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What: we want to write Newton’s equations of motion (or the

Hamiltonian) of a set of communicating processes:

�
x
v

�
�→

�
x+ v dt

v + F/mdt

�
=

�
x+ v dt

v − 1/m ∂xV dt

�

where V is the potential

Actually, the state space of CCS processes is not continuous, so

velocity undefined
1
; so we use a Metropolis form.

Why: 1) convenient: generates implicitely a quantitative dynam-

ics (so we do not have to describe the actual behaviour, it follows),

2) conceptual: decentralized computation as physical dynamics, 3)

analytic tool: energy constraint is a structuring constraint, one can

use that for analysis
2
, 4) opportunity: quantize (make quantitative)

rCCS so that we can start really computing and perhaps talk about

efficiency and learning
3
5) post hoc reason: nice result.

why not in CCS (why reversible?)

Heinz: can we pick up the potential in relation to the problem?

Seth Loyd: multi-threaded search in quantum as well

1can we recover a formal velocity through the kinetic energy trick, defined as
inertia to go down V ?

2one can say nothing about a TMTM, can that be made a formal statement:
when compiling to lower-level, the complexity of finding back a property (say
reachability superset) increases?

3In the absence of a quantitative global time, and in the decentralized case, the
time-as-step familair from usual complexity theory (or computability) is replaced
with causal time; how does one build a notion of efficiency on that, the worst case
scheduler leading to success?

2

Thursday, 12 July 2012



expresses the fact that when in (probabilistic) state π, jumps from
x to y and from y to x are equally likely. This implies that π is a
fixed point of the action of the chain q. Up to the normalisation fac-
tor Z, there is at most one such fixed point with support included in
a connected component of |q|. Furthermore, and because |q| is sym-
metric, hence strongly connected (or irreducible), the classical theory
of Markov chains guarantees that given an initial state x0: the chain
converges to the unique π defined on the connected component C(x0)
of x0; and the mean return time to any x in C(x0) is finite [23].

2.3 From potentials to rates

Suppose given: a potential on X, that is to say a function V : X →
R; and a symmetric graph G on X with finite out-degree. If X is
finite, one can always find a rate function q with support G for which
πV (x) := exp(−V (x)) is an equilibrium.

For instance, for any transition (x, y) in G, we set q(x, y) := 1 if
V (x) ≥ V (y), q(x, y) := exp(V (x)− V (y)) else.

The first clause says that one is always willing to travel ‘down-
hill’, while the second says that one is increasingly reluctant to travel
‘uphill’. This |q| is clearly symmetric, and one can readily see that
Detailed Balance holds:

q(y, x)/q(x, y) = eV (y)−V (x) = πV (x)/πV (y) (1)

When X is finite, this is enough to make πV an equilibrium of
q. This construction of q on G is a continuous-time version of the
Metropolis algorithm. There are many other ways to derive q from
V and G. In the case which interests us, when X can be countably
infinite, the idea still applies, but one has to make sure that the
potential V is such that ZV :=

�
X exp(−V (x)) is finite.

We can also consider the converse problem of finding a potential V
given a rate function q. In general, we can pick an origin x0 arbitrarily
and within the connected component of x0 in |q|, define the potential
V as:

V (x) :=
�

(x,y)∈γ

log(q(y, x)/q(x, y)) (2)

for some path γ leading from x0 to x. Detailed Balance holds for
(q, V ) iff this assignment is independent of the choice of γ, which
is evidently the case if |q| is acyclic. Even for simple CTMCs this
property is undecidable [10]. For stochastic mass action Petri nets,
Detailed Balance can be decided by computing transition-invariants,
while Convergence automatically follows [11].

5

Metropolis?
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what? (2)

build a potential energy function to
drive kinetics

distributed CT Metropolis
borrow from stat phys

NB: lower energy/higher probability
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What: we want to write Newton’s equations of motion (or the

Hamiltonian) of a set of communicating processes:

�
x

v

�
�→

�
x+ v dt

v + F/mdt

�
=

�
x+ v dt

v − 1/m ∂xV dt

�

�
∂tx
∂tp

�
=

�
p/m = ∂pH

−∂xV

�

where V is the potential, H(x, p) = p
2
/2m+ V (x) the Hamiltonian.
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1one can say nothing about a TMTM, can that be made a formal statement:
when compiling to lower-level, the complexity of finding back a property (say
reachability superset) increases?

2In the absence of a quantitative global time, and in the decentralized case, the
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- processes CCS/reversible processes rCCS 

outline

- concurrent and convergent rCCS potentials

- a solution/sufficient condition

- quantizing rCCS
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1
processes CCS/reversible processes rCCS 
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minimal model

processes can fork
and synch on multiset of channels 

(predefined)

CCS the idea

Robin Milner circa 1980
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two aspects in solving a distributed problem:
- local steps towards a solution
- backtracking (deadlock escape)

centralized case: can try to always make progress
 to solution, but NP!

decentralized case: one has to!

NB: decentralization = for efficiency or given granularity

rCCS the idea
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set backtrack in the infrastructure 
code easier to prove and understand

universal backtrack strategy

i.e., add history to a process

On the Statistical Thermodynamics of

Reversible Communicating Processes

Giorgio Bacci

DiMI, University of Udine

Vincent Danos∗

School of Informatics, University of Edinburgh

Ohad Kammar

School of Informatics, University of Edinburgh

March 23, 2012

1 bits

p → Γ · p

Abstract

We propose a probabilistic interpretation of a class of reversible com-
municating processes. The rates of forward and backward computing steps,
instead of being given explicitly, are derived from a set of formal energy
parameters. This is similar to the Metropolis-Hastings algorithm1 but in a
distributed context. We find that with the right definition of the energy land-
scape, a specific lower bound on the cost of communication will guarantee
that a process reaches a probabilistic equilibrium state (a grand canonical
ensemble in statistical physics terms2). This implies that the process hits a
success state in finite average time, if there is one.

∗This is a extended version of an invited contribution to CALCO’11. The second author
wishes to thank Nicolas Oury, Walter Fontana, Julien Ollivier, and David Mark for very fruitful
discussions on the subject of this paper.

1N. Metropolis et al.: Equation of state calculations by fast computing machines, in: The
Journal of Chemical Physics 21.6 (1953), p. 1087.

2R.F. Streater: Statistical Dynamics, 1995.

1

rCCS the idea (2)
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syntax-independent history construction 
(eg works for Petri nets, pi-calculus)

universal cover property
distributed history characterizes traces up to concurrent moves

weak-bisimulation
rev(p) + irreversible actions / causal transition 
system(p) - only irreversible actions observable

rCCS results
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Jean Krivine

Pawel Sobocinski

2004-2006

Ulidowski et al, Stefani et al.
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∞-hesitation, no efficiency 
measure

beyond weak-bisimulation

need to probabilize rev(p)

exhaustivity of backtrack as
probabilistic equilibrium
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build a potential energy function to
drive kinetics

concurrent & convergent

distributed CT Metropolis
borrow from stat phys

which probabilistic structure?
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the reversible CCS transition system

2

csq on possible potentials
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reversible communicating processes

only appears prefixed (aka guarded) by a channel; such definitions are considered

to unfold silently.

An example of (recursive) process (which we return to in §5) is p0 = p, p�, with
p = a(p, p), p� = a�(p�, p�). Assuming a + a� ∈ A�, the two top threads p, p� can
synchronize, after what they will fork into two copies of themselves, which can

synchronize too, etc. Clearly p0 has countably many computation traces, therefore

we do need to deal with countable state spaces.

4.1 Memories and Transitions

Reversibility is obtained by adjoining memory stacks to processes in order to record

transitions. One pushes a sibling identifier on the memory, when forking, and

information about the synch partners, when synching.

Thus we have fork transitions (with n > 0):

Γ · (p1, . . . , pn) →f Γ1 · p1, . . . ,Γn · pn

where the memory Γ is copied over to each sibling, with a unique integer identifier

for each one of them.

And we also have synch transitions (with m > 0):

Γ1 · (a1p1 + q1), . . . ,Γm · (ampm + qm) →s
�a Γ1(

�Γ, a1, q1) · p1, . . . ,Γm(
�Γ, am, qm) · pm

where �Γ is short for Γ1a1, . . . ,Γmam. Each process taking part into a synch records

the memory and channel of all participants, its own channel ai, and its sum re-

mainder qi (preempted by the synch).

We have labelled the transition arrows for convenience, where →s
�a means synch

on a multiset �a ∈ A�. Naturally, the above transitions can happen in any product

context.

As we need to compute some examples in §4 and §5, we use light and read-

able notations: the comma to denote parallel composition, and juxtaposition for

prefixing; notations for memories are reversed20.

Communicating processes commonly offer additional constructs: name creation,

restrictions, value- or name-passing, etc, which are not considered here. None

should make a difference to our main argument, but this has to be verified.

Consider a process with an empty memory ∅ · p0, and define p ∈ Ω(p0) if p is

reachable from ∅ ·p0 by a sequence of transitions as defined above. It is easy to see

20Danos/Krivine: Reversible Communicating Systems (see n. ??).
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9

memory

with a unique naming scheme and enough info to reverse 
uniquely
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"simplicity" of TS: at most one jump

(slight pb with sums)

countable state space (recursion)

symmetric TS (so strongly connected)

acyclic up to concurrent moves

what can we say about the 
generated TS?
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potential/rate ratio constraint

On the Statistical Thermodynamics of

Reversible Communicating Processes

Giorgio Bacci

DiMI, University of Udine

Vincent Danos∗

School of Informatics, University of Edinburgh

Ohad Kammar

School of Informatics, University of Edinburgh

March 23, 2012

1 bits

p → Γ · p

�Γ = Γ1a1, . . . ,Γmam
p0 = p, p�

p = a(p, p)
p� = a�(p�, p�)

ρ(x, y) = q(y, x)/q(x, y) = p(y)/p(x) = e−(V (y)−V (x))
�

X e−V (x) < ∞

Abstract

We propose a probabilistic interpretation of a class of reversible com-

municating processes. The rates of forward and backward computing steps,

∗This is a extended version of an invited contribution to CALCO’11. The second author

wishes to thank Nicolas Oury, Walter Fontana, Julien Ollivier, and David Mark for very fruitful

discussions on the subject of this paper.

1

from potential to 
dynamics (CTMC)

definition of convergence

expresses the fact that when in (probabilistic) state π, jumps from
x to y and from y to x are equally likely. This implies that π is a
fixed point of the action of the chain q. Up to the normalisation fac-
tor Z, there is at most one such fixed point with support included in
a connected component of |q|. Furthermore, and because |q| is sym-
metric, hence strongly connected (or irreducible), the classical theory
of Markov chains guarantees that given an initial state x0: the chain
converges to the unique π defined on the connected component C(x0)
of x0; and the mean return time to any x in C(x0) is finite [23].

2.3 From potentials to rates

Suppose given: a potential on X, that is to say a function V : X →
R; and a symmetric graph G on X with finite out-degree. If X is
finite, one can always find a rate function q with support G for which
πV (x) := exp(−V (x)) is an equilibrium.

For instance, for any transition (x, y) in G, we set q(x, y) := 1 if
V (x) ≥ V (y), q(x, y) := exp(V (x)− V (y)) else.

The first clause says that one is always willing to travel ‘down-
hill’, while the second says that one is increasingly reluctant to travel
‘uphill’. This |q| is clearly symmetric, and one can readily see that
Detailed Balance holds:

q(y, x)/q(x, y) = eV (y)−V (x) = πV (x)/πV (y) (1)

When X is finite, this is enough to make πV an equilibrium of
q. This construction of q on G is a continuous-time version of the
Metropolis algorithm. There are many other ways to derive q from
V and G. In the case which interests us, when X can be countably
infinite, the idea still applies, but one has to make sure that the
potential V is such that ZV :=

�
X exp(−V (x)) is finite.

We can also consider the converse problem of finding a potential V
given a rate function q. In general, we can pick an origin x0 arbitrarily
and within the connected component of x0 in |q|, define the potential
V as:

V (x) :=
�

(x,y)∈γ

log(q(y, x)/q(x, y)) (2)

for some path γ leading from x0 to x. Detailed Balance holds for
(q, V ) iff this assignment is independent of the choice of γ, which
is evidently the case if |q| is acyclic. Even for simple CTMCs this
property is undecidable [10]. For stochastic mass action Petri nets,
Detailed Balance can be decided by computing transition-invariants,
while Convergence automatically follows [11].

5
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with:
V0(p�) = 2�a + �b = V1(p�)

We see that V1 is sensitive to the expansion law, it is ‘truly concurrent’, while
V0 is not. In fact, according to V1, the expanded form using a sum is cheaper by
an amount of V1(Γ ) + η, even if η = 0, a sequentialized version is bolder in its
search (but then the backward options are fewer).

Also V0 ≤ V1 as a synch used en route to p is visible at least twice (in general
it occurs 2 + f(s) where f(s) is the number of forks hereditarily caused by the
synch s on a) in a stack of p.

We will see in the next section that V0 �|= E2.
We can define more variant potentials (it all depends on the accounting

balances ∆V ). In the sequel, as V1 might seems redundant - we will work with
V2 (we put them side by side for comparison):

V1(p) = η
�

θ∈p size of stack of thread θ +
�

a��a, nb synch on a�
V2(p) =

�
θ∈p,a∈A�ξa, nb of a in the stack of θ�

5 explosive growth - examples

The potential V partitions Ω(q) into level sets or energy shells ΩV (q).
We want to compute the cardinality of ΩV (q) to bound above Z.
By the labeling/universal cover property, this is the number of traces (com-

putation paths up to permutations) γ leading to ΩV .
Consider a trace φ from q to some process r in rC.
It is not true that the length of φ is n/φ has n synchs (one does not want to

count the number of forks and recursive calls) iff the total stack size of r is n
(or 2n) - because forking doubles the memory stack (and hence costs something
in terms of energy).

Consider the process

q := p(a), p(ā) (4)

p(x) := x(p(x), p(x)) (5)

or equivalently q = aq, a�q.
To find an example, we can examine upto traces obtained by maximally

synchronous executions of the process q defined above.
Call φk the following trace (synch partners are not represented in memories):

event horizon nb of complete matchings
q →f 0 · p(a), 1 · p(ā) 1, 1 1
→fs 0a0 · p(a), 0a1 · p(a), 1ā0 · p(ā), 1ā1 · p(ā) 2, 2 2
= 0a0 · a(p(a), p(a)), 0a1 · a(p(a), p(a)),

1ā0 · ā(p(ā), p(ā)), 1ā1 · ā(p(ā), p(ā))
→fs 0a0a0 · p(a), 0a0a1 · p(a), 0a1a0 · p(a), 0a1a1 · p(a), 4, 4 4!

1ā0ā0 · p(ā), 1ā0ā1 · p(ā), 1ā1ā0 · p(ā), 1ā1ā1 · p(ā)
. . .
→fs

�
w∈2k 0w(a) · p(a),

�
w∈2k 1w(ā) · p(ā) 2k, 2k 2k!

7

explosive growths

is there a potential that controls the above?

lower bound on energy of a deep state

upper bound on the number of such (entropy)
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construction of a potential

3
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inner product of the vector of communication 
cost and history

with k+
�a , k

−
�a the forward and backward rates for a synch on �a (which can depend

on x and y in general).

The multiplicity factors appearing above are perfectly manageable, but they
do make the treatment less smooth. This is why we forbid degenerate sums.

5 Two concurrent potentials

We examine now two potentials that seem natural in the light of the discussion in
§3.3, and establish that they are implementable concurrently (within the abstract
model of concurrency on which CCS relies). Convergence issues are investigated
in the next two sections.

Throughout this section we fix an initial process ∅ ·p0, and a real-valued energy
vector indexed over A�, and written ��.

5.1 Total stack size potential

The first potential we consider is defined inductively on the syntax of a reversible
process in Ω(p0):

V1(p1, . . . , pn) = V1(p1) + . . .+ V1(pn)
V1(Γ · p) = V1(Γi) = V1(Γ)
V1(Γ(�Γ, a, q)) = V1(Γ) + ��a

with �Γ = Γ1a1, . . . ,Γmam and �a = a1 + . . .+ am.

Equivalently, V1(p) is the inner product �� · Γ̃(p), where Γ̃(p)(�a) is the number of
occurrences of �a in p; Γ̃(p) can be seen as a forgetful and commutative projection
of the memory structure of p.

Note that V1(∅ · p0) = 0 with this definition; one can always choose a zero
energy point in the (strongly) connected component of the initial state, and it is
natural to choose the initial state itself.

For each of the two types of transitions, we can easily compute the energy
balance:

∆V1 = (n− 1)V1(Γ) n-ary fork with memory Γ
∆V1 = m��a synch on �a

Now, we need to understand how these constrain the rate function. This is analo-
gous to what we have done earlier with (1) in §2.3.

Let us write k−
f , k

+
f for backward and forward forking rates, and k−

�a , k
+
�a for

backward and forward synching rates.

12
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f = 1

k+
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This is an entirely local solution, as the increasing reluctance to fork only depends

on the local memory of the process of interest (and the number of siblings, but

that can be statically controlled).

Similarly, for a synch, the constraint is log ρ(x, y) = log(k−
�a /k

+
�a ) = m��a. A

possible solution is:

k−
�a = 1

k+
�a = e−m��a

not only this is local, but this time the assignment does not even depend on the

memories of the synching processes.

Note that there are many other solutions compatible with V1.

5.2 Total synch potential

Perhaps the most natural potential is the following.

Given a path γ from ∅ · p0 to p:

V0(p) =
�

�a∈A�

�
x→s

�ay∈γ
(−1)v(s)��a

where v(s) = ±1 depending on whether the synch is forward or backward. This

V0 is based on the idea that only communication costs, and forking is done at

constant potential. As for V1, V0(∅ · p0) = 0.

Clearly, this definition is independent of the choice of γ. Indeed, by the labeling

property, any γ, γ� linking ∅·p0 to p are convertible by swaps of concurrent synchs,

and trivial cancellations, both of which leave V0 invariant. Obviously, the implied
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and trivial cancellations, both of which leave V0 invariant. Obviously, the implied
constraints can be met by a locally implementable rate function:

k−
f = k+

f

(forking is energy neutral), and

k−
�a /k

+
�a = exp(��a)

Differently from V1, there is no straightforward inductive formula for V0(p), as
to compute it one essentially needs to replay a reduction to p.

5.3 V1 vs. V0

Let us compare the potentials on two simple examples. Below, we suppose �a =
a+a�, �b = b+b� in A�, and ��a > 0. We do not represent the entirety of the memory
elements, just what we need to compute the V s.

Here is a first example:

∅ · a(a, b, a�, b�), a� → 0�a · (a, b, a�, b�), 1�a ·
→ 0�a0 · a, 0�a1 · b, 0�a2 · a�, 0�a3 · b�, 1�a ·
→ 0�a0�a · , 0�a1�b · , 0�a2�a · , 0�a3�b · , 1�a · = p

and we get:
V0(p) = 2��a + ��b < 7��a + ��b = V1(p)

We can use the expansion law24, replacing a, b with ab + ba, and similarly for
a�, b� in p0, and get a variant of the above trace:

∅ · a(ab+ ba, a�b� + b�a�), a� → 0�a · (ab+ ba, a�b� + b�a�), 1�a ·
→ 0�a0 · (ab+ ba), 0�a1 · (a�b� + b�a�), 1�a ·
→ 0�a0�a�b · , 0v1�a�b · , 1�a · = p�

with:
V0(p) = V0(p�) = 2��a + ��b < 4��a + 2��b = V1(p�) < V1(p)

We see that V1 is ‘truly concurrent’ in the sense that it is sensitive to sequential
expansions. In fact, according to V1, an expanded form using a sum is cheaper
by an amount of V1(Γ). In other words, according to V1, the more sequential the
bolder the search behaviour (and the fewer the backward options). On the other
hand V0 is invariant under sequential expansion.

24Milner: Communication and concurrency (see n. 6).
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V0 < or equal to V1

potentially more divergent

V1 is truly concurrent
= sensitive to sequential expansion

No matter how costly a synch, V0 diverges

What about V1 ?

V0 vs V1
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We can establish the following lower bound on the potential:

Lemma 4 Suppose β− > 1, �m > 0, p ∈ Σn(p0):
�m

log 4 + log(β+ + 1)
· n log n ≤ V1(p)

Proof: Consider the set U(n) of trees with n internal nodes labeled in A�. It clearly
makes sense to extend the definition of V1 to such labeled trees.

Consider t ∈ U(n), n > 0, and u an internal node in t with label �a, all the
children of which are leaves (so that u is on the boundary of the set of internal
nodes). Define t�u ∈ U(n− 1) as the tree obtained from t by erasing the δ(u)+1
leaves right below u, as well as u’s label.

Write Γ̃(u) for the multiset of occurences of labels above u, and dt(u) for the
depth of u in t. We can bound below the difference of potential incurred by erasing
the δ(u) + 1 children of u:

V1(t)− V1(t� u) = (δ(u) + 1)��a + δ(u)���, Γ̃(u)�
≥ �mδ(u)dt(u)
≥ �mdt(u)

We have used δ(u) > 0.

It follows that V1/�m decreases by chunks of at least dt(u) for each deletion of
a node on the internal boundary, therefore V1(t)/�m ≥

�
u∈t◦ dt(u) =: �t�, and we

can apply Lemma 2, to obtain V1(t)/�m ≥ n log n/ log 4(β+ + 1).

As any p in Σn(p0) projects to a labeled tree in U(n), by forgetting the infor-
mation on communication partners and remainders, and this forgetful operation
leaves V1 invariant, the statement follows. �

With the same notations as in the proof above, consider a leaf v ∈ t, and define
t(u, v) as the new tree obtained by moving the leaves below u, to below v; clearly,
if d(v) < d(u), d(t(u, v)) < d(t). If no such move exists, by definition t is balanced.
So, as mentioned earlier, the lower bound we get for the potential is obtained for
balanced concurrent structures of execution — and as they have lower energies,
they will be highly favoured by the dynamics. In other words, our potential V1

penalizes depth — one could call it a soft breadth-first potential — and different
threads will tend to stay synchronous.

7.2 Upper bound on the number of traces

Dually to Lemma 4, which offers a lower bound on potentials, we can derive an
upper bound on the entropy (that is to say the logarithm of the cardinality) of the

19

lower bound on energy

set of traces with a given number of synchs.

Lemma 5 For large ns, log |T (n)| ≤ β+α2O(n log n)

Proof: By induction on n, there are at most δ0 + nβ+α threads in the end process
of a trace in T (n), as each synch adds at most δα new threads, where we have
written δ0 for the initial number of threads in p0.

Any trace with n + 1 synchs can be obtained (perhaps in many ways but we
are looking for an upper bound) by synching one of length n, so |T (n + 1)| ≤
|T (n)|(δ0 + nβ+α)α. As T (0) = 1, we get log |T (n)| ≤ α log(δ0 + nβ+α)!.

Since:
1− n+ n log n ≤ log n! ≤ 1− n+ (n+ 1) log n

it follows that log(δ0 + nβ+α)! ∼ β+αO(n log n). �
The first inequality is sharp if all synchs are possible, and one has the maximal

thread count, and no sums (as they decrease the number of matches), which is
exactly the situation of the explosive example of §6.

As the arithmetic progression that gives rise to the factorial, samples the fac-
torial only with frequency 1/δα (this is sometimes called a shifted j-factorial25,
where j = αδ, and the shift is δ0 in our example), it seems the upper bound above
could be improved. But, if we return to the maximal synchronous traces computed
in §5, we see that the bound above is quite sharp, so it seems unlikely.

7.3 Convergence

Now we can put both bounds to work to get Convergence.

Proposition 1 Suppose 1 < β−, and β+α2 log(4(β+ + 1)) < �m, then:

Z(p0) :=
�

p∈Ω(p0)
e−V1(p) < +∞

Proof: We can partition the indexing set of Z(p0) by number of synchs:

Z(p0) =
�

n

�
p∈Σn(p0)

e−V1(p) ≤
�

n e
−�mn logn/ log 4(β++1) · |T (n)|

where the second step follows by Lemma 4. By Lemma 5, the logarithm of the gen-
eral term of the upper series is asymptotically bounded by −�mn log n/ log 4(β+ +
1) + β+α2O(n log n), so both series converge if �m > δα2 log(4(β+ + 1)). �

We can summarise our findings:

25M.D. Schmidt: Generalized j-Factorial Functions, Polynomials, and Applications, in: Journal
of Integer Sequences 13.2 (2010), p. 3, p.46.
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simulated annealing with "local" temperatures
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self-organised  energy-based dynamics

energy as syntax

discussion

sion of reversible CCS can be equipped with a distributed potential energy. This
potential is parametrized by costs for different types of synchronizations. If costs
are well-chosen, any process eventually reaches a probabilistic equilibrium over its
reachable state space — provided that the rate at which processes fork decreases
exponentially as a function of the size of the local history. Interestingly, the (suffi-
cient) condition for convergence is expressed in terms of the causal structure of a
process.

It would be interesting to see how our findings can be adjusted to a concrete
model of distributed computing, and whether one can find examples where this
technique works well. Examples might be found in the field of multi-party trans-
actions. To talk about efficiency, solutions, and examples, one needs to make room
for the inclusion of irreversible synchronizations expressing success states26. One
can then try to modify parameters to improve the efficiency of the search mecha-
nism. Instead of minimizing the time to irreversible synchs (aka commits), which
begs the question, one could use as a proxy the following objective. Namely to
maximize the equilibrium time of the search reflected on success states ps which
live on the boundary ∂X of the fully reversible state space:

argmax��.
�

p∈∂X π(��, p) =
�
1∂X dπ

(by reflected search we mean that irreversible synchs are de-activated, and, hence,
the process bounces off the success boundary) where π is the equilibrium probabil-
ity, and �� its energy vector. Such quantities are nice optimization targets as they
can be estimated via the ergodic theorem by the averages 1

n

�
1∂X(Xk), i.e. the

empirical time spent in a success state (under reflective regime).

Conceptually, one can think of this result as a termination one, more in line
with the tradition of rewriting and proof-theory. Of course, it is a kind of ter-
mination, just as in actual physical systems, which does not mean the complete
disappearance of any activity in the system, but rather the appearance of a steady
or stable form of activity. As such, it introduces a discourse on resources which
is not the one commonly offered in relation to termination proofs in the context
of programming languages and rewriting systems, where one tries to limit copies,
sizes, and iterations. There has been a thread of research studying termination
by various typing systems in process languages27. Here we propose what seems a
fundamentally different way to achieve the same, in a probabilistic setting, and
one wonders if perhaps there is a fruitful relationship to be established.

Finally, it seems that one could squeeze more out of the statistical physical

26Danos/Krivine: Transactions in RCCS (see n. 8).
27R. Demangeon et al.: On the complexity of termination inference for processes, in: Trust-

worthy Global Computing 2008, pp. 140–155.
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 what with irreversible actions?

other potentials?

work with general steady states?

the bounds are sharp but ...

what kind of problem?

control growth rate/use specialized potentials?

work with non-universal covers

discussion (2)

implementation?
Thursday, 12 July 2012


