authors as Kahle, Oitavem, and Strahm. In contrast to the setting of
bounded arithmetic, this setting allows very explicit and straightforward lower bound proofs because no
coding of graphs of functions is necessary. For an overwiev, we recommend Strahm’s [2].

We present natural applicative theories for the logarithmic hierarchy, alternating logarithmical time, and
logarithmic space. For the first two algebras, we formalize function algebras having concatenation recursion
as main principle. For logarithmical space, we formalize an algebra with safe and normal inputs and outputs.
This algebra allows to shift small safe inputs to the normal side which is against the safe-normal paradigm
but helps to describe logarithmical space in an elegant way.

The theories corresponding to the mentioned complexity classes all contain the predicates W for normal
and V for safe words, and are similar in spirit to Cantini’s theory for polytime in [1]. t ∈ V intuitively
expresses that t is a stored but not fully accessible content. The interplay between W which formalizes fully
accessible content and V allows an easy formulation of induction principles justifying concatenation - and
sharply bounded recursion.

[1] Cantini, Polytime, combinatory logic and positive safe induction, Archive for Mathematical Logic,
vol. 41 (2), pp. 169–189.

[2] Strahm, Weak theories of operations and types, Schindler (Ed.), Ways of proof theory, pp. 441–
468.

I PHILIP EHRLICH, The Surreal Number Tree.
Department of Philosophy, Ohio University, Athens OH, 45701, USA.
E-mail: ehrlich@ohio.edu.

In his monograph On Numbers and Games cite1er, J. H. Conway introduced a real-closed field No, that
is so remarkably inclusive that, subject to the proviso that numbers construed here as members of ordered
number fields be individually definable in terms of sets of NBG, it may be said to contain ‘All Numbers
Great and Small’. In addition to its inclusive structure as an ordered field, No has a rich algebraico-binary
tree-theoretic structure, or simplicity hierarchy, that emerges from the recursive clauses in terms of which
it is defined. Among the striking simplicity-hierarchical features of No is that every surreal number can
be assigned a canonical proper name called its Conway name (or normal form) that is a reflection of its
characteristic simplicity-hierarchical properties. In [2], answers are provided for the following two questions
that are motivated by No’s structure as an ordered binary tree: (i) Given the Conway name of a surreal
number, what are the Conway names of its two immediate successors? (ii) Given a chain of surreal numbers
of infinite limit length, what is the Conway name of the immediate successor of the chain? The purpose of
this talk is to provide an introduction to [2].

[1] J. H. Conway, On numbers and games, Academic Press, 1976.
[2] Philip Ehrlich, Conway Names, the Simplicity Hierarchy and the Surreal Number Tree, The Journal

of Logic and Analysis, vol.3 (2011), no.1, pp.1–26.
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I FREDRIK ENGSTRÖM, Generalized quantifiers in dependence logic.
Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg, Box 200, 405 30
Gothenburg, Sweden.
E-mail: fredrik.engstrom@gu.se.
URL Address: http://engstrom.morot.org.

Partially ordered quantifier prefixes, or branching quantifiers, are needed when formalizing natural lan-
guages. The case of partially ordered existential and universal quantifiers has been studied in length, leading
to systems like Hintikka and Sandu’s IF-logic and Väänänen’s dependence logic. For a compositional se-
mantical analysis of these systems the framework, invented by Hodges, using sets of assignments instead of
single assignements, is needed.

Branching of generalized quantifiers, however, is yet to be analyzed compositionally. We will in this
talk present a compositional account of partially ordered monotone generalized quantifiers. It is based on
dependence logic but with a modified dependence atom. Instead of using functional dependence we are
forced to use multivalued dependence: A set of assignments X satisfies the multivalued dependence [x̄� y]
if

∀s, s′∈X
(
s(x̄) = s′(x̄)→ ∃s0∈X

(
s0(x̄, ȳ) = s(x̄, ȳ) ∧ s0(z̄) = s′(z̄)

))
,

where z̄ are the variables in X which are not in x̄ or ȳ. Galliani proved in [3] that this atom if definably
equivalent to the independence atom recently introduced by Väänänen and Grädel.

We will end by characterizing the expressive power of these extensions of dependence logic by monotone
generalized quantifiers in terms of quantifier extensions of existential second-order logic.

[1] Fredrik Engström and Juha Kontinen, Characterizing quantifier extensions of dependence logic,
Arxiv preprint, arXiv:1202.5247, 2012.

[2] Fredrik Engström, Generalized quantifiers in dependence logic, Journal of Logic, Language and
Information, 10.1007/s10849-012-9162-4.

[3] Pietro Galliani, Inclusion and exclusion dependencies in team semantics—on some logics of imper-
fect information, Annals of Pure and Applied Logic, vol. 163 (2012), no. 1, pp 68-84.

I HADI FARAHANI, HIROAKIRA ONO,
Substructural view of Glivenko theorems and negative translations ∗.

Department of Computer Sciences, Shahid Beheshti University, Evin, Tehran, Iran.
E-mail: hadimathematics@gmail.com.
Research Center for Integrated Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa,
923-1292, Japan.
E-mail: ono@jaist.ac.jp.

In [3], the second author has developed a proof-theoretic approach to Glivenko theorems for substructural
propositional logics. In the present talk, by using the same techniques, we will extend them for substructural
predicate logics relative not only to classical predicate logic but also to an arbitrary involutive substructural
predicate logic over QFLe. It will be pointed out that in this extensions, the following double negation shift
scheme (DNS) plays an essential role.

(DNS) : ∀x¬¬ϕ(x)→ ¬¬∀xϕ(x)

Among others, it is shown that the Glivenko theorem holds for QFLe† + (DNS) relative to classical predicate
logic. Moreover, this logic is the weakest one among predicate logics over QFLe for which the Glivenko
theorem holds relative to classical predicate logic.

Then we will study negative translations of substructural predicate logics by using the same approach.
Our substructural analysis of Glivenko theorems will induce negative translation results of involutive sub-
structural predicate logics over QFLe in a natural way. We introduce a negative translation, called extended
Kuroda translation and the existence of the weakest logic is proved among such logics for which the ex-
tended Kuroda translation works. Thus we give a clearer unified understanding of negative translations by
substructural point of view.

[1] J. Avigad, A variant of the double-negation translation, Carnegie Mellon Technical Report CMU-
PHIL, vol. 179(2006).

[2] G. Ferreira, P. Oliva, On various negative translations, Third International Workshop on
Classical Logic and Computation (Brno, Czech Republic), (Steffen van Bakel Stefano Berardi and Ulrich
Berger), vol. 47, Electronic Proceedings in Theoretical Computer Science, 2011, pp. 21–33.

[3] H. Ono, Glivenko Theorems Revisited, Annals of Pure and Applied Logic, vol. 161(2009), pp.
246–250.
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I THOMAS MACAULAY FERGUSON, Ramsey’s footnote and Priest’s connexive logics.
Philosophy Department, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States.
E-mail: tferguson@gc.cuny.edu.

The family of logics known as connexive logics are characterized by two theses. Using the notation of [1],
these are

1: Aristotle’s Thesis (AT) ∼ (ϕ >∼ ϕ), and
2: Boethius’ Thesis (BT) ∼ ((ϕ > ψ) ∧ (ϕ >∼ ψ)).

Connexive logics are distinct in that, in verifying AT and BT, they have properly superclassical theorems.
Another feature of these theses is that they have historically been appealed to often in philosophical literature,
albeit subtly.

One such instance is in Frank Ramsey’s footnote in [3]:

If two people are arguing “If p will q?” and are both in doubt as to p, they are adding p
hypothetically to their stock of knowledge and arguing on that basis about q; so that in a sense
“If p, q” and “If p, q̄” are contradictories.

The assertion that p > q and p >∼ q are contradictories yields two consequences, BT itself, and

3: Conditional Excluded Middle (CEM) (ϕ > ψ) ∨ (ϕ >∼ ψ)

Logics have been generated accounting for CEM in the spirit of Ramsey such as Stalnaker’s C2 (see [1]);
what has not been noted is that BT is a consequence of the footnote. Relaxing the term “contradictories”
to “contraries,” Ramsey’s assertion is equivalent to BT.

By following this weakening along the lines of [1], one arrives at a family of connexive logics, including
Graham Priest’s connexive logics described in [2]. As this semantics is developed, an alternative semantics
in the spirit of Ramsey’s footnote for connexive logics emerges.

[1] Donald Nute, Topics in Conditional Logic, Philosophical Studies Series in Philosophy, D. Reidel
Publishing Company, 1980.

[2] Graham Priest, Negation as cancellation, and connexive logic, Topoi, vol.18, no.2, pp.141-148.
[3] Frank Ramsey, General propositions and causality, Philosophical Papers (Mellor, D.H., editor),

Cambridge University Press, New York, 1990, pp.145-163

I MICHELE FRIEND, Genetic Proofs, Reductions and Rational Reconstruction Proofs.
Philosophy, George Washington University, 801 22nd. St. N.W., Washington D.C. U.S.A..
E-mail: Michele@gwu.edu.

Some theorems in mathematics have several proofs. Why? It is clear that proofs are not meant to only
convince us of the truth of the theorem being proved. Rather, they give us explanations. I explore the
philosophical implications of three conceptions of proof: the genetic conception, reductions and the rational
reconstruction conception.

The genetic conception traces a theorem back to the setting in which the mathematician thought of the
proof and the theorem. We learn the historical origin of the theorem. The reduction traces the theorem back
to some more primitive conceptions. The primitive conceptions are associated with a foundational project,
such as constructivism, realism or logicism. With such a proof, we learn the conceptual justification for the
theorem. The ‘rational reconstruction’ conception of proof is one where we demonstrate that it is possible
to understand a theorem in a novel setting, for example, we might give a proof in Topos theory of a theorem
in geometry. We learn the spread of the theorem: in what other theories it is provable. The lessons become
more interesting when the novel setting is inconsistent with the original setting.

As an example, I shall focus on Lobachevsky’s solution to the problem of indefinite integrals. I shall
compare Lobachevsky, Beltrami and Rodin’s constructions and re-constructions, and offer one of my own,
pointing out the lessons in each case. Lobachevsky give the genetic proof, Beltrami reduces the proof to
Euclidean geometry, which was thought to be more obvious, or primitive. Rodin reconstructs the proof
in topos theory to give a neutral proof, which is closer to Lobachevsky’s purpose. I give a reconstruction
using techniques developed in the paraconsistency literature, in order to justify using what might look like
contradictory methods. Each type of proof teaches us different lessons.

I JEROEN GOUDSMIT, On the admissible rules of Gabbay–de Jongh logics.
Department of Philosophy, Utrecht University, Janskerkhof 13a, The Netherlands.
E-mail: jeroen.goudsmit@phil.uu.nl.
URL Address: http://jeroengoudsmit.com.

The admissible rules of a logic are those rules that can be added without affecting provability. Not all
admissible rules of propositional intuitionistic logic (IPC) are derivable, a property shared with numerous
modal and intermediate logics. Dick de Jongh and Albert Visser conjectured that the now well-known Visser
rules characterize admissibility of IPC, in that these rules are sufficient and necessary to derive all admissible
rules of IPC. Rozière [3] and Iemhoff [2] independently proved this.

We posit the de Jongh rules, an ostensible generalization of the Visser rules. Much like the Visser rules,
they can be stratified along the natural numbers. We study the strata separately, and for logics that admit
the disjunction property, we can tie admissibility of these rules to a stratified version of the extension
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property. Furthermore, these rules characterize admissibility for the Gabbay–de Jongh logics [1].
Many of our results hold in arbitrary intermediate logics. Internally, we mostly work with sets of formulae,

shying away from semantics whenever sensible. This work might smoothen some other proofs in the literature.
We employ these techniques to prove that a rule is admissible for the nth Gabbay–de Jongh logic if and only
if it can be derived in the same logic enriched with the de Jongh rules up to the (n + 1)th stratum. We
also prove that the Gabbay–de Jongh logics have finitary unification type. This is joint work with Rosalie
Iemhoff.

[1] Gabbay, Dov M. and de Jongh, Dick H.J., A Sequence of Decidable Finitely Axiomatizable In-
termediate Logics with the Disjunction Property, The Journal of Symbolic Logic, vol. 39 (1974), no. 1,
pp. 67–78

[2] Iemhoff, Rosalie, On the Admissible Rules of Intuitionistic Propositional Logic, The Journal of
Symbolic Logic vol. 66 (2001), no. 1, pp. 281–294

[3] Rozière, Paul, Règles admissibles en calcul propositionnel intuitionniste, Université de Paris,
1992

I VOLKER HALBACH, Self-reference ∗.
Volker Halbach, University of Oxford, New College, ox1 3bn, England.
E-mail: volker.halbach@new.ox.ac.uk.
URL Address: http://users.ox.ac.uk/ sfop0114/.

A Gödel sentence is a sentence that ‘says about itself’ that it’s not provable; a Henkin sentence is a
sentence that ‘says about itself’ that it’s provable; a Σ1-truth teller is a sentence that ‘says about itself’ that
it is Σ1-true.

I’ll will try to look more closely at the way such self-referential statements are constructed. It is well known
that the properties of self-referential sentences may depend on the chosen Gödel coding and on the formula
representing the property in question. It less understood that the properties of self-referential statements
depend also on the way, self-reference is obtained once the representing formula and the Gödel coding have
been fixed.

Kreisel [1] constructed a refutable Henkin sentence. To this end he employed a non-canonical provability
predicate but also a non-canonical construction to obtain self-reference. I will discuss some applications of
Kreisel’s basic technique and related observations by Albert Visser.

[1] Georg Kreisel, On a problem of Henkin’s, Indagationes Mathematicae, vol. 15 (1953), pp. 405–
406.

I CHRISTOPHER HAMPSON, AGI KURUCZ, The modal logic of ‘elsewhere’ as a component in product
logics.
Department of Informatics, King’s College London, Strand, London, WC2R 2LS, U.K.
E-mail: christopher.hampson@kcl.ac.uk.
Department of Informatics, King’s College London, Strand, London, WC2R 2LS, U.K.
E-mail: agi.kurucz@kcl.ac.uk.

The finitely axiomatisable and decidable modal logic Diff of ‘elsewhere’ (or ‘difference operator’) is known
to be Kripke complete with respect to the class of symmetric, pseudo-transitive frames. These frames closely
resemble S5-relations (i.e. equivalence relations) and it is little surprise that the validity problems for Diff
and S5 have the same co-NP complexity, and both logics enjoy the finite model property.

Here we turn our attention to decision and axiomatisation problems of two-dimensional product logics
L1×L2, by which we mean the multimodal logic of all product frames where the first component is a frame
for L1 and the second a frame for L2. It is well-known that product logics of the form L × S5 are usually
decidable, whenever L is a decidable (multi)modal logic. We even have that S5×S5 enjoys the exponential
finite model property. Here we present some cases where the transition from L × S5 to L ×Diff not only
increases the complexity of the validity problem, but in fact introduces undecidability and the lack of finite
model property. We also show that no modal product logic of the form L ×Diff is finitely axiomatisable,
whenever L is between K and S5.

[1] D.M. Gabbay, A. Kurucz, F. Wolter and M. Zakharyaschev, Many-Dimensional Modal
Logics: Theory and Applications, Studies in Logic, Elsevier, 2003.

I ZUZANA HANIKOVÁ, On logics of continuous t-norms and their residua.
Institute of Computer Science, Academy of Sciences of the Czech Republic, 182 07 Prague, Czech Republic.
E-mail: zuzana@cs.cas.cz.

In his monograph [6], P. Hájek proposed the (propositional) logic BL (Basic Logic) for the semantics
given by continuous t-norms and their residua on the real unit interval [0, 1]; such structures were called
standard BL-algebras. In [3], it was shown that BL indeed was complete w.r.t. the class of standard BL-
algebras, a subclass of its general algebraic semantics, the variety BL of BL-algebras. A thorough study
carried out in [1] revealed that BL had uncountably many subvarieties. However, it can be shown ([7])
that individual standard BL-algebras generate only countably many subvarieties of BL. This remains true
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even if one considers subvarieties generated by classes of standard BL-algebras. Some nice properties for
the logics of standard BL-algebras follow; among these are finite axiomatizability (cf. [4, 5]) and bounds on
computational complexity (cf. [2, 7]). Recently, the logical landscape of which BL is a prominent element
has been investigated in the book [8].

[1] Paolo Aglianò, Franco Montagna, Varieties of BL-algebras I: General properties, Journal of
Pure and Applied Algebra, vol. 181 (2003), no. 2–3, pp. 105–129.

[2] Matthias Baaz, Petr Hájek, Franco Montagna, Helmut Veith, Complexity of t-tautologies,
Annals of Pure and Applied Logic, vol. 113 (2002), no. 1–3, pp. 3–11.

[3] Roberto Cignoli, Francesc Esteva, Llúıs Godo, Antoni Torrens, Basic fuzzy logic is the logic
of continuous t-norms and their residua, Soft Computing, vol. 4 (2000), no. 2, pp. 106–112.

[4] Francesc Esteva, Llúıs Godo, Franco Montagna, Equational characterization of subvarieties
of BL-algebras generated by t-norm algebras, Studia Logica, vol. 76 (2004), no. 2, pp. 161–200.

[5] Nikolaos Galatos, Equational bases for joins of residuated-lattice varieties, Studia Logica, vol. 76
(2004), no. 2, pp. 227–240.

[6] Petr Hájek, Metamathematics of Fuzzy Logic, Trends in Logic, Kluwer, Dordrecht, 1998.
[7] Zuzana Haniková, A note on the complexity of propositional tautologies of individual t-algebras,

Neural Network World, vol. 12 (2002), pp. 453–460.
[8] Petr Cintula, Petr Hájek, Carles Noguera, editors. Handbook of Mathematical Fuzzy Logic, College

Publications, London, 2011.

I DANIEL HOFFMANN, Multiplicatively iterative higher derivations.
Instytut Matematyczny, Uniwersytet Wroc lawski, Plac Grunwaldzki 2/4, 50-384 Wroc law, Poland.
E-mail: daniel.max.hoffmann@gmail.com.

For fields of characteristic p > 0, we will show that every derivation D such that D(p) = D expands to a
multiplicatively iterative Hasse-Schmidt derivation. It is known in the case of the standard (i.e. additive)

iterativity condition: see Theorem 27.4. in [1], where the author expands a derivationD such thatD(p) = 0 to
an iterative Hasse-Schmidt derivation. Afterwards we will focus on a geometric axiomatisation of existentially
closed Hasse-Schmidt fields with one multiplicatively iterative derivation as was done in [2] for the standard
iterativity condition.

[1] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics,
Cambridge University Press, 1989.

[2] Piotr Kowalski, Geometric axioms for existentially closed Hasse fields, Annals of Pure and Ap-
plied Logic, vol.135 (2005), no.1-3, pp.286-302.

I TOMÁŠ HOLEČEK, On a rule of propositional function instantiation.
Department of Philosophy, Faculty of Humanities, Charles University in Prague.
E-mail: holecek@ojrech.cz.

The proofs in the first edition of Principia Mathematica [1] include asserted instances of previously asserted
propositional functions (pfs), a process somewhat similar to the use of axiom-schemata. However, it was not
possible to explicitly state a general rule for this essential step, i.e. something like ”If a pf ϕ is asserted, we
can assert any pf which is an instance of ϕ.” Two reasons made it impossible: inadmissibility of inductive
definitions based on syntax of pfs and reluctance to express by general rule what we always need to apply
as a particular. In reconstruction of this classical account on type theory [2, 3], we can easily define
the instantiation by induction and explicate the rule in meta-language. In this talk, we will discuss the
significance that the original reluctance has.

[1] Alfred North Whitehead and Bertrand Russell, Principia Mathematica, vol. I, II, III,
Cambridge University Press, 1910, 1912, 1913.

[2] Fairouz Kamareddine, Twan Laan, Rob Nederpelt, Types in Logic and Mathematics before
1940, The Bulletin of Symbolic Logic, Vol. 8, No. 2 (2002), pp. 185-245.

[3] Twan Laan, A Formalization of the Ramified Type Theory, Computing Science Report, 94/33,
Eindhoven University of Technology, Eindhoven, 1994.
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I SIMON IOSTI, Imaginaries in Tannakian categories.
Institut Camille Jordan, Université de Lyon, 43 boulevard du 11 novembre 1918 69622 Villeurbanne cedex,
France.
E-mail: iosti@math.univ-lyon1.fr.

A Tannakian category is a category mimicking the behavior of the category of finite-dimensional rep-
resentations of an algebraic group defined over some field. The Tannakian duality states an equivalence
between Tannakian categories and such categories of representations. Recently, Moshe Kamensky [2] used
the model-theoretic tools of internality and binding groups to prove this duality in some cases (algebraically
and differentially closed fields).

Kamensky’s proof involves the description of the imaginaries of a Tannakian category. In general, it
seems impossible to achieve a complete description of these imaginaries. Nevertheless, such an exhaustive
description is not needed to prove a Tannakian theorem. In my talk, I will present how one can expand
Kamensky’s framework, explain which imaginaries we need to understand to be able to prove Tannakian
results in a more general context. This general context will allow to compare different kinds of Galois groups
associated to differential and difference equations, in the spirit of the work of Chatzidakis, Hardouin, and
Singer [1].

[1] Zoé Chatzidakis, Charlotte Hardouin, and Michael Singer, On the definition of difference Ga-
lois groups, Model theory with applications to algebra and analysis(Zoé Chatzidakis, Dugald Macpher-
son, Anand Pillay, and Alex Wilkie, editors), Cambridge University Press,Cambridge,2008.pp. 73–109.

[2] Moshe Kamensky, Model theory and the Tannakian formalism,
URL Address: h.ttp://arxiv.org/abs/0908.0604

I KRZYSZTOF KAPULKIN, Fibration categories and type theory.
Department of Mathematics, University of Pittsburgh, 139 University Place, Pittsburgh, PA 15260, USA.
E-mail: krk56@pitt.edu.

The connections between Martin–Löf Type Theory and homotopy theory are now very intensively studied
(see for example [1, 3]), especially in the context of Vladimir Voevodsky’s ‘Univalence Foundations’ program.
We propose the framework of fibration categories (cf. [2]) for a systematic development of these connections.

We start by verifying that the classifying category of MLTT has a natural structure of a fibration category.
Further, we formalize within type theory several notions and theorems about fibrations categories such as
right properness and the factorization lemma. Our special interests are in the study of the loop functor Ω,
spectra of types, and the homotopy limits. In particular, we internalize in type theory the construction of
homotopy limits for model categories. All the formalization is done in the Coq proof assistant.

This is joint work with Jeremy Avigad (Carnegie Mellon University).

[1] Steve Awodey and Michael A. Warren, Homotopy Theoretic Models of Identity Types, Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 45 (2009), no. 146, pp. 45–55.

[2] Kenneth Brown, Abstract Homotopy Theory and Generalized Sheaf Cohomology, Transactions of
the American Mathematical Society, vol. 186 (1973), pp. 419–458.

[3] Nicola Gambino and Richard Garner, The Identity Type Weak Factorisation System, Theoretical
Computer Science, vol. 409 (2008), no. 1, pp. 94–109.

I LAURENCE KIRBY, Ordinal exponentiations of sets.
Department of Mathematics, Baruch College, City University of New York, 1 Bernard Baruch Way, New
York, NY 10010, USA.
E-mail: laurence.kirby@baruch.cuny.edu.

In the 1950s Tarski generalized to all sets the addition operation on the von Neumann ordinals ([2]; see
also [1]). Scott followed with definitions of multiplication and exponentiation. The “high school algebra”
laws of exponentiation fail in the generalized von Neumann arithmetic. The situation can be remedied by
replacing the usual ordinal arithmetic of sets with one based on the finite Zermelo ordinals, in which the
successor of n is {n}. In the Zermelo arithmetic the “high school algebra” exponentiation laws hold.

Each of the two arithmetics of sets has advantages. The von Neumann arithmetic’s elegance, flexibility
and straightforward extension to the infinite arise largely from the fact that the order on the ordinals is the
restriction of the membership relation. The Zermelo arithmetic, as well as the advantage mentioned above,
is more economical.

[1] Laurence Kirby, Addition and multiplication of sets, Mathematical Logic Quarterly, vol. 53
(2007), no. 1, pp. 52–65.

[2] Alfred Tarski, The notion of rank in axiomatic set theory and some of its applications, Bulletin
of the American Mathematical Society, vol. 61 (1955), p. 443. Reprinted in Alfred Tarski, Collected
Papers, ed. Steven R. Givant and Ralph N. McKenzie, Birkhäuser, Basel and Boston, 1986, vol. 3, p. 622.

25



I ALEXANDER P. KREUZER, Non-principal ultrafilters, program extraction and higher order reverse math-
ematics.
Technische Universität Darmstadt.
E-mail: akreuzer@mathematik.tu-darmstadt.de.
URL Address: http://www.mathematik.tu-darmstadt.de/~akreuzer.

We investigate the strength of the existence of a non-principal ultrafilter over fragments of higher order
arithmetic. Let (U) be the statement that a non-principal ultrafilter on N exists and let ACAω0 be the higher
order extension of ACA0. We show that ACAω0 +(U) is Π1

2-conservative over ACAω0 and thus that ACAω0 +(U)
is conservative over PA.

Moreover, we provide a program extraction method and show that from a proof of a strictly Π1
2 statement

∀f ∃g Aqf(f, g) in ACAω0 + (U) a realizing term in Gödel’s system T can be extracted. This means that one
can extract a term t ∈ T , such that ∀f Aqf(f, t(f)).

[1] Alexander P. Kreuzer, Non-principal ultrafilters, program extraction and higher order reverse
mathematics, to appear in Journal of Mathematical Logic.

I KANAT KUDAIBERGENOV, Generalizations of o-minimality to partial orders.
KIMEP University, 4 Abay Ave., Almaty 050010, Kazakhstan.
E-mail: kanat@kimep.kz.

For linearly ordered structures one has an important notion of o-minimality and several its generalizations.
In this talk I will discuss some generalizations of o-minimality to partial orders.

I BEIBUT KULPESHOV, On self-definable subsets in weakly o-minimal structures ∗.
Department of Information Systems and Mathematical Modelling, International Information Technology
University, 8 A Zhandosov str., Almaty, Kazakhstan.
E-mail: kulpesh@mail.ru.

We continue studying the notion of weak o-minimality originally studied by D. Macpherson, D. Marker
and C. Steinhorn in [1]. A subset A of a linearly ordered structure M = 〈M,=, <, . . . 〉 is convex if for any
a, b ∈ A and c ∈ M whenever a < c < b we have c ∈ A. A weakly o-minimal structure is a linearly ordered
structure M such that any definable (with parameters) subset of M is a finite union of convex sets in M .
Real closed fields with a proper convex valuation ring provide an important example of weakly o-minimal
structures.

If M is a structure and A ⊂ M , we say that A is self-definable if A is definable in M with parameters
which are elements of A. A self-definable subset A of an ℵ0–categorical structure M is good if for all n < ω
every n-type over A realized in M is isolated. Self-definable sets were considered in [2] concerning the notion
of Jordan set.

Here we discuss some equivalent conditions for goodness of self-definable subsets in an ℵ0–categorical
weakly o-minimal theory, and for this we use some results obtained in [3].

[1] H.D. Macpherson, D. Marker, Ch. Steinhorn, Weakly o-minimal structures and real closed fields,
Transactions of the American Mathematical Society, 352 (2000), pp. 5435–5483.

[2] H.D. Macpherson, Ch. Steinhorn, On variants of o-minimality, Annals of Pure and Applied Logic,
79 (1996), pp. 165-209.

[3] B.Sh. Kulpeshov, ℵ0-categorical quite o-minimal theories, The Bulletin of Novosibirsk State
University, series: mathematics, mechanics and informatics, 11 (2011), pp. 45-57.

I SORI LEE, Sight realizability: the arithmetic in subtoposes of the effective topos.
DPMMS, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3
0WB, United Kingdom.
E-mail: S.Lee@dpmms.cam.ac.uk.

The internal (first-order) arithmetic of the effective topos is Kleene’s realizability. This talk presents a
realizability-like description for the arithmetic in subtoposes of the effective topos.

The effective topos has as its least (non-degenerate) subtopos the category of sets, whose internal arith-
metic is of course the true arithmetic. Also well-known is the fact that the (opposite) semi-lattice of Turing
degrees embed into the lattice of subtoposes of the effective topos, manifesting the vast size of the latter
structure. The work [1] establishes an infinite family of new examples, with the technique behind being to
understand entities that represent subtoposes in terms of a certain kind of well-founded trees called sights.

As a by-product of this, we obtain our “realizability” semantics for the arithmetic in subtoposes. If θ is a
subtopos, we define a relation ‘θ-realizes’ between numbers and arithmetic sentences in the same inductive
way as the original realizability, with only changes in the implication and universal quantifier clauses. For
example, the implication clause has the following look.

n ‘θ-realizes’ φ ⇒ ψ if for each θ-realizer m of φ there is a “(ϕn(m), θ)-dedicated” sight S such
that each “ϕn(m)-value of” S does θ-realizes ψ.

The subtopos θ is secretly just a sequence of collections of natural number sets, and each notion appearing
above (‘sight’, ‘dedicated’, etc) is free of topos theory. This leaves us with plenty of models of Heyting
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arithmetic described in elementary terms.
In the talk we introduce and discuss this ‘sight realizability’.

[1] Sori Lee, Subtoposes of the Effective Topos, Master’s Thesis, Utrecht University,
arXiv:1112.5325, 2011.

[2] Sori Lee, Jaap van Oosten, Basic Subtoposes of the Effective Topos, arXiv:1201.2571, 2012.

I GRAHAM E LEIGH, Theories of truth over intuitionistic logic ∗.
Faculty of Philosophy, University of Oxford, UK.
E-mail: graham.leigh@philosophy.ox.ac.uk.

We investigate the role classical principles play in restricting the freedom to add semantic concepts such
as truth to the language of arithmetic. In particular we consider two collections of natural principles of
truth both of which are consistent over Heyting arithmetic, but inconsistent over classical Peano arithmetic.
We show that the two intuitionistic theories of truth have the same Π0

2 consequences as their consistent
classical counterparts and argue that in the analysis of formal theories of truth, intuitionistic logic can play
an intermediary role between full classical logic in which paradoxes abound and much weaker logics such as
partial or para-consistent logics that are mathematically not well understood.

I LAURENŢIU LEUŞTEAN, An application of proof mining in nonlinear analysis.
Simion Stoilow Institute of Mathematics of the Romanian Academy, 21 Calea Griviţei, 010702, Bucharest,
Romania.
E-mail: laurentiu.leustean@imar.ro.

Proof mining is an area of applied proof theory concerned with the extraction of hidden finitary and
combinatorial content from proofs that make use of highly infinitary principles. This line of research,
developed by Ulrich Kohlenbach in the 90’s, has its roots in Georg Kreisel’s program on unwinding of proofs,
initiated in the 50’s. A comprehensive reference for proof mining is Kohlenbach’s book [3].

We present an application of proof mining to the asymptotic behaviour of firmly nonexpansive mappings,
a class of functions which play an important role in metric fixed point theory and optimization due to their
correspondence with maximal monotone operators.

We obtain effective and highly uniform rates of asymptotic regularity for the Picard iterations of firmly
nonexpansive mappings in uniformly convex W -hyperbolic spaces, a class of geodesic spaces that generalize
both CAT(0) spaces and uniformly convex Banach spaces. In the case of CAT(0) spaces, the rate of
asymptotic regularity is quadratic. These results, contained in a joint paper with D. Ariza-Ruiz and G.
Lopez-Acedo [1], are new even for uniformly convex Banach spaces. Furthermore, they are guaranteed by
general logical metatheorems proved by P. Gerhardy and U. Kohlenbach [2] for different classes of metric
and normed spaces and adapted in [4] to uniformly convex W -hyperbolic spaces.

[1] D. Ariza-Ruiz, L. Leuştean, G. Lopez-Acedo,Firmly nonexpansive mappings in classes of geodesic
spaces, arXiv:1203.1432v1 [math.FA], 2012.

[2] P. Gerhardy, U. Kohlenbach, General logical metatheorems for functional analysis, Transactions
of the American Mathematical Society, vol. 360 (2008), pp. 2615–2660.

[3] U. Kohlenbach, Applied proof theory: Proof interpretations and their use in mathematics,
Springer Monographs in Mathematics, Springer-Verlag, 2008.

[4] L. Leuştean, Proof mining in R-trees and hyperbolic spaces, Electronic Notes in Theoretical
Computer Science, vol. 165 (2006), pp. 95–106.

I SONIA L’INNOCENTE, Diophantine Sets of Representations.
School of Science and Technology, University of Camerino, Via Madonna delle Carceri, 9, 62032 Camerino
(MC), Italy.
E-mail: sonia.linnocente@unicam.it.

This is a joint work with Ivo Herzog [1].

The aim of this report is that of proving some recursive results on sets of certain representations of the
Lie algebra sl(2, k), denoted by L, of 2× 2 traceless matrices with entries in a field k of characteristic 0. It
is known that the Lie algebra L acts by derivations on the ring k[x, y] of polynomials in two variables. This
representation of L admits a decomposition

k[x, y] =
⊕
n≥0

k[x, y]n,

where k[x, y]n is the (n + 1)-dimensional k-vector subspace of homogeneous polynomials of total degree n.
ϕ(v) is a positive-primitive formula in the free variable v in the language L of representations of L, then the
k-vector subspace of k[x, y] defined by ϕ(v) respects this decomposition,

ϕ(k[x, y]) =
⊕
n≥0

ϕ(k[x, y]).

To understand the pp-definable k-subspace ϕ(k[x, y]), it is suffices to know the pp-definable k-subspaces
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ϕ(k[x, y]n). The main task of this work is to prove

Theorem 1. If the field k is recursively presented, then the function n 7→ dimk ϕ(k[x, y]n) is recursive.

This theorem is part of the program, enunciated by the author and Macintyre [2], to extend the recursive
presentation of k to one of the von Neumann k-algebra U ′(L) of definable scalars of the representation
k[x, y], and to prove the decidability of the theory of U ′(L)-modules. One goal of this program is to provide
a procedure that decides for every true implication of pp-formulas ` τ(v) → σ(v), and natural number n,
whether the k-space σ(k[x, y]n)/τ(k[x, y]n) is nonzero. It follows from the theorem that for every n, the
function

n 7→ dimk σ(k[x, y]n)/τ(k[x, y]n) = dimk τ(k[x, y]n)− dimk σ(k[x, y]n)

is recursive. Funrthermore, Theorem 1 yields important information regarding the topology of the Ziegler
spectrum of U ′(L). We prove that certain clopen subsets of this topological space are diophantine.

[1] Ivo Herzog, S. L’Innocente, Diophantine Sets of Representations, In progress.
[2] S. L’Innocente, A. Macintyre, Towards decidability of the theory of pseudo-finite dimensional

representations of sl(2, k), Andrzej Mostowski and Foundational Studies (A. Ehrenfeucht, V.W. Marek
and M. Srebrny, editors), IOS Press, 2007, pp. 235–260.

I ZACHIRI MCKENZIE, Automorphisms of models of set theory and NFU.
Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road,
United Kingdom.
E-mail: z.mckenzie@dpmms.cam.ac.uk.

NFU is the subsystem of Quine’s ‘New Foundations’ (NF) obtained by weakening the extensionality axiom
to allow urelements. It was first introduced by Ronald Jensen in [1]. Jensen demonstrated that a model of
NFU can built from a model of a subsystem of ZFC that admits an automorphism. We will recall Jensen’s
construction and demonstrate that models of natural strong extensions of NFU can be built from models of
subsystems of ZFC that admit automorphisms with certain ‘nice’ properties. Our particular focus will be
on an extension of NFU obtained by adding AxCount≤ which is a natural weakening of Rosser’s Axiom of
Counting [2]. A model of NFU + AxCount≤ can be obtained from a model of a strong enough subsystem of
ZFC that admits an automorphism which does not move any natural number down. We will indicate how
a model admitting such an automorphism can be produced from a non-standard ω-model of a subsystem of
ZFC. This result allows us to show that NFU plus Rosser’s Axiom of Counting proves the consistency of
NFU + AxCount≤.

[1] Jensen, R., On the Consistency of a Slight(?) Modification of Quine’s New Foundations, Synthese,
vol. 19 (1969), pp. 250–263.

[2] Rosser, J. B., Logic for Mathematicians, McGraw-Hill, New York, 1953.

I DAVID MILLER, Probabilistic generalizations of deducibility.
University of Warwick, Coventry CV4 7AL, UK.
E-mail: dwmiller57@yahoo.com.

The guiding idea of the logical interpretation of probability (von Kries, Waismann, Popper, Kneale, and
others) is that the upper limit of probability is certainty or logical necessity. The relation p(c | a) = 1 (or,
more accurately, ∀b p(c | ab) = 1) represents a logically necessary connexion between the sentences a and c,
that is, the deducibility of c from a, while lesser values of p indicate that, whatever connexion there may be
between a and c, it falls short of necessity. It is generally understood, in addition, that p is a measure on the
ranges of its arguments, the sets of possibilities that they admit; whence the conditional probability p(c | a)
measures the proportion (in an appropriately generalized sense) of those possibilities admitted by a that are
admitted also by c, and takes its maximum value, namely 1, when they all are. As anticipated, p(c | a) = 1
when c is deducible from a. At the other extreme p(c | a) = 0 if the range of a excludes every possibility
that is admitted by c, that is, if ¬c is deducible from a. The function p, so construed, satisfies all the usual
(finitary) axioms for probability, such as those of Kolmogorov, or those of the more general system given in
[1], appendix ∗v.

Less often considered are several other functions that provide alternative, and perhaps more illuminating,
generalizations of deducibility. Since c is deducible from a if & only if ¬a is deducible from ¬c, for example,
and also if & only if c is deducible from a ∨ c, the functions q(c | a) = p(¬a | ¬c) and d(c | a) = p(c | a ∨ c),
which are not in general equal to p(c | a), also suggest necessary conditions for deducibility. Deducibility
itself may be defined by ∀b q(b → c | a) = 1 and by ∀b d(cb | ab) = 1. The full range of possibilities is
explored, and some philosophical consequences are drawn.

[1] Karl R. Popper, The Logic of Scientific Discovery, London: Hutchinson 1959.
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I TAKAKO NEMOTO, The proof theoretic strengths of determinacy between Σ0
1 and ∆0

2.
School of information Science Japan Advanced Institute of Science and Technology 1-1 Asahidai, Nomi,

Ishikawa, 923-1292, Japan.
E-mail: nemototakako@gmail.com.
URL Address: http://iam.unibe.ch/~nemoto/.

[3] proved the equivalences between Σ0
1 ∧Π0

1 determinacy and Π1
1 comprehension, and between ∆0

2 deter-
minacy and Π1

1 transfinite recursion over RCA0. The idea of the latter proof is as follows:

1. Find a well-ordering W such that a given ∆0
2 game can be represented as an union of (Σ0

1 ∧Π0
1) games

along W .
2. Iterate the proof of the former equivalence.

Then, by restricting the well-ordering in 1, we can define many subclasses of ∆0
2 games. In this talk, we show

the equivalences between the determinacy of such classes and schemata of restricted transfinite recursion.
We also consider the proof theoretic strengths of them by constructing β-models.

[1] Takako Nemoto, Determinacy of Wadge classes and subsystems of second order arithmetic, Mathe-
matical Logic Quarterly, 55 (2009) pp. 154–176.

[2] S. G. Simpson, Subsystems of Second Order Arithmetic, Springer (1999).
[3] K. Tanaka, Weak axioms of determinacy and subsystems of analysis I: ∆0

2-games, Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik 36 (1990), pp. 481–491.

I VLADISLAV NENCHEV, Dynamic relational mereotopology: First-order and modal logics for stable and
unstable relations.
Department of Mathematical Logic, Faculty of Mathematics and Informatics,
Sofia University, 1164 Sofia, 5 James Bourchier Blvd., Bulgaria.
E-mail: lucifer.dev.0@gmail.com.

This paper presents first-order and modal logics of stable and unstable versions of four mereotopological
relations: part-of, overlap, underlap and contact (denoted ≤, O, U and C). These relations are formally
defined with Contact algebras (B,C), where B is a Boolean algebra and C is the contact relation (see
[3], [2]). Standard models for Contact algebras are the regular closed sets in a topological space and the
topological contact. The other relations are defined: ≤ is the Boolean ordering, O corresponds to non-
empty intersection and U is the dual of O. Mereotopological structures are relational structures with the four
relations ≤, O, U and C (see [2]). Their stable and unstable counterparts are defined over Cartesian products
of mereotopological structures. Let I be a set of moments of time and (Wi,≤i,Oi,Ui) be a mereotopological
structure for every i ∈ I. Then the stable and unstable contact is defined x C∀ y iff (∀i ∈ I)(xi Ci yi), x C∃ y
iff (∃i ∈ I)(xi Ci yi). ≤∀, ≤∃, O∀, O∃, U∀ and U∃ are defined similarly in [1].

The current system is an extension of the one presented in [1]. Both systems are relational variants of the
dynamic mereotopology from [3]. These works are developments in the area of alternative theories of space
and time, started by Alfred Whitehead. They combine relations from mereotopology with simple temporal
properties like stability and unstability. Whitehead used mereotopology as a base to build a new point-free
theory of space. The fact that we combine spacial and temporal properties in one, rather than using different
operators for space and time, corresponds to Whitehead’s idea that the theory of time cannot be separated
from the theory of space (see [4]).

The paper continues with axiomatization of the new system. The completeness is proved via a general-
ization of the Stone-like representation techniques for distributive lattices. We prove completeness for the
quantifier-free fragment of the corresponding first-order logic, its decidability and show that its satisfiability
problem is in NP. The full first-order logic is hereditary undecidable. We use the relational structures as
semantic base of a polymodal logic for which we provide a complete axiomatization.

[1] Vladislav Nenchev, Logics for stable and unstable mereological relations, Central European Jour-
nal of Mathematics, vol. 9 (2011), no. 6, pp. 1354–1379.

[2] Yavor Nenov and Dimiter Vakarelov, Modal Logics for Mereotopological Relations, Advances
in Modal Logic, vol. 7, College Publications, 2008, pp. 249–272.

[3] Dimiter Vakarelov, Dynamic mereotopology: A point-free theory of changing regions. I. Stable and
unstable mereotopological relations, Fundamenta Informaticae, vol. 100 (2010), no. 1–4, pp. 159–180.

[4] Alfred N. Whitehead, Process and Reality, New York: MacMillan, 1929.

I JOSEPH W. NORMAN, Hot buttered conditionals, tangled up in grue: Goodman’s riddles solved by para-
metric probability analysis.
Department of Internal Medicine, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI
48109, USA.
E-mail: jwnorman@umich.edu.

Conditional statements, whether factual or counterfactual, make perfect sense as constraints on proba-
bilities. Using probability networks, the computed results of probability queries are quotients of sums of
products of input probabilities. With inputs Pr0 (H) = x and Pr0 (M |H) = y stating that the butter
was heated with probability x and that the conditional probability of melting given heating is y, the query
Pr (M |H) yields the result xy/x: the product Pr0 (H)× Pr0 (M |H) divided by Pr0 (H).
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Interpreting the sentence “If that piece of butter had been heated it would have melted” as the constraint
y = 1 and “If that piece of butter had been heated it would not have melted” as y = 0 produces the desired
semantics: these constraints are clearly inconsistent; and neither constraint on y affects Pr (H), which is x.
Note that if x > 0 then the output Pr (M |H) simplifies to the input y; however if x = 0 then Pr (M |H)
yields the indeterminate form 0/0 regardless of y. Algebra says what we mean.

Concerning ‘grue’ we model explicitly the ambiguous correlation between the basic green/blue proposition,
the composite grue/bleen proposition, and time. Parametric probability analysis demonstrates that it is
always correct to make complementary predictions about future green and future grue, regardless of how
this ambiguity is resolved.

[1] Joseph W. Norman. The Logic of Parametric Probability. Preprint at arXiv:1201.3142v2

[math.LO]. January, 2012.
[2] Nelson Goodman. Fact, Fiction, and Forecast. 4th edition. Harvard, 1983.

I ANDREA PEDEFERRI, Is it original only once?.
George Washington University.
E-mail: apedef@gwu.edu.

What does it mean for an object to be “as new”, or “the same as it was when it was new”? We can
say that to be ?as new?, the object must be (after a period of time t) identical to itself when it was new.
However, when we say that, for example, an object is identical to itself after two years, it would be strange
to expect to find exactly the same object we saw two years earlier (provided no big traumatic modifications
happened in between). Identical doesn?t mean immutable. Moreover, identity is a notion that has some
precise logical characterizations and limitations. Are the two objects in question identical in the sense of
Leibniz?s law? It is not easy to say so. I propose a better notion, which seems to avoid the problem of
using identity in such cases: the notion of originality. An object is “as new” (after some t from its “birth”)
if it is close enough to its “original state”. The notion of originality for objects allows a limited kind of
modifications to the object, which do not alter the originality of the object itself.

In this paper I will sketch a formal description of the notion of originality (for physical, non-living objects)
and of the property of being close to an original state. In order to do that I will use some tools from mereology
to draw a distinction between the notions of identity, sameness and originality. On the basis of this I will then
give a formal account to the notions of restoration and conservation. I will do it by restrict the mereological
property of parthood to that of being a component, and I will show how you can formally describe restoration
and conservation in terms of particular mereological sums and subtractions of components.

I FLORIAN PELUPESSY, Adjacent Ramsey and unprovability.
Department of Mathematics, Ghent University, Krijgslaan 281 Gebouw S22, 9000 Ghent, Belgium.
E-mail: pelupessy@cage.ugent.be.

In [1] Friedman introduces adjacent Ramsey theory, including a series of theorems independent of Peano
Arithmetic which, though similar to other Ramsey-like theorems, avoid its language. We examine the
provability and phase transitions in Peano Arithmetic and its fragments of one of those theorems.
Following the notations from [1], we call a function C : Rk → Nr f -limited if maxC(x) ≤ max(f(maxx), 1).
Let ARk

f be the following statement:

For every r there exists R such that for every f -limited function C : Rk → Nr there are x1 < · · · < xk+1 < R
with C(x1, . . . , xk) ≤ C(x2, . . . , xk+1).

Take fkα(i) = H−1
α (i)

√
logk(i) and gα(i) = logH

−1
α (i)(i) where the k in the exponent at the log indicates

number of iterations and Hα is the α-th function in the Hardy hierarchy.

Theorem 1. Take ω0 = 1, ωn+1 = ωωn , then:

IΣk 6` ARk
id,

PA ` ∀kARk
gα if and only if α < ε0,

IΣk+1 ` ARk+1

fkα
if and only if α < ωk+2.

[1] Harvey Friedman, Adjacent Ramsey theory,
http://www.math.osu.edu/ ∼friedman.8/pdf/PA%20incomp082910.pdf

I MIKHAIL G. PERETYAT’KIN, On model-theoretic properties that are not preserved on the pairs of mutually
interpretable theories.
Institute of Mathematics, 125 Pushkin Street, 050010 Almaty, Kazakhstan.
E-mail: m.g.peretyatkin@predicate-logic.org.

We consider theories in first-order predicate logic with equality. Incomplete theories are normally stud-
ied. An infinite model M is said to be minimal (synonym: a Jónsson model), if for any model N,
N 4 M∧Card(N) = Card(M) implies |N| = |M|. An interpretation I of theory T in domain U(x) of
theory H is called ∃ ∩ ∀-presentable, if the domain U(x) of the interpretation and I-image of each predicate
of T is presentable in H by an ∃-formula, and simultaneously, by a ∀-formula. Theories T and H are called
mutually ∃ ∩ ∀-definably interpretable in each other, if there is an ∃ ∩ ∀-definable interpretation I of T in H
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and an ∃ ∩ ∀-definable interpretation J of H in T such that, for any sentence Φ of T and any sentence Ψ of
H, we have T ` Φ ↔ J(I(Φ)) and H ` Ψ ↔ I(J(Ψ)) ensuring an isomorphism of the Tarski-Lindenbaum
algebras of these theories.

Theorem 1. There are complete decidable theories Ti and Hi, i = 0, 1, of finite pure predicate signatures
without finite models, such that Ti and Hi are mutually ∃∩∀-definably interpretable in each other for i = 0, 1;
moreover, the following properties are satisfied:

(a) T0 is model-complete, while H0 is not model-complete;
(b) T1 is finitely axiomatizable, while H1 is not finitely axiomatizable;
(c) T1 has a minimal model, while H1 does not have such a model;
(d) T1 has a model with first-order definable elements, while H1 does not have such a model; furthermore,

H1 does not even have a model with almost first-order definable (algebraic) elements.
By Lea, we denote the collection of those model-theoretic properties p which are preserved on each pair

of mutually ∃∩∀-definably interpretable computably axiomatizable theories of finite signatures. Theorem 1
shows that the semantic layer Lea covers neither Cartesian, nor Cartesian-quotient, nor even model quasiexact
layer of model-theoretic properties. This gives a negative answer to Question 7 posed in [1].

[1] Peretyat’kin M.G., Finitely axiomatizable theories and similarity relations, American Mathemat-
ical Society Translations, (2) Vol. 195 (1999), pp. 309–346.

I PAULA QUINON, Numerals and numbers. Problems of encodings and denotations.
Department of Philosophy, Lund University, Kungshuset, 222 22 Lund, Sweden.
E-mail: paula.quinon@fil.lu.se.

This talk proposes a study of so-called “deviations” which are claimed to occur as consequences of accept-
ing the formal definition of the concept of computability that assumes of human intuitions about computation
that they concern operations on strings (as captured by Turing’s thesis) rather than abstract knowledge of
functions defined on natural numbers (Church’s thesis) [2].

The study involves specification of the relationship between the syntactic (numerals) and the semantic
(numbers) levels of the language of number theory, and the denotation functions acting between those two.
The “deviations” – resulting in “computability” of some uncomputable functions (the halting problem is the
most commonly quoted example) – have been claimed to occur on both of those levels ([1], [2], [3]). Certain
constraints on the properties of the denotation functions have been also proposed. These constraints aim to
single out the class of dentation functions acceptable for number-theoretical purpose ([4]).

The central claim of this talk is that the harmful aspect of these “deviations” can be avoided by de-
tailed insight into the dichotomy between syntax and semantics. Additionally, some remarks on denotation
functions are formulated. I claim that the presented results shed some light on the number-concept as
investigated by cognitive scientists.

[1] Paul Benacerraf, Recantation, or: Any Old ω-Sequence Would Do After All, Philosophia Math-
ematica, vol. 4 (1996), no. 3, pp. 184–189.

[2] Michael Recorla, Church’s Thesis and the Conceptual Analysis of Computability, Notre Dame
Journal of Formal Logic, vol. 48 (2007), pp. 253–280.

[3] B. Jack Copeland, Diane Proudfoot, Deviant Encodings and Turings Analysis of Computability,
Studies in History and Philosophy of Sciences, vol. 41 (2010), no. 3, pp. 247–252.

[4] Stewart Shapiro, Acceptable Notation, Notre Dame Journal of Formal Logic, vol. 23 (1982),
no. 1, pp. 14–20.

I BENJAMIN RIN, The computational strengths of α-length ITTMs ∗.
Logic and Philosophy of Science, University of California, Irvine, California, USA.
E-mail: brin@uci.edu.

In [1], open questions are raised regarding the computational strengths of so-called∞-α-Turing machines,
a family of models of computation resembling the infinite-time Turing machine (ITTM) model of [2], except
with α-length tape (for any α ≥ ω). Let Tα refer to the model of length α. So Tω is just the ITTM model.
Let � stand for “is computationally stronger than”. In attempting to address the open questions, I present
the following results: (1) Tω1 � Tω. (2) There exists a countable α such that Tα � Tω. In fact, there is a
hierarchy of countable machines of increasing strength, corresponding to the (weak) transfinite Turing-jump
operator ∇. (3) There is a countable ordinal µ′ such that for every countable µ ≥ µ′, neither Tµ � Tω1 nor
Tω1 � Tµ — that is, the machines Tω1 and Tµ are computation-strength incommensurable. The same holds
true for any machine of length greater than Tω1 .

[1] Peter Koepke Ordinal Computibility Lecture Notes in Computer Science, vol. 5365 (2009),
pp. 280-289

[2] Joel Hamkins and Andy Lewis Infinite time Turing machines Journal of Symbolic Logic, vol. 65
(2000), no. 2, pp. 567-604
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I GEMMA ROBLES, Depth relevance and the contraction axiom ∗.
Dpto. de Psicoloǵıa, Socioloǵıa y Filosof́ıa, Universidad de Len, Campus Vegazana, s/n, 24071, Len, Spain.
E-mail: gemmarobles@gmail.com.
URL Address: http://grobv.unileon.es.

A propositional logic has the depth relevance property (drp) if in all its theorems of the form A → B, A
and B share a propositional variable at the same depth (see [1]). In [1], a particular logic, DR, is defined by
restricting with the drp the class of logics verified by Meyer’s six-valued Crystal matrix. DR is motivated
by its rejection of the contraction axiom (A→ �A→ B)→ �A→ B used in the derivation of Curry Paradox
in naive set theory.

The aim of this paper is to generalize Brady’s strategy by defining a class of general model structures
built upon what we label weak relevant matrices. The contraction axiom, together with a number of related
theses, is falsified in any of these model structures.

[1] R. T. Brady, Depth Relevance of some Paraconsistent Logics, Studia Logica, vol. 43 (1984), pp.
67-73.

I JASON RUTE, Martingale convergence and algorithmic randomness.
Department of Mathematical Sciences, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213,
USA.
E-mail: jrute@cmu.edu.
URL Address: www.math.cmu.edu/~jrute.

Recently there has been a good deal of interest in the interaction between algorithmic randomness and
computable analysis, especially a.e. convergence theorems. In this talk I will show a fruitful relationship
between martingale convergence and randomness.

Martingales, which are a formalization of the notion of betting strategy, have historically been studied
in two contexts. On the computability side, they have become a useful tool for information theory and
algorithmic randomness; while on the analysis side, martingales have also become the foundation of modern
probability theory and finance, with a variety of applications to analysis. Traditionally, algorithmic random-
ness has been concerned with at which points a nonnegative dyadic martingale succeeds (wins arbitrarily
large amounts of money), while probability theory has been concerned with whether more general classes of
martingales converge pointwise a.e.

I will present a variety of martingale convergence theorems, and I will show how they relate to Schnorr,
computable, Martin-Löf, and weak 2-randomness. These martingale convergence theorems imply facts about
differentiability, the law of large numbers, and de Finetti’s theorem. They also are closely related to the
ergodic theorems.

Further, the tools used to study randomness and martingales have close connections to constructive and
computable analysis, reverse mathematics, proof theory, and hard/quantitative/numerical analysis.

I FRANCISCO SALTO, GEMMA ROBLES, JOSÉ M. MÉNDEZ, Strong relevant matrices ∗.
Dpto. de Psicoloǵıa, Socioloǵıa y Filosof́ıa, Universidad de Len, Campus Vegazana, s/n, 24071, Len, Spain.
E-mail: francisco.salto@unileon.es.
URL Address: http://www3unileon.es/personal/wwdfcfsa/web/html.
Dpto. de Psicoloǵıa, Socioloǵıa y Filosof́ıa, Universidad de Len, Campus Vegazana, s/n, 24071, Len, Spain.
E-mail: gemmarobles@gmail.com.
URL Address: http://grobv.unileon.es.
Universidad de Salamanca. Edificio FES, Campus Unamuno, 37007, Salamanca, Spain.
E-mail: sefus@usal.es.
URL Address: http://web.usal.es/~sefus.

The aim of this paper is to define a general class of logical matrices called “Strong relevant matrices”
(srm). Any logic S verified by a srm has the following properties.

1. (Strong variable-sharing property). If A → B is a theorem of S, then some variable occurs as an
antecedent part (ap) or else as a consequent part (cp) of both A and B.

2. (No loose pieces property). If A is a theorem of S and A contains no conjunctions as aps and no
disjunctions as cps, every variable in A occurs once as ap and once as cp.

Our result generalizes that of Anderson and Belnap for the logics E and R (see [1], §22.1.2).

[1] Anderson, A. R., Belnap, N. D. Jr., Entailment. The Logic of Relevance and Necessity, vol.
1, Princeton University Press, 1975.

I LUCA SAN MAURO, Aspects of the theory of computable enumerable equivalence relations.
Scuola Normale Superiore, Piazza dei Cavalieri 7, Pisa, Italy.
E-mail: luca.sanmauro@sns.it.

(joint work with Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Andrea Sorbi)
This talk is about computable enumerable equivalence relations (ceers). We study them under the fol-

lowing reducibility: if R,S are equivalence relations on ω, we say that R is reducible to S (R ≤ S) if there
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exists a computable function f such that, for every x, y, xRy ⇔ f(x)Sf(y).
The reducibility was introduced by Ershov [1], with respect to the theory of numberings, and later devel-

oped in Bernardi and Sorbi [2], and Lachlan [3].
Recently, new motivations occurred while considering a computable analogue of the so-called Borel re-

ducibility, as in Gao and Gerdes [4].
In this talk, we focus on two of the main aspects of the topic. Firstly, we approach the degree structure

generated by the reducibility. We show that the structure form a bounded poset which is neither a lower
semilattice, nor an upper semilattice. In addition, we prove that its first order theory is undecidable.

Secondly, we turn our attention to universal ceers. We review classical definitions from the existing liter-
ature and we show that: the uniformly effectively inseparable ceers are universal, while there are effectively
inseparable ceers that are not universal.

[1] Yu. L. Ershov, Theory of numberings, Nauka, Moskow, 1977.
[2] C. Bernardi and A. Sorbi, Classifying positive equivalence relations, J. symbolic logic, vol. 48

(1983), no. 3, pp. 529–538.
[3] A. H. Lachlan, A note on positive equivalence relations, Mathematical logic quaterly, vol. 33

(1987), no. 1, pp. 43–46.
[4] S. Gao and P. Gerdes, Computably enumerable equivalence realations, Studia logica, vol. 67 (2001),

no. 1, pp. 27–59.

I SAM SANDERS, Reuniting the antipodes: Bringing together Constructive and Nonstandard Analysis.
Ghent University, Dept. of Math., Krijgslaan 281, 9000 Gent, Belgium.
E-mail: sasander@cage.ugent.be.
URL Address: http://cage.ugent.be/∼sasander.

Constructive Analysis was introduced by Errett Bishop to identify the computational meaning of math-
ematics. In the spirit of intuitionistic mathematics, notions like algorithm, explicit computation, and finite
procedure are central. The exact meaning of these vague terms was left open, to ensure the compatibil-
ity of Constructive Analysis with several traditions (classical, intuitionistic and recursive) in mathematics.
Constructive Reverse Mathematics (CRM) is a spin-off of Harvey Friedman’s famous Reverse Mathematics
program, based on Constructive Analysis. Bishop famously derided Nonstandard Analysis for its lack of
computational meaning. In this talk, we introduce ‘Ω-invariance’: a simple and elegant definition of finite
procedure in (classical) Nonstandard Analysis. Using an intuitive interpretation, we obtain many results
from CRM, thus showing that Ω-invariance is quite close to Bishop’s notion of finite procedure and algo-
rithm. We briefly discuss philosophical implications and future work with regard to Per Martin-Löf’s Type
Theory, which is intended as a foundation for Constructive Analysis.

This research is generously sponsored by the John Templeton Foundation.

I ANDREY SARIEV, The ω-Turing degrees.
Faculty of Mathematics and Computer Science, Sofia University, 5 James Bourchier Blvd., 1164 Sofia,
Bulgaria.
E-mail: acsariev@gmail.com.

In this paper the study of the partial ordering of the ω-Turing degrees is initiated. Informally, the
considered structure is derived from the structure of ω-enumeration degrees described by Soskov [1] by
replacing the usage of the enumeration reducibility and the enumeration jump in the definitions with Turing
reducibility and Turing jump respectively. The main results include a jump invertion theorem, existence of
minimal elements and minimal pairs.

[1] I.N. Soskov, The ω-enumeration degrees, Journal of Logic and Computation, to appear.
[2] I.N. Soskov, H. Ganchev, The jump operator on the ω-enumeration degrees, Annals of Pure and

Applied Logic, to appear.

I KENTARO SATO, Proof-theoretic Strength Results of Analogues of Small Large Cardinal Hypotheses in
Second Order Systems.
Institut für Informatik und angewandte Mathematik, Universität Bern, Neubrückstrasse 10, Bern, Switzer-
land.
E-mail: sato@iam.unibe.ch.

Second-order set theory (class theory, or theory of classes and sets) attracted little attention after basic
results had been obtained in the early age. Recently it has regained attention, from several perspectives
(e.g., [1] from truth theory, and [2, 3] from operational set theory). Among them, to investigate the strengths
of set-theoretic axioms in various situations, the speaker has been working on the comparison among several
second-order or two-sorted frameworks (e.g., [4]).

The speaker has obtained several results on the proof theoretic strengths of systems extending the base
theory NBG by those axiom schemata that can be seen as analogues of schemata considered in second order
number theory (e.g., see [5]) and found that there are many dissimilarities.

This talk will focus on impacts of “large-cardinal-like” axioms on these results: For example, since König’s
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Lemma is provable in ACA0 (whose analogue is NBG), it seems interesting to consider what is changed
if we add to the base theory the analogue of König’s Lemma, while the analogue states that Ord is weakly
compact, and is (proof-theoretically) far beyond Morse-Kelley set theory MK, the analogue of full second
order number theory Z2.

[1] K. Fujimoto, Classes and truths in set theory, Published online in Annals of Pure and Applied
Logic.

[2] G. Jäger, Full operational set theory with unbounded existential quantification and power set, Annals
of Pure and Applied Logic, vol. 161 (2009), no. 1, pp. 33–52.

[3] G. Jäger and J. Krähenbühl, Σ1
1 choice in a theory of sets and classes, Ways of Proof Theory,

(R. Schindler, editor), Ontos Verlag, 2010, pp. 283–314.
[4] K. Sato, The strength of extensionality II: weak weak set theories without infinity, Annals of Pure

and Applied Logic, vol. 162 (2011), no. 8, pp. 579–646.
[5] S. Simpson, Subsystems of Second Order Arithmetic, Springer-Verlag, 1999.

I DENIS I. SAVELIEV, On Zariski topologies on Abelian groups with operations.
Department of Mathematical Logic and Theory of Algorithms, Faculty of Mechanics and Mathematics,
M. V. Lomonosov Moscow State University, Vorobievy Gory, GSP-1, Main Building, Moscow, 119991,
Russia.
E-mail: d.i.saveliev@gmail.com.

We consider universal algebras consisting of an Abelian group endowed with operations (of arbitrary arity)
satisfying the generalized distributivity law, i. e. such that the unary operations obtaining from them by fixing
all but one arguments are endomorphisms of the group. Instances of such algebras include rings, modules,
linear algebras, differential rings, etc. Given such an algebra K, a closed basis of the Zariski topology on
its Cartesian product Kn consists of finite unions of sets of solutions of equations t(x1, . . . , xn) = 0 for all
terms t of n variables over K; it is the least T1 topology in which all operations are continuous. We prove that
for every such infinite K and any n, the space Kn is nowhere dense in the space Kn+1. A fortiori, all such K
are nondiscrete (this fact was previously established for commutative associative rings by Arnautov [1]). Our
proof uses a multidimensional generalization of Hindman’s Finite Sums Theorem, a strong Ramsey-theoretic
result obtained via algebra of ultrafilters [2].

[1] V. I. Arnautov, Nondiscrete topologizability of countable groups, Doklady Akademii Nayk SSSR,
vol. 191 (1970), pp. 747–750.

[2] N. Hindman, D. Strauss, Algebra in the Stone–Čech compactification, de Gruyter Expositions
in Mathematics 27, Walter de Gruyter, 1998.

I ANTON SETZER, How to reason coinductively informally.
Dept. of Computer Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK..
E-mail: a.g.setzer@swan.ac.uk.
URL Address: http://www.cs.swan.ac.uk/ csetzer/.

This research was supported by EPSRC grant EP/G033374/1 “Theory and application of induction-
recursion”, and written as a visiting fellow of the Newton Institute, Cambridge University.

Whereas formally an inductively defined set is defined as a least fixed point, one rarely argues directly
using this definition. Instead we use usually the induction rules derived from this principle. In fact we have
developed a culture of informally arguing inductively by referring to the induction hypothesis, and often use
extended induction principles such as course of value induction. Coinductively defined sets are greatest fixed
points, however proofs about coinductively defined sets are usually either carried out by referring directly
to the definition, or using game theoretic approaches. Therefore coinductive proofs appear to be quite
complicated and are usually not taught in the early parts of a mathematics or computer science curriculum.

In the interactive theorem prover Agda, proofs by induction are given as recursive functions which pass
a termination checker. The termination checker verifies that the induction hypothesis is used correctly. In
a similar way coinductive proofs are given as well as recursive functions, passing the termination checker.
The termination checker checks whether the recursive call, which we call the coinduction hypothesis is used
correctly.

In this talk we will develop rules for coinduction in the same way as it is done for induction. We show
how informal proofs by coinduction can be carried out by referring to the coinduction hypothesis in an
appropriate way. As when referring to the induction hypothesis for inductive proofs the same care has to
be applied when referring to the coinduction hypothesis in coinductive proofs.

We will illustrate this by showing how to carry out informal proofs by bisimulation.

I MICHAEL SHENEFELT, Why did Symbolic Logic Emerge During the Industrial Revolution.
New York University.
E-mail: michael.shenefelt@nyu.edu.

The Industrial Revolution, beginning in the late eighteenth and early nineteenth cen- turies, gave the
world new conveniences, new factories, new cities, and new problems but also a new kind of logic.
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Before the nineteenth century, farsighted thinkers had long toyed with the idea of a fully symbolic logic,
but they had never turned any such project into reality. Only with the advent of large-scale manufacturing
did symbolic logic finally take shape. The first fully symbolic systems were laid out by George Boole and
Augustus De Morgan, both of whom published major books in England in 1847 just as England’s Industrial
Revolution was in full swing.

In fact, the correlation between industrialization on the one hand and the development of abstract algebras
and symbolic logic on the other is close. Boole, De Morgan, and George Peacock (author of the influential
Treatise on Algebra) all came from England during a period of intense industrialization, and, later in the
century, the eminent figures of Gottlob Frege, Georg Cantor, and Richard Dedekind appeared in Germany
just as Germany, too, industrialized. Giuseppe Peano perfected his axioms at the University of Turin at
about the same time that the Automobile Factory of Turin (whose acronym in Italian is FIAT) built its first
automobiles.

Is this correlation just coincidence or is it cause and effect?

In this paper, I shall argue that a key factor behind symbolic logic’s growth was the Industrial Revolution
itself. Specifically, the Industrial Revolution convinced large numbers of logicians and mathematicians of
the immense power of mechanical operations. Whole generations witnessed this power, and out of these
generations the logicians of the age were recruited. Boole, like other logicians, explicitly concerned himself
with the mechanical.

Symbolic logic has had far-reaching effects, but behind its development was a powerful economic and social
stimulus.

I DARIUSZ SUROWIK, Knowledge and intuitionistic tense logic.
Department of Logic, Informatics and Philosophy of Science, University of Bia lystok, Pl. Uniwersytecki 1,
15-420, Bia lystok, Poland.
College of Computer Science and Business Administration in  Lomża, Akademicka 14, 18-400,  Lomża, Poland.
E-mail: surowik@uwb.edu.pl.

If we want to describe (from logical point of view) knowledge changing in time, we usually use for this
purpose some combined logics. These combined logic usually combine some epistemic logic with some
temporal logic (based on classical logic). However, it seems, that except of these systems, we can to describe
knowledge changing in time in a language of intuitionistic tense logic.

In our speech we consider the intuitionistic tense logic ITK . It is an extension of intuitionistic propositional
logic with the temporal operators: F, P,G,H. Semantics for ITK is Kripke-style semantics. Basic notion
of our semantics is a notion of state of knowledge. Intuitionistic negation and implication can be considered
as a modalized classical negation and implication. So, we may to consider our intuitionistic tense logic as
a logic of knowledge changing in time. However, in our language there is no explicite epistemic operator.
Knowledge is not considered on syntactical level, but it is considered on semantical level, only. In our speech
we give a semantics for ITK . We also give sound and complete axiomatization with respect to proposed
semantics.

Moreover, we prove, that Ewald’s system IKt is included in the ITK (IKt ⊆ ITK .)

[1] van Benthem J., The information in intuitionistic logic, Synthese, 2009, 167:2, pags 251-270
[2] Ewald W. B., Intuitionistic tense and modal logic, Journal of Symbolic Logic, 1986, Volume 51,

Nr 1.
[3] Surowik D., Tense logic without the principle of the excluded middle, Topics in Logic Informatics

and Philosophy of Science, 1999, Bia lystok

I ANDREW SWAN, The failure of the existence property for CZF.
School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.
E-mail: aws@maths.leeds.ac.uk.

A theory, T is said to have the existence property (sometimes called the set existence property) if for each
formula φ(x) such that T ` (∃x)φ(x), there is another formula, χ(x) such that T ` (∃!x)(φ(x) ∧ χ(x)).
The existence property is sometimes expected for constructive theories on the basis that the existence of
mathematical objects should only asserted if they can be “mentally constructed.” However, the existence
property fails for some set theories regarded as constructive. In this talk we will show the new result that
in fact the existence property fails for what is today the most widely studied constructive set theory, CZF.

The cause of this failure is the subset collection axiom schema. Subset collection can be regarded as a
strengthened version of the exponentiation axiom that is validated by Peter Aczel’s interpretation of set
theory into Martin-Löf type theory. Because of this interpretation it can be regarded as predicative, as
opposed to the much stronger power set axiom. We show that subset collection asserts the existence of a
particular set of multivalued functions from Baire space to the naturals that cannot be defined from within
CZF.

To prove this we define the notion of embedding one realizability interpretation into another. We will
show that there are two realizability interpretations with essentially different witnesses of subset collection
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that can both be embedded into the standard McCarty style realizability interpretation of IZF.

I GIUSEPPINA TERZO, On Shapiro’s conjecture.
Department of Mathematics, Seconda Università degli Studi di Napoli, Viale Lincoln 5, 81100 Caserta, Italy.
E-mail: giuseppina.terzo@unina2.it.

In 1958 Shapiro posed in [1] the following conjecture which comes out of complex analysis and involves
solutions of system of exponential polynomials with only one iteration of exponentiation and with complex
coefficients:

If two exponential polynomials have infinitely many common roots, then they are both multiples of some
third exponential polynomial.

We give a positive answer to this conjecture over the complex field and more in general over an exponential
algebraically closed field of characteristic 0, assuming Shanuel’s Conjecture.

(Joint work with Paola D’Aquino and Angus Macintyre)

[1] H. S. Shapiro: The Expansion of mean-periodic functions in series of exponentials, Communications
on Pure and Applied of Mathematics, vol. 11, (1958), pp. 1-21.

I TINKO TINCHEV, Modal approach to region-based theories of space: canonicity.
Faculty of Mathematics and Informatics, Sofia University, 1164 Sofia, 5 James Bourchier, Bulgaria.
E-mail: tinko@fmi.uni-sofia.bg.

Region-based theories of space study properties of the regions—formal analog of the “bodies”—instead of
abstract notions like points with respect to axiomatization, complexity of satisfiability problem etc. Usually
the regions are taken to be the regular closed sets (or regular open sets) in a given topological space T = (T, τ)
from a class T of spaces. Typical properties are contact, n-contact, internal (strong) contact, connectedness,
n-connectedness, boundedness, convexity etc. For example, n regions A1, . . . , An are in n-contact if they
have a common point, A1 ∩ · · · ∩ An 6= ∅. On the other hand, regular closed sets form a Boolean algebra
under inclusion with bottom 0 = ∅ and top 1 = T . Normally, the first-order theories of this kind for the
spaces (classes of spaces) which take attention are very complex. In contrast their universal fragments often
allow formal handling and for practical spatial reasoning are good enough.

In the present talk we propose a sufficiently general condition for completeness with respect to the canoni-
cal model whenever the above mentioned universal fragments are treated as fragments of appropriate modal
language.

I J.A. TUSSUPOV, Categoricity and Complexity Relations over Structures With Two Equivalences.
Information Systems, Eurasian National University, Astana, Munaitpasova 5, Kazakhstan.
E-mail: tussupov@mail.ru.

We will consider the problems on algorithmic complexity of isomorphic and definable properties on models
and connections with Scott families.
In paper [1] authors showed that for each computable ordinal α there is a structure that is ∆0

α categorical
but not relatively ∆0

α categorical. This structure of the countable relational language. S.S. Goncharov [2]
suggested the method of definability structure with countable computable set of predicates where arity of
them bounded by finite number to the oriented graph such that categoricity is preserving. J.A. Tussupov
[3] suggested the method of definability oriented graph to the bipartite graph, and to the structure with two
equivalence such that categoricity is preserving for the computable successor ordinal α. This construction
is true for the limit ordinal α.

Let A be a computable structure.
We say that A is ∆0

α categorical if for all computable B ∼= A, there is a ∆0
α isomorphism from A to B.

We say that A is relatively ∆0
α categorical if for all computable B ∼= A, there is a ∆0

α(B) isomorphism from
A to B.

A Scott family for A is the set Φ of formulas, with a fixed tuple of c̄ in A, such that 1) each tuple of
parameters in A satisfies some formula ϕ ∈ Φ, and 2) if both ā, b̄ satisfy the same formula ϕ ∈ Φ, then
there is an automorphism of A mapping ā to b̄.
A formally Σ0

α Scott family is a Σ0
α Scott family that is made up of ”computable Σα” formulas.

Let A be a computable structure and R be a relation on A. We say that R is intrinsically Σ0
α if in all

computable B ∼= A the image of R in B is Σ0
α.

We say that R is relatively intrinsically Σ0
α if in all computable B ∼= A, the image of R is Σ0

α(B).
We say that R is intrinsically if for each automorphism f of the structure A the image f(R) ⊆ R.
The structure A with binary predicate P (x, y) is called the structure with bipartition binary predicates

P (x, y) if for the sets K1 = {x : A |= ∃yP (x, y)} and K2 = {x : A |= ∃yP (y, x)} satisfy the conditions:
K1 ∩K2 = ∅ and K1 ∪K2 6= ∅.
Let σ0 = 〈P 2(x, y)〉 is signature with the bipartition binary predicates P (x, y) and
σ0 = 〈E2

0(x, y), E2
1(x, y)〉 is signature with two equivalences E2

0(x, y),E2
1(x, y).
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Let A structure of signature σi, where i = 0, 1.
Theorem 1. For each computable ordinal α there is a computable structure A of signature σi that is

∆0
α categorical but not relatively ∆0

α (and without formally Σ0
α Scott family).

Theorem 2. For each computable ordinal α there is a computable structure A of signature σi with addi-
tional relation R that is intrinsically Σ0

α but not relatively intrinsically Σ0
α on A.

[1] J. Chisholm, E. B. Fokina, S. S. Goncharov, V. S. Harizanov, J. F. Knight, and S. Miller. Intrinsic
bounds on complexity and definability at limit levels.J. of Symbolic Logic, Vol.74, No.3,2009, pp.1047-1060.

[2] Goncharov S. S., Isomorphisms and definable relations on Computable Models, Proceeding of the
Logic Colloquium 2005, Athens, pp..26–45

[3] J.A. Tussupov, Isomorphisms And Algorithmic Properties Structures With Two Equivalences Ab-
stracts of Logic Colloquium 2011, Barcelona, Spain, July 11-16, pp. 107-109.

I JEROEN VAN DER MEEREN, Well partial orderings and recursively defined trees.
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Well partial orderings play an important role in for example logic, mathematics and computer science
[1]. They are the essential ingredient of famous theorems like Higman’s lemma and Kruskal’s theorem. The
maximal order type of a well partial ordering is most of the time also the proof-theoretical ordinal of a specific
theory T . There exists a general principle for computing the maximal order type of well partial orderings of
recursively defined trees [2]. In this talk, I will introduce those recursively defined trees and discuss recent
results of their maximal order types. These recursively defined trees are introduced for studying trees with
a Friedman-style gap-condition [3].

[1] T. Becker, V. Weispfenning, in cooperation with H. Kredel, Gröbner bases: A computational
approach to commutative algebra, Graduate Texts in Mathematics (v. 141), Springer-Verlag, 1993.

[2] A. Weiermann, A computation of the maximal order type of the term ordering on finite multisets,
Mathematical Theory and Computational Practice (5th Conference on Computability in Europe, Hei-
delberg, Germany, July 19-24, 2009), (K. Ambos-Spies, B. Löwe and W. Merkle, editors), vol. 5635/2009,
Springer Berlin / Heidelberg, 2009, pp. 488–498.

[3] S. G. Simpson, Nonprovability of certain combinatorial properties of finite trees, Harvey Friedman’s
research on the foundations of mathematics, Studies in Logic and the foundation of mathematics, (L.
A. Harrington, M. D. Morley, A. Scedrov, S. G. Simpson, editors), Elsevier Science Publishers B.V., P.O.
Box 1991, 1000 BZ Amsterdam, The Netherlands, 1985, pp. 87–117.
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Let M = (M,≤, . . . ) be a weakly o-minimal structure and denote by M the definable completion of M

with respect to M, i.e. the set M together with all non-rational cuts definable in M. Clearly, M has a
natural linear ordering and M is a dense subset of M .

A set X ⊆Mm definable inM is called definably connected if it is not a union of two disjoint non-empty
definable open subsets of X. One can easily show that ifM is o-minimal, then every set definable inM has
finitely many definably connected components, and an image of a definably connected set by a continuous
definable map is definably connected.

Unfortunately, such a notion of definable connectedness in general does not work in the weakly o-minimal
context. There are easy examples of linearly ordered structures with weakly o-minimal theory whose universe
is definably totally disconnected.

A partial solution to this issue was proposed by H. Tanaka in [1] for a class of weakly o-minimal structures
with the strong cell decomposition property, introduced in [2]. H. Tanaka gives a definition of so called weak
definable connectedness for sets definable in weakly o-minimal structures with the strong cell decomposition
property. In the sense of [1] strong cells are weakly definably connected, which in particular implies that a
set definable in a weakly o-minimal non-valuational expansion of an ordered group has finitely many weakly
definably connected components.

In this talk I am going to discuss a variant of weak definable connectedness, which seems to be suitable for
sets definable in models of arbitrary weakly o-minimal theories. Namely, one can show that sets definable
in models of weakly o-minimal theories have finitely many weakly definably connected components.

Generalizing ideas concerning weakly o-minimal structures with the strong cell decomposition property,
one can introduce a notion of a completion X ⊆ M

m
of a set X ⊆ Mm definable in an arbitrary weakly

o-minimal structure, which in case of strong cells coincides with the completion defined in [2]. We say
that a function f : X −→ Mn is strongly continuous if it has a (necessarily unique) continuous extension

f : X −→ M
n
. Among other things, one can show that if M = (M,≤, . . . ) has weakly o-minimal theory,

X ⊆ Mm is a definable weakly definably connected set and a function f : X −→ Mn is definable and
strongly continuous, them f [X] is weakly definably connected.
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[1]H. Tanaka, Weakly o-minimal structures and weakly definably connected, Far East Journal of Math-
ematical Sciences, vol. 34 (2009), no. 2, pp. 177–187.

[2]R. Wencel, Weakly o-minimal non-valuational structures, Annals of Pure and Applied Logic, vol.
154 (2008), no. 3, pp. 139–162.
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We have published a series of articles during 2001-2009 about generalizations and boundary-case exceptions
to the Second Incompleteness Theorem, including six papers in the JSL andAPAL. (Citations to these articles
and a formalism that both unifies and extends their techniques can be found in [2].) Our goal in this talk is
to summarize the significance of the latter’s unification formalism.

Our partial evasions of the Second Incompleteness can obviously elude the force of Second Incompleteness
Theorem under only unusual extremal circumstances because the combined work of Pudlák, Solovay, Nelson
and Wilkie-Paris implies that essentially all natural axiom systems, that merely recognize Successor as a
total function, are unable to recognize their own consistency, when a Hilbert-style method of deduction is
used. Our six journal articles and [2]’s unification formalism do show that boundary-case exceptions to the
Second Incompleteness Theorem do exist when either:

1. The assumption that successor is a total function is dropped, in a context where Addition and Multi-
plication are treated as two 3-way relations (e.g. see [1])

2. Or when Addition is treated as a total function (e.g. as by “∀x∀y∃z Add(x, y, z)”), and the self-
justifying system can recognize its consistency under a deduction method that lacks a Modus Ponens
Rule, such as semantic tableaux,

It is obvious that Items (1) and (2) amount to being no more than being Boundary-Case Exceptions to
the Second Incompleteness Theorem, in light of the aforementioned power of the Second Incompleteness
Theorem. Our papers have diligently used the preceding italicized phrase, so as to avoid any possible
confusion.

Our report [2] illustrates how such results are of epistemological interest because they explain how a
Thinking Being can maintains at least some instinctive (partial) faith in its own consistency, despite the
formidable barriers imposed by the Second Incompleteness Theorem.

[1] D. Willard, “A Generalization of the Second Incompleteness Theorem and Some Exceptions to It”,
Annals of Pure and Applied Logic 141 (2006) pp. 472-496.

[2] — , “A Detailed Examination of Methods for Unifying, Simplifying and Extending Several Results
About Self-Justifying Logics”, http://arxiv.org/abs/1108.6330.
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We study pairs of the form (M, I) where M is a nonstandard model of Peano arithmetic, and I is a cut of
M . Cuts have been extensively studied since the 1970s, mainly because of the relationship with independence
results such as the Paris–Harrington theorem. However, surprisingly little about such pairs (M, I) exists in
the literature. We start filling this gap by investigating these pairs along the tracks of Robinson-style model
theory. Arithmetic usually does not fit well into this theory, but it turns out that the generic cuts, a new
family of cuts recently discovered by the first author, fit in rather nicely. Amongst other results, we showed
that pairs (M, I) with I generic are existentially closed.
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Description Logics (DLs) are logical formalism widely used in knowledge-based systems for both explicit
knowledge representation in the form of taxonomy, and inferring new knowledge out of the presented struc-
ture by means of a specialized inference engine ([1]). The representation language, called concept language,
comprises expressions with only unary an binary predicates, called concepts and roles. In the semantics
these are interpreted as subsets and binary relations respectively. With their syntax and interpretation
various DLs can be viewed as syntactical variants or restricted fragments of some modal logics. Concept
languages differ mainly in the constructors adopted for building complex concepts and roles, and they are
compared with respect to their expressiveness, as well as with respect to the complexity of reasoning in them.
The language AL is usually considered as a “core” one, having the basic set of constructors: ¬A (atomic
negation), C u D (intersection), ∀P.C (universal role quantification), and ∃P.> (restricted existential role
quantification).

In the present talk we introduce new concept constructors, called part restrictions, capable to distinguish
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a part of a set of successors. These are MrP.C and (the dual) WrP.C, where r is an arbitrary rational
number in (0,1), P is an atomic role, and C is a concept. The concept MrP.C is interpreted by the set of
all objects x such that

∣∣{y | (x, y) ∈ P I & y ∈ CI}
∣∣ > r

∣∣{y | (x, y) ∈ P I}
∣∣. Part restrictions essentially

enrich the expressive capabilities of Description Logics, and, as we show for a particular language, they do
that with no extra cost of complexity.

We consider the language ALPε extending AL with limited part restrictions adopting only atomic and
negated atomic concepts. We show that this language, while extending the expressive power of AL, keeps the
same P-time upper bound for the complexity of the main reasoning task in DLs—checking the subsumption
between concepts. For, a completion calculus based on tableau technique is used.

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The Description
Logic Handbook: Theory, Implementation, and Applications, Cambridge University Press, New York,
2003.
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Dependence logic (D) [Väänänen, 2007] and independence logic (Ind) [Grädel, Vään-änen, 2011] are new
logics incorporating the concept of dependence and independence into first-order logic. The compositional
semantics of these logics are defined with respect to sets of assignments, called teams. Team semantics
was originally introduced by Hodges [1997] for independence friendly logic [Hintikka, Sandu 1989]. Both
dependence logic and independence logic have the same expressive power as existential second order logic
[Galliani, Grädel, Kontinen,Väänänen].

The negation of neither of these two logics is classical; this fact therefore raises the question of how to
define implications in these two logics. Basing on team semantics and the downwards closure property
of dependence logic, Abramsky and Väänänen [2009] introduced intuitionistic implication (→) and linear
implication (() for dependence logic. In this talk, we show that on sentence level, dependence logic extended

with these two implications (D[→,(]) have the same expressive power as the full second order logic [Yang

2010], while on the formula level, D[→,(] characterizes exactly second order downwards monotone properties.
On the other hand, dependence logic is contained in independence logic [Grädel, Väänänen 2011], and

independence logic can be, in certain sense, broken into two logics, namely inclusion logic (I) and exclusion
logic (E) [Galliani 2011]. As independence logic does not have the downwards closure property, the intu-
itionistic implication or linear implication does not do the same job in independence logic as in dependence
logic. In this talk, we introduce a maximal implication (↪→) in the context of independence logic and show
that on the sentence level, independence logic extended with maximal implication (Ind↪→) has the same

expressive power as the full second order logic (thus on the sentence level, Ind↪→ = D[→,(]). The same hold
for I extended with ↪→ (I↪→) and E extended with ↪→ (E↪→) as well, namely on the sentence level

D[→,(] = Ind↪→ = I↪→ = E↪→.

In addition, on the formula level, both Ind↪→ and I↪→ characterize exactly second order properties.
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An empty set has nothing in it. A universal set represents the universe, it is ubiquitous. In mutually-
inversistic set theory, an empty set and a universal set are called by a joint name distinguished sets. But
in abstract set operations, distinguished sets are bound to yield, to be operated on. For example, the
intersection of P and ∼P is the empty set ∅. In mutually-inversistic set theory, P∩∼P=∅ is called a quasi-set
connection proposition. In mutually-inversistic set theory, there is the meaningfulness—meaninglessness
duality for distinguished sets: distinguished sets occurring in quasi-set connection propositions and power
sets are meaningful, occurring elsewhere are meaningless. Meaningless distinguished sets correspond to
proper classes in axiomatic set theory. Mutuall-inversistic set theory is logical-mathematical paradox-free.
It is free from Russell’s paradox, because x/∈x is a universal set, a meaningless distinguished set. It is
free from the greatest ordinal number paradox, because the set of all ordinal numbers is a universal set, a
meaningless distinguished set. It is free from the greatest cardinal number paradox, because the set of all
sets is a universal set, a meaningless distinguished set. There are logical-mathematical paradoxes in näıve set
theory. Axiomatic set theory is logical-mathematical paradox-free, but is complex. It has to construct sets
and classes in parallel. Mutually-inversistic set theory is logical-mathematical paradox-free, and is simpler
than axiomatic set theory. It need not introduce classes.
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