Statistical Physics of Communicating Processes

Vincent Danos
U of Edinburgh, CNRS
SynThsys Centre

introduction

what?

What: we want to write Newton's equations of motion (or the Hamiltonian) of a set of communicating processes:

$$
\binom{x}{v} \mapsto\binom{x+v d t}{v+F / m d t}=\binom{x+v d t}{v-1 / m \partial_{x} V d t}
$$

where V is the potential
Actually, the state space of CCS processes is not continuous, so velocity undefined ${ }^{1}$; so we use a Metropolis form.

Metropolis?

Suppose given: a potential on X, that is to say a function $V: X \rightarrow$ \mathbb{R}; and a symmetric graph G on X with finite out-degree. If X is finite, one can always find a rate function q with support G for which $\pi_{V}(x):=\exp (-V(x))$ is an equilibrium.

For instance, for any transition (x, y) in G, we set $q(x, y):=1$ if $V(x) \geq V(y), q(x, y):=\exp (V(x)-V(y))$ else.

The first clause says that one is always willing to travel 'downhill', while the second says that one is increasingly reluctant to travel 'uphill'. This $|q|$ is clearly symmetric, and one can readily see that Detailed Balance holds:

$$
\begin{equation*}
q(y, x) / q(x, y)=e^{V(y)-V(x)}=\pi_{V}(x) / \pi_{V}(y) \tag{1}
\end{equation*}
$$

what? (2)

borrow from stat phys distributed CT Metropolis

build a potential energy function to drive kinetics

NB: lower energy/higher probability

why?

Why: 1) convenient: generates implicitely a quantitative dynamics (so we do not have to describe the actual behaviour, it follows), 2) conceptual: decentralized computation as physical dynamics, 3) analytic tool: energy constraint is a structuring constraint, one can use that for analysis ${ }^{1}$ (4) ppportunity: quantize (make quantitative) rCCS so that we can start really computing and perhaps talk about efficiency and learning ${ }^{2}$ 5) post hoc reason: nice result.

outline

- processes CCS/reversible processes rCCS
- quantizing rCCS
- concurrent and convergent rCCS potentials
- a solution/sufficient condition
processes CCS/reversible processes rCCS

CCS the idea

minimal model

processes can fork and synch on multiset of channels (predefined)

Robin Miliner Circa 1980

rCCS the idea

two aspects in solving a distributed problem:

- local steps towards a solution
- backtracking (deadlock escape)
centralized case: can try to always make progress to solution, but NP!

decentralized case: one has to!

NB: decentralization = for efficiency or given granularity

rCCS the idea (2)

set backtrack in the infrastructure code easier to prove and understand

universal backtrack strategy

$$
p \quad \rightarrow \quad \Gamma \cdot p
$$

i.e., add history to a process

rCCS results

universal cover property distributed history characterizes traces up to concurrent moves

syntax-independent history construction (eg works for Petri nets, pi-calculus)

weak-bisimulation

 $\operatorname{rev}(\mathrm{p})+$ irreversible actions / causal transition system(p) - only irreversible actions observable

Jean Krivine
Pawel Sobocinski

2004-2006

ulidoWSkil et al, Stefani et al.

beyond weak-bisimulation

∞-hesitation, no efficiency measure

need to probabilize $\operatorname{rev}(\mathrm{p})$

exhaustivity of backtrack as probabilistic equilibrium

which probabilistic structure?

borrow from stat phys distributed CT Metropolis

build a potential energy function to drive kinetics

concurrent \& convergent
the reversible CCS transition system csq on possible potentials

reversible communicating processes

memory

fork

$$
\Gamma \cdot\left(p_{1}, \ldots, p_{n}\right) \rightarrow^{f} \Gamma 1 \cdot p_{1}, \ldots, \Gamma n \cdot p_{n}
$$

synch on a_{1}, \ldots, a_{m}

$$
\begin{aligned}
& \Gamma_{1} \cdot\left(a_{1} p_{1}+q_{1}\right), \ldots, \Gamma_{m} \cdot\left(a_{m} p_{m}+q_{m}\right) \rightarrow_{\vec{a}}^{s} \\
& \Gamma_{1}\left(\vec{\Gamma}, a_{1}, q_{1}\right) \cdot p_{1}, \ldots, \Gamma_{m}\left(\vec{\Gamma}, a_{m}, q_{m}\right) \cdot p_{m}
\end{aligned}
$$

with a unique naming scheme and enough info to reverse uniquely

what can we say about the generated TS?

symmetric TS (so strongly connected)
"simplicity" of TS: at most one jump
(slight pb with sums)
acyclic up to concurrent moves
countable state space (recursion)

from potential to dynamics (CTMC)

potential/rate ratio constraint

$$
q(y, x) / q(x, y)=e^{V(y)-V(x)}=\pi_{V}(x) / \pi_{V}(y)
$$

$\sum_{X} e^{-V(x)}<\infty$
definition of convergence

explosive growths

$$
\begin{aligned}
& q \rightarrow^{f} 0 \cdot p(a), 1 \cdot p(\bar{a}) \\
& \rightarrow^{f s} 0 a 0 \cdot p(a), 0 a 1 \cdot p(a), 1 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 1 \cdot p(\bar{a}) \\
& \text { 1,1 } \\
& =0 a 0 \cdot a(p(a), p(a)), 0 a 1 \cdot a(p(a), p(a)) \text {, } \\
& 1 \bar{a} 0 \cdot \bar{a}(p(\bar{a}), p(\bar{a})), 1 \bar{a} 1 \cdot \bar{a}(p(\bar{a}), p(\bar{a})) \\
& \rightarrow^{f s} 0 a 0 a 0 \cdot p(a), 0 a 0 a 1 \cdot p(a), 0 a 1 a 0 \cdot p(a), 0 a 1 a 1 \cdot p(a), 4,4 \\
& 1 \bar{a} 0 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 0 \bar{a} 1 \cdot p(\bar{a}), 1 \bar{a} 1 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 1 \bar{a} 1 \cdot p(\bar{a}) \\
& \rightarrow^{f s} \prod_{w \in 2^{k}} 0 w(a) \cdot p(a), \prod_{w \in 2^{k}} 1 w(\bar{a}) \cdot p(\bar{a}) \\
& 2^{k}, 2^{k} \\
& 2^{k}!
\end{aligned}
$$

is there a potential that controls the above?
upper bound on the number of such (entropy)
lower bound on energy of a deep state

(3)
 construction of a potential

V_{1} : total stack size potential

$$
\begin{gathered}
V_{1}\left(p_{1}, \ldots, p_{n}\right)=V_{1}\left(p_{1}\right)+\ldots+V_{1}\left(p_{n}\right) \\
V_{1}(\Gamma \cdot p)=V_{1}(\Gamma i)=V_{1}(\Gamma) \\
V_{1}(\Gamma(\vec{\Gamma}, a, q))=V_{1}(\Gamma)+\epsilon_{\vec{a}} \\
\vec{\epsilon} \cdot \tilde{\Gamma}(p)
\end{gathered}
$$

inner product of the vector of communication cost and history

V_{1} : energy deltas

$\Delta V_{1}=(n-1) V_{1}(\Gamma) \quad n$-ary fork with memory Γ
$\Delta V_{1}=m \epsilon_{\vec{a}}$

ratio constraint

$$
\begin{array}{ll}
k_{f}^{-}=1 & k_{\vec{a}}^{-}=1 \\
k_{f}^{+}=e^{-(n-1} V_{1}(\Gamma) & k_{\vec{a}}^{+}=e^{-m \epsilon_{\vec{a}}}
\end{array}
$$

Vo : total synch potential

Given a path γ from $\varnothing \cdot p_{0}$ to p :

$$
V_{0}(p)=\sum_{\vec{a} \in A^{\star}} \sum_{x \rightarrow \frac{s}{\vec{a}} y \in \gamma}(-1)^{v(s)} \epsilon_{\vec{a}}
$$

ratio constraint

$$
k_{f}^{-}=k_{f}^{+} \quad k_{\vec{a}}^{-} / k_{\vec{a}}^{+}=\exp \left(\epsilon_{\vec{a}}\right)
$$

Vo vs V_{1}

V_{1} is truly concurrent
= sensitive to sequential expansion
$\mathrm{V}_{0}<$ or equal to V_{1}
potentially more divergent

No matter how costly a synch, Vo diverges What about V_{1} ?

bounds

upper bound on entropy
Lemma For large $n s, \log |T(n)| \leq \beta_{+} \alpha^{2} O(n \log n)$
lower bound on energy
Lemma Suppose $\beta_{-}>1, \epsilon_{m}>0, p \in \Sigma_{n}\left(p_{0}\right)$:

$$
\frac{\epsilon_{m}}{\log 4+\log \left(\beta_{+}+1\right)} \cdot n \log n \leq V_{1}(p)
$$

sufficient condition for equilibrium

Proposition 1 Suppose $1<\beta_{-}$, and $\beta_{+} \alpha^{2} \log \left(4\left(\beta_{+}+1\right)\right)<\epsilon_{m}$, then:

$$
Z\left(p_{0}\right):=\sum_{p \in \Omega\left(p_{0}\right)} e^{-V_{1}(p)}<+\infty
$$

Nicolds Oury

GiorSio BaCCi (udine)
Ohad Kammar
DaVid Mark

discussion

simulated annealing with "local" temperatures

$$
\begin{aligned}
& k_{f}^{-}=1 \\
& k_{f}^{+}=e^{-(n-1) V_{1}(\Gamma)}
\end{aligned}
$$

energy as syntax

self-organised energy-based dynamics
$\operatorname{argmax} \vec{\epsilon} \cdot \sum_{p \in \partial X} \pi(\vec{\epsilon}, p)=\int \mathbf{1}_{\partial X} d \pi$

discussion (2)

the bounds are sharp but ...
control growth rate/use specialized potentials?
what with irreversible actions?
other potentials?
work with general steady states?

> work with non-universal covers
what kind of problem? implementation?

