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Prehistory
Algorithms sought for:

e Given a Diophantine equation, is there
a solution?

e GGiven two triangulated topological man-
ifolds, are they homeomorphic?

e (Given a presentation of a group and two
elements (as words in the generators),
are they equal in the group?

e Given a (first-order) sentence, is it log-
ically valid?

The original problem was, in each case: “Find
an algorithm.”

Logicians enlarged the question by suggest-
ing that one could perhaps
e define “algorthmically computable” rig-
orously,
e so that “is there an algorithm?” be-
comes a mathematical question,
e for which one might prove a negative
answer.

[Post, Godel Herbrand, Church, Turing]



First-Order Structures

Structures for (multi-sorted) first-order logic
nicely represent

e databases

e words

® arrays

o Jists

e other data structures

e configurations of Turing machines

e configurations of other hardware

e any static mathematical situation

e dynamic situations too, with a sort for
time.

First-order formulas describe single steps in
parallel computation.

If a step is allowed to contain much par-
allel work but only bounded sequentiality,
then its action on configurations is given by
a first-order interpretation.

Parallel abstract state machines.

And conversely, first-order formulas can be
evaluated by such steps.



Iteration

Repetition of simple, first-order steps leads
beyond first-order logic.

The appropriate logical tool is the fixed-
point construction.

Let v( P, ¥)contain the k-ary predicate vari-
able P and variables & = (x1,...,xy).

It defines, in any structure 2[, an operator
on k-ary relations

[(P)={de A" : A =~(Pad)}.
If this operator is monotone, iterating it pro-
duces the least fixed point I'™:

FO — O Foz-i-l _ F(roz) F)\ _ U e
a<A

for limit ordinals A; I'* is I'* for all sufhi-

ciently large a.

If I' is not monotone but inflationary, i.e.,
['(P) D P for all P, then the iteration pro-
duces a fixed point I'*°, not in general the
least one, called the iterative or inflation-
ary fixed point.



Monotone vs. Inflationary

The least fixed point of a monotone oper-
ator is obtained not only by the standard
iterative process but by any iteration that
adds, at each step, to the current P, some
nonempty subset of I'(P) — P.

In the inflationary case, such an iteration
yields a fixed point, but not necessarily the
iterative fixed point.

Inflationary iterations must be done syn-
chronously.
Monotone iterations can be done asynchoronously:.

Nevertheless, the extensions of first-order logic
by the two sorts of fixpoint operators have
the same expressive power. |Gurevich, She-
lah for finite structures; Kreutzer in general]



Fixed-Point Logic
Least Fixpoint Logic: Include syntax for

least fixpoints of positive formulas v( P, )

Inflationary Fixpoint Logic: Include syntax
for iterative fixpoints of formulas of the form

+(P, %)V P(Z).

Either of these, added to first-order logic,
captures polynomial time computability on
finite linearly ordered structures. |[Immer-
man, Vardi

The order is essential. On sets without struc-
ture, first-order logic with (either) fixed point
operation cannot define “The cardinality of
the set is even.”

So consider fixpoint logics with counting.
Still miss some PTime computable proper-
ties, but they are more subtle.

Key to the analysis is embedding the logic in
infinitary logic L, with finitely many
variables.

Gurevich’s conjecture: No logic captures poly-
nomial time on arbitrary finite structures.



Choiceless Polynomial Time

e Input is a first-order structure

e allow “arbitrary” data structures

e prohibit arbitrary choices (or ordering)
e polynomially much (honest) work.

Formalization is abstract state machine work-
ing, in polynomial time, over HF(2), the
universe of hereditarily finite sets over the
input structure 2A. [Blass, Gurevich, She-

lah]

This can’t count.

In fact, it satisfies a zero-one law. [Shelah]
The usual extension-axiom approach to prov-
ing 0-1 laws doesn’t work here. Shelah uses
stronger extension axioms.

Add counting.

Gurevich’s conjecture implies that some poly-
nomial time computable property of inputs
2l cannot be computed in choiceless polyno-
mial time with counting.

No example is known yet.

‘Two serious attempts.



Unexpected Expressibility
For bipartite graphs, the property of having
a complete matching seemed undefinable in
choiceless polynomial time with counting,
until Shelah exhibited a very clever defini-
tion of it.

The problem of isomorphism of Cai-Fiirer-
Immerman graphs seemed undefinable in choice-
less polynomial time with counting,

until Rossman exhibited a very clever def-
inition of it in choiceless polynomial time
(without counting!).

No such definition (even with counting) is
possible if one uses only hereditarily finite
sets of bounded rank. [Dawar, Richerby]

These two examples go against Gurevich’s
conjecture, but the (very different) clever-
ness needed in the proofs seems to support
the conjecture.



Existential Least Fixpoint Logic

e [irst-order logic
e plus least fixpoint operator
e minus universal quantification.

More formally,

e terms and atomic formulas as usual

e negation only of atomic formulas that
begin with negatable predicate sym-
bol

e A\, V, das usual

e simultaneous least fixpoint for positive
predicates.

This logic arose in several contexts: Databases
(Chandra, Harel], abstract computability [Aczel],
Hoare logic [Blass, Gurevich].

So it seems to be a natural fragment of first-
order plus least fixpoint.



Pleasant Properties and
Computational Character of
Existential Least Fixpoint Logic

e captures polynomial time on structures
with successor

e appropriate for Hoare logic of asserted
Programs

e satisfaction depends on a finite part of
the structure

e iterations take at most w steps; I'™° =
Fw

e satisfaction is preserved along homomor-
phisms

e validity of formulas is complete X7

e satisfiability of formulas is complete Y

e validity of sequents (VZ (¢ — 1)) is
complete 119

e consequence relation among sequents is
complete IT]



Second-Order Form
Some of these follow from the fact that exis-
tential least fixpoint formulas are equivalent
to second-order formulas that are strict V1:
VP37 o
where P are predicate (not function) vari-
ables and ¢ is quantifier-free.
Satisfaction of strict Vi formulas depends on

only a finite part of the structure.
Validity and satisfiability are complete 2V,

But a strict Vi formula can define a com-
plete co-NP property: non-3-colorability of
graphs.

What more can be said about the strict Vi
forms of existential least fixpoint formulas?

Their quantifier-free parts are “almost” dis-
junctive normal forms with at most one neg-
ative literal per disjunct. (Dual to Horn for-
mulas)

“Almost” means a simple, validity-preserving
transformation converts them to this form.
The dual, satisfiability-preserving transfor-
mation seems new.



Homomorphisms

and Closed Worlds

Satisfaction of existential least fixpoint for-
mulas is preserved by homomorphisms.
By definition, homomorphisms

e commute with interpretations of func-
tion symbols,

e preserve interpretations of positive pred-
icate symbols,

e preserve and reflect interpretations of
negatable predicate symbols,

Database picture: Homomorphisms are pos-
sible developments of the database while the
real world stays the same.

One could:

e become aware of more entities

e become aware of more relationships be-
tween entities, provided the relations
are positive.

No new negatable relations can arise be-
tween already known entities.

If the database doesn’t say P(a@) for negat-
able P, then P(a) is known to be false.



More Closed Worlds

There could also be sorts that are closed in
the sense that all their elements are known.

On such sorts, homomorphisms should be
surjective.

Then universal quantifiers on such sorts can
be added to existential fixpoint logic.

Do any nice properties persist?



Geometric Preservation

Truth values of existential fixpoint formulas
are preserved by the inverse image parts of
geometric morphisms of topoi.
This implies
e satisfaction depends on only a finite part
of the structure
e fixed-point iterations take at most w
steps
e satisfaction is preserved along homomor-
phisms.

If we add universal quantification over some
sort, will we still have geometric preserva-
tion”

The necessary and sufficient condition on
the sort is a version of finiteness.

Open Problem: Characterize the second-
order (or higher-order) formulas whose truth
values are preserved by inverse images of
geometric morphisms of topoi.



Fixed Point Deduction

The compactness theorem fails for fixpoint
logics.

So no finitary deductive system can be sound
and complete.

But there is a natural, finitary deductive
system for first-order logic plus least fixpoints.
Add the following to a standard formaliza-
tion of first-order logic:

e For any formula v(P, x4, . . ., 1) where
the k-ary predicate variable occurs only
positively, introduce a new k-ary pred-
icate symbol C' (intended to denote the
least fixpoint of the operator I' defined

by 7).
e Add the axiom

v(C, T) = C(Z)
saying that C' is closed under I.
e Add the axiom schema

VE (y(¥(-), &) = (@) —
VE (C(F) — (1))

saying that C' is least among predicates
closed under I'.



Open Problem
Assume
(Vz3='y P(z,y)) — (VaT~'y~y(P, z,y)).
Can one deduce, for the corresponding clo-
sure predicate C', that

Ve3sty C(z,y) ?



Nondeterminacy, Alternation

Classical logic

Meaning = criterion for truth

Connectives defined by action on truth val-
ues

Deterministic computation of truth values

Intuitionistic logic

Meaning = criterion for proof

Connectives defined by action on proofs
Nondeterministic computation of truth val-
ues, or trying to produce a witness

Game semantics

Meaning = rules for dialog game
Connectives defined by action on games
Alternating computation of truth values, or
trying to win a play of the game

Formal systems for game semantics?
Linear logic |Girard]

Computability logic [Japaridze]



