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Let K be a topological L-field as defined in [3] and its expansion 〈K, D〉, where D
is a derivation on K, with a priori no interactions with the topology of K. Assume K
is a model of a universal L-theory T which has a model completion Tc. Under certain
hypothesis on Tc, with N. Guzy, we showed that the expansion of T to the L ∪ {D}-
theory TD consisting of T together with the axioms expressing that D is a derivation,
admits a model-completion T ∗

c,D which we axiomatized ([3]). Namely, to the theory
TD ∪ Tc, we added a scheme of axioms (DL), which expressess that each differential
polynomial has a zero close to a zero of its associated algebraic polynomial. This
scheme (DL) generalizes the axiomatization (CODF) of the theory of closed ordered
differential fields ([7]) and is related to the axiom scheme (UC) introduced by M. Tressl
in the framework of large fields ([8]).

In this talk, I will review the above setting and basic properties of T ∗
c,D. For instance,

whenever Tc has NIP, the non-independence property, then T ∗
c,D has NIP ([3]). With

N. Guzy ([4]), using results of L. van den Dries ([2]), we showed the existence of a
fibered dimension function for definable subsets in models of T ∗

c,D.
Then, I will indicate, how to use former results of L. Mathews ([6]) in order to get

further information on definable subsets in models of T ∗
c,D. This applies in particular

for Tc = RCF , or Tc = pCF . In the case of Tc = RCF , CODF has o-minimal open
core (using [1]) and elimination of imaginaries ([5]).
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