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Motivation

Computation on other structures than finite strings:

1. Over the reals:
Blum, Shub, Smale, and many others

2. Infinite Time Turing Machine:
Deolalikar, Hamkins, Schindler, Welch, and others

3. Molecular Biology / DNA computing:
Aldeman, Lipton

4. Quantum Computing:
Shore

Question: What is a good notion of feasible computation on
arbitrary sets?
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Characterisations of Polytime on Finite Strings

Notation: ǫ empty word; w i = append bit i to word w ;
|w | denotes length of w (number of bits.)

Characterisations of f being polytime computable:

1. There exists Turing machine M which on input w computes
f (w) with runtime bounded polynomially in n = |w |.

2. Cobham’s Bounded Recursion on Notation:

f (ǫ,~x) = g(~x)

f (y i , ~x) = hi(y , ~x , f (y , ~x)) (i ∈ {0, 1})

provided that f (y , ~x) ≤ j(y , ~x) for all y , ~x .

3. Recursion schemes without explicit bounds:
Leivant, Bellantoni/Cook and others.
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“Polytime” for sets

1. Turing Machine:
Difficult to write an arbitrary set on a tape of length ω.

2. Recursion schemes:
Cobham: bounded recursion on notations
Leivant: tired recursion
Bellantoni/Cook: safe recursion

3. . . .

We will adapt Bellantoni/Cook’s approach to set functions.
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Outline of talk

Bellantoni-Cook Safe Recursion

Safe Recursive Set Functions

SR Set Functions on Hereditarily Finite Sets

SR Set Functions on General Sets
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Bellantoni-Cook Safe Recursion
Characterisation of Polytime

Recap: Bellantoni-Cook’s Characterisation

Define functions on finite binary strings

f (x1, . . . , xk / a1, . . . , aℓ)

x1, . . . , xk are the normal inputs, a1, . . . , aℓ the safe inputs to f .

Bellantoni-Cook’s class B : Smallest class containing

i) (Constant) ǫ (zero-ary)

ii) (Projection) πn,m
j (x1, . . . , xn / xn+1, . . . , xn+m) = xj , for

1 ≤ j ≤ n +m.

iii) (Successors) si (−/ a) = a i , for i ∈ {0, 1}

iv) (Predecessor) p(−/ ǫ) = ǫ, p(−/ a i) = a

v) (Conditional) Cond(−/ a, b, c) =

{

b if a = d 1

c otherwise.
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Recap: Bellantoni-Cook’s Characterisation

. . . and closed under

vi) (Predicative Recursion on Notation)
f (ǫ,~x /~a) = g(~x /~a)

f (z i , ~x /~a) = hi (z , ~x /~a, f (z , ~x /~a)) i ∈ {0, 1}

Spirit: The recursion argument has to be normal, while the
“previous value” of the recursion is placed into a safe position.

vii) (Safe Composition) f (~x /~a) = h(~r(~x /−) /~t(~x /~a))

(Note: no typo, the rj ’s don’t have any safe arguments!)

Spirit: When composing functions be careful not to allow safe
inputs to be copied into normal positions.
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Examples

Concatenation of words ⊕(x / a) = a ∗∗ x is in the class, by one
predicative recursion:

⊕(ǫ / a) = a

⊕(x i / a) = si (−/ ⊕ (x / a)) = ⊕(x / a) i

Observe |⊕(x / a)| = |x |+ |a|.

Then “smash” ⊙(x , y /−) is in the class, by a second predicative
recursion:

⊙(ǫ, y /−) = ǫ

⊙(x i , y /−) = ⊕(y / ⊙ (x , y /−)) = ⊙(x , y /−) ∗∗ y

Observe |⊙(x / a)| = |x | · |a|.
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Examples

But “exponentiation” is not in the class!

To define “exponentiation” using smash one would need something
like

E (x i , y /−) = ⊙(y /E (x , y /−)) (then |E (x , y /−)| = |y ||x |)

but we only have
⊙(y , z /−) (smash of two normal inputs)

and no function
⊙(y / z)

which has z as a safe input.

Another possibility
E (x i /−) = ⊕(E (x /−) /E (x /−)) (then |E (x /−)| = 2|x |)

again cannot be typed according to existing normal/safe inputs.
Arnold Beckmann Feasible computation on general sets
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Bellantoni-Cook’s ’92 Results

Lemma (Boundedness)

For any safe recursive function f (x1, . . . , xk / a1, . . . , aℓ) there is a
polynomial p such that

|f (~x /~a)| ≤ max(|~a|) + p(|~x |)

(|~x | denotes vector |x1|, . . . , |xk |; similar |~a|.)

Theorem
Let f (~x /~a) be safe recursive. Then f (~x ,~a) is polynomial time
computable.

Theorem
Let be f (~x) polynomial time computable on finite strings. Then
f (~x /−) is Bellantoni-Cook safe recursive.
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Rudimentary Set Functions

The Gandy-Jensen Rudimentary Set Functions are the smallest
class containing i) – iii), and being closed under iv) – v):

i) (Projection) πn
j (x1, . . . , xn) = xj , for 1 ≤ j ≤ n.

ii) (Difference) diff(a, b) = a \ b = {x ∈ a : x /∈ b}

iii) (Pairing) pair(a, b) = {a, b}

iv) (Union Scheme)
f (~x , y) =

⋃

z∈y g(~x , z)

v) (Composition Scheme)
f (~x) = h(~t(~x))
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Examples for Rudimentary Set Functions

◮ union(b) =
⋃

b
[

union(b) =
⋃

z∈b π
1
1(z)

]

◮ Succ(a) = a ∪ {a}
[

Succ(a) = union(pair(a, pair(a, a)))
]

◮ Cond=(a, b, c , d) =

{

a if c = d

b otherwise.
[

ḡ(a, c, z) :=
⋃

{a : u ∈ c\z ∪ z\c} =

{

a if z 6= c

∅ otherwise

and g(a, c, z) := a \ ḡ(a, c, z)
Then Cond=(a,b, c, d) = g(a, c, d) ∪ ḡ(b, c, d).

]

◮ Cond∈(a, b, c , d) =

{

a if c ∈ d

b otherwise.
[

h(a, c, d) :=
⋃

{g(a, c, z) : z ∈ d}; h̄(b, c, d) := b \ h(b, c, d),
then Cond∈(a,b, c, d) = h(a, c, d) ∪ h̄(b, c, d).

]
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Primitive Recursive Set Functions

The Primitive Recursive Set Functions are the smallest class
containing i) – iii), and being closed under iv) – vi):

vi) (Primitive Set Recursion Scheme)
f (x , ~y ) = h(x , ~y , {f (z , ~y) : z ∈ x})

Examples

Addition, multiplication, exponentiation on ordinals are primitive
recursive.
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Safe Recursive Set Functions

Idea: Add to Gandy-Jensen rudimentary set functions a safe
recursion scheme a la Bellantoni-Cook.
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Safe Recursive Set Functions

The Safe Recursive Set Functions are the smallest class containing
i) – iii), and being closed under iv) – vi).

i) πn,m
j (x1, . . . , xn / xn+1, . . . , xn+m) = xj , for 1 ≤ j ≤ n +m.

ii) diff(−/ a, b) = a \ b

iii) pair(−/ a, b) = {a, b}

iv) (Rudimentary Union Scheme)
f (~x /~a, b) =

⋃

z∈b g(~x /~a, z)

v) (Safe Composition Scheme)
f (~x /~a) = h(~r(~x /−) /~t(~x /~a))

vi) (Safe Set Recursion Scheme)
f (x , ~y /~a) = h(x , ~y /~a, {f (z , ~y /~a) : z ∈ x})
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Examples for Safe Recursive Set Functions

Add(x / a) =










a if x = 0

Succ(−/
⋃

{Add(z / a) : z ∈ x}) if x = Succ(−/
⋃

x)
⋃

{Add(z / a) : z ∈ x} otherwise.

α+ β := Add(β /α) defines usual addition on ordinals α, β.

Mult(x , y /−) =










0 if x = 0

Add(y /
⋃

{Mult(z , y /−) : z ∈ x}) if x = Succ(−/
⋃

x)
⋃

{Mult(z , y /−) : z ∈ x} otherwise.

α ·β := Mult(β, α /−) defines usual multiplication on ordinals α, β.
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Bounding Ranks

But ordinal exponentiation is not safe recursive:

Theorem
Let f be a safe recursive set function. There is a polynomial qf
such that

rank(f (~x /~a)) ≤ max(rank(~a)) + qf (rank(~x))

for all sets ~x, ~a.
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SR Set Functions on Hereditarily Finite Sets

SR functions grow ranks polynomially
⇒ super-exponential bound on sizes of sets for SR set functions.

We can do better:

Example

Ordered pair (a, b) := {{a}, {a, b}}.
Prod(−/ a, b) = a × b = {(x , y) : x ∈ a, y ∈ b} is rudimentary.
Let Sq(−/ a) = Prod(−/ a, a).
Define f by safe recursion as follows:
f (∅ / a) = a, f ({d} / a) = Sq(−/ f (d / a)).
Then f is SR, and satisfies

card(f (x / a)) = card(a)2
rank(x)
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SR Set Functions on HF are Dietary

Previous example illustrates “worst case”:

Definition
f (~x /~a) in SRSF is called dietary if for some polynomial p,

card(tc(f (~x /~a))) ≤ card(tc({~x ,~a}))2
p(rank(~x))

for all ~x ,~a ∈ HF.

Theorem
All functions in SRSF are dietary.
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Representing Tapes

Let M be a non-deterministic Turing Machine,
and p some polynomial.

Represent tapes as full binary trees using the ordered pair (a, b)
with leafs labelled by tape symbols.

Thus: trees of height h represent tapes of length 2h.

f (x /−) 7→ {c : c is a tree of height p(rank(x))}

is SR (by repeated squaring.)
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Representing Transitions

g(x /−) 7→ {(c , d) : c , d ∈ f (x /−) and
d can be obtained from c

in ≤ 2p(rank(x)) many M-steps }

Fact: g is SR.

So far we can represent NEXPTIME (under some natural encoding
ν of finite strings as sets):

M non-deterministically accepts w in time 2p(|w |)

if and only if (Iw ,Accept) ∈ g(ν(w) /−)

where Iw is initial configuration for w (as tape tree),
Accept is unique accepting configuration (as tape tree).
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Representing Alternation

More is possible: M alternating Turing machine, i.e. states are
labelled either ∧ or ∨.
An M-configuration c is accepting iff

1. c is labelled ∨ and some of c ’s immediate successor
configurations are accepting; or

2. c is labelled ∧ and all of c ’s immediate successor
configurations are accepting.

h(x , y /−) 7→ {c ∈ f (x /−) : c is accepted by M in exponential time
with ≤ rank(y) many alternations }

is SR by safe recursion on y .
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Main Result on HF

A natural encoding of finite strings as sets:
ν(s i) = the ordered pair (i , ν(s)) = {{i}, {i , ν(s)}}

Theorem (B., Buss ’11)

Under the above encoding, the SR functions on finite strings are
exactly the functions computed by alternating Turing machines
running in exponential time with polynomially many alternations.

Remark
L. Berman [The complexity of logical theories, TCS, 11 (1980), pp. 71–77]:
this complexity class exactly characterizes the complexity of
validity in theory of real numbers as an ordered additive group.
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Computing SR functions by Turing Machines

Problem with proving converse of Main Theorem is that sizes of
sets can get too big to be stored on tape of exponential length!

Thus, instead of dealing with sets directly, we consider the
following test: (Fix some well-ordering on HF sets.)

Given: x ∈ HF, and sequence i1, . . . , ik ∈ N.
Does ik -th element of ik−1-th element of . . . of i1-th
element of x exists?

Claim: This test for a set computed by some SR function applied
to sets coding finite strings, and a sequence i1, . . . , ik ∈ N,
can be computed by alternating Turing machines in exponential
time with polynomial many alternations.
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Functions based on encodings

The natural encoding above: ν(s i) = (i , ν(s))

Any encoding ν : {0, 1}∗ → HF gives rise to class of functions in
the following way:
SR set function F defines function f : {0, 1}∗ → {0, 1}∗ by

HF
F

−−−−→ HF
x





ν

x





ν

{0, 1}∗
f

−−−−→ {0, 1}∗
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Ackermann encoding

Identify {0, 1}∗ with N.

Ack(ik . . . i1) = {Ack(j) : ij = 1, j = 1, . . . , k}

Encoding is very shallow: rank(Ack(w)) ≈ log∗(|w |).

Resulting class of functions not nice, e.g. the predecessor function
is not computable by a dietary function:

Let s be 1 02k−1 (in binary).
Hence predecessor s ′ of s is 12k−1 (in binary),

rank(Ack(s)) = O(k), card(tc(Ack(s))) = O(k)
but card(Ack(s ′)) ≥ 2k
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An intermediate encoding:

Define

ν∗(w) = (ν(log(|w |)),Ack(w))

The resulting class of functions are those computable in
time 2(log n)

O(1)

alternations ≤ (log n)O(1)

that is computable in quasi-polytime with poly-logarithmic many
alternations.
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SR Set Functions and the L-Hierarchy

SR Set Functions on general sets.

Following Jensen, we define

Definition (SR-closure)

SR-closure(A) := least SR-closed B ⊇ A
For transitive T , SR(T ) := SR-closure(T ∪ {T})

Theorem (Sy Friedman)

For transitive T
SR(T ) = LTrank(T )ω

where LT is the L-hierarchy relativised to T .
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Definability Characterisation of SR Set Functions

For any ~x let TC(~x) be the transitive closure of ~x . The function
~x 7→ TC(~x) is SR. Define

SR(~x) := SR(TC(~x)) = L
TC(~x)
rank(~x)ω

SR′
n(~x) := L

TC(~x)
rank(~x)n for finite n

Theorem (Sy Friedman)

Suppose that f (~x /−) is SR. Then for some Σ1 formula ϕ and
some finite n we have:

f (~x /−) = y iff SR′
n(~x) � ϕ(~x , y)

Conversely, any function so defined is SR.
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The SR Hierarchy

Analogue of Jensen’s hierarchy:

SR1 := HF, the collection of hereditarily finite sets
SRα+1 := SR(SRα) for α > 0
SRλ :=

⋃

α<λ SRα for limit λ

Corollary (Sy Friedman)

For every α, SR1+α = Lω(ωα) .

Lω ⊆ Lωω ⊆ L
ω(ω2) ⊆ L

ω(ω3) . . .
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SR Set Functions on Binary Strings of Length ω

For ~x a finite sequence of binary ω-strings, we have
SR(~x) = Lωω [~x ] as rank(~x) < ω + ω.
Thus, the SR functions on ω-strings are characterised by

f (~x /−) = y iff Lωn [~x ] � ϕ(~x , y)

for some Σ1 formula ϕ and some finite n.

Corollary

The SR functions on ω-strings coincide with those computable by
an infinite-time Turing machine in time ωn for some finite n (as
considered by Deolaliker, Hamkins, Schindler, Welch and others.)
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Recent Work by Toshiyasu Arai

Arai weakened our schemes for SR set functions, obtaining his PC
(predicatively computable) set functions. Recall that we used:
Rudimentary union scheme f (~x /~a, b) =

⋃

z∈b g(~x /~a, z)

Arai replaces this by

Null: (−/ b) = ∅
Union: union(−/ b) =

⋃

b

Conditional∈: Cond∈(−/ a, b, c , d) =

{

a if c ∈ d

b otherwise.
plus closure under

Safe Separation Scheme
f (−/~a, c) = {b ∈ c : h(−/~a, b) 6= ∅}

[

implies a more strict union scheme f (x , ~y /~a) =
⋃

z∈x g(z , ~y /~a)
]
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Recent Work by Toshiyasu Arai

On HF:

Theorem (Arai)

The PC set functions on finite strings are exactly the polytime
functions.

On infinite sets:

Theorem (Arai)

The PC set functions are exactly the functions Σ1-definable in
KP−(D) + (Σ1(D)-Submodel Rule) + (Σ1(D)-Foundation).

KP−: KP minus foundation
D: “normal” values
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Summary

◮ Safe Recursive Set Functions
= Bellantoni-Cook + Primitive Set Recursion

◮ SR Set Functions with natural encoding of finite strings
characterise alternating EXPTIME with polynomially many
alternations

◮ SR Set Functions coincide with other proposed notions of
polytime on ω-strings (Infinite Time Turing Machines)

Take Away Message:

Safe Recursive Set Functions provide
an adequate notion of feasible computation on infinite sets.
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Thanks for listening to my talk

Preprint available at:

http://www.cs.swan.ac.uk/~csarnold/publ/show-paper.php?27
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