

Elliott's program and descriptive set theory I

Ilijas Farah

LC 2012, Manchester, July 12

a, a, a, a, the, the, the.

Exercise

If $A = \underset{n}{\lim} A_n$, $B = \underset{n}{\lim} B_n$ and there are morphisms φ_j , ψ_j such that the following diagram commutes

then $A \cong B$.

The plan

1. Today:

- 1.1 Basic properties of C*-algebras.
- 1.2 Classification: UHF and AF algebras.
- 1.3 Elliott's program.
- 2. Friday: Applying logic to 1.2-1.3.
- 3. Saturday: Convincing you that 1.2–1.3 is logic.

Prologue

A topological space X is *Polish* if it is separable and completely metrizable.

A subset of X is *analytic* if it is a continuous image of a Borel set. An equivalence relation E on X is analytic if it is an analytic subset of X^2 .

Thesis

Almost all classical classification problems deal with analytic equivalence relations on Polish spaces.

Thesis

In almost all cases, the space of invariants has a Polish topology and the computation of invariants is given by a Borel-measurable function.

Hilbert space, inner product

$$v = (v_0, v_1, \ldots, v_n, \ldots) \in \mathbb{C}^{\mathbb{N}}$$

$$(v|u) = \sum_{n} v_n \overline{u}_n$$
 inner product

$$\|v\| = \sqrt{(v|v)}$$
 norm

$$\ell_2 = \{ \mathbf{v} \mid \|\mathbf{v}\| < \infty \}$$
$$L_2(\mu) = \{ f \colon [0,1] \to \mathbb{C} \mid \int |f|^2 \, d\mu < \infty \}$$

Fact

Two complex Hilbert spaces are isomorphic iff their dimensions are equal. In particular, $\ell_2 \cong L_2(\mu)$.

C*-algebras

H: a complex Hilbert space, ℓ_2 If $a: H \to H$ is linear let

$$||a|| = \sup_{\|\xi\|=1} ||a\xi||.$$

Define a* implicitly via

$$(a\eta|\xi) = (\eta|a^*\xi)$$

for all η and ξ in H. $(\mathcal{B}(H), +, \cdot, ^*, \|\cdot\|)$: the algebra of bounded linear operators on H, Example If dim(H) = n then $\mathcal{B}(H)$ is $M_n(\mathbb{C})$: $n \times n$ complex matrices.

Definition

A concrete C*-algebra is a norm-closed subalgebra of $\mathcal{B}(H)$. An abstract C*-algebra is a Banach algebra with involution $(A, +, \cdot, *, \|\cdot\|)$ such that

- 1. $(a^*)^* = a$
- 2. $(ab)^* = b^*a^*$
- 3. $||a|| = ||a^*||$
- 4. $||ab|| \le ||a|| \cdot ||b||$
- 5. $||a^*a|| = ||a||^2$

for all a and b in A.

Every concrete C*-algebra is an abstract C*-algebra.

Theorem (Gelfand–Naimark–Segal, 1942)

Every abstract C*-algebra is isomorphic to a concrete C*-algebra.

Examples of C*-algebras

B(H), M_n(ℂ).
 If X is a compact Hausdorff space,

$$C(X) = \{f \colon X \to \mathbb{C} | f \text{ is continuous} \}.$$

Gelfand–Naimark duality

A C*-algebra is *unital* if it has a multiplicative unit.

Theorem (Gelfand–Naimark)

Every unital abelian C^* -algebra is of the form C(X) for some compact Hausdorff space.

Theorem

Categories of unital abelian C*-algebras with *-homomorphisms and compact Hausdorff spaces with continuous maps are equivalent.

$$\begin{array}{c} X \xrightarrow{\varphi} Y \\ C(X) \xleftarrow{g \mapsto g \circ \varphi} C(Y) \end{array}$$

Automatic continuity

Proposition

Every *-homomorphism $\Phi : A \rightarrow B$ between C*-algebras satisfies

 $\|\Phi(a)\| \le \|a\|$

(C*-algebraists call such map a contraction).

Proof.

First the abelian case:

 $\Phi\colon C(X)\to C(Y)$

is of the form $\Phi(f) = f \circ \varphi$ for a continuous $\varphi \colon Y \to X$. For the general case, note that a^*a always generates an abelian algebra, hence $\|\Phi(a^*a)\| \le \|a^*a\|$. Then use the C*-equality, $\|a\|^2 = \|a^*a\|$.

Direct (or inductive) limits

Assume A_{λ} , for $\lambda \in \Lambda$, is a directed system of C*-algebras with

 $\Phi_{\kappa\lambda} \colon A_{\kappa} \to A_{\lambda}$

for $\kappa<\lambda$ in Λ a commuting system of *-homomorphisms. Since all $\Phi_{\kappa\lambda}$ are contractions, on the 'algebraic' direct limit we have a uniquely defined C*-norm.

Let $\lim_{\lambda} A_{\lambda}$ be the closure of the 'algebraic' direct limit.

(Unital) embeddings

A *-homomorphism between unital algebras is *unital* if it sends unit to unit.

Define a unital *-homomorphism

$$M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C})$$

via

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mapsto \begin{pmatrix} a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & 0 & 0 \\ 0 & 0 & a_{11} & a_{12} \\ 0 & 0 & a_{21} & a_{22} \end{pmatrix}$$

CAR algebra (Fermion algebra, $M_{2^{\infty}}$)

$$M_2(\mathbb{C}) \hookrightarrow M_4(\mathbb{C}) \hookrightarrow M_8(\mathbb{C}) \hookrightarrow M_{16}(\mathbb{C}) \hookrightarrow \dots$$

$$M_{2^{\infty}}(\mathbb{C}) = \varinjlim M_{2^n}(\mathbb{C}).$$

The structure of full matrix algebras

Lemma

There is a unital *-homomorphism of $M_m(\mathbb{C})$ into $M_n(\mathbb{C})$ if and only if m divides n. Moreover, such *-homomorphism is unique up to a unitary conjugacy.

Partial proof.

If m|n then $a \mapsto \text{diag}(a, a, \dots, a)$ (a repeated m/n times).

Uniformly HyperFinite (UHF) algebras are direct limits of full matrix algebras

If $A = \lim_{j \to \infty} M_{n(j)}(\mathbb{C})$ is unital, let the *generalized integer* associated to A be the formal infinite product

$$GI(A) = \prod_{p \text{ prime}} p^{k(p)}$$

where k(p) is the supremum of all k such that p^k divides n(l) for some l.

It seems that

$$GI(M_{2^{\infty}})=2^{\aleph_0},$$

but one needs to check that GI(A) is well-defined.

Stability

We need to show that $A = \lim_{j \to 0} M_{n(j)}(\mathbb{C}) = \lim_{j \to 0} M_{k(j)}(\mathbb{C})$ implies $(\forall j)(\exists l)(n(j) \text{ divides } k(l)).$

If C, D are subalgebras of A, write

 $C\subseteq_{\varepsilon} D$

$$\text{if } (\forall c \in C)(\exists d \in D) \| c - d \| \leq \varepsilon \| c \|.$$

Lemma

 $(\forall k \in \mathbb{N})(\exists \varepsilon > 0)$ such that for all A and subalgebras C and D of A such that $C \subseteq_{\varepsilon} D$ and $C \cong M_k(\mathbb{C})$, then there exists an inner automorphism Φ of A such that $\Phi[C] \subseteq D$.

A C*-algebra A is LM (Locally Matricial) if every finite $F \subseteq A$ is ε -included in some full matrix subalgebra of A, for every $\varepsilon > 0$.

Corollary

If A is separable then LM implies UHF.

Classification of UHF algebras

Theorem (Glimm, 1960)

If A and B are unital separable UHF algebras, then GI(A) = GI(B) if and only if $A \cong B$.

Proof.

⇒ Let $A = \lim_{j \to 0} M_{n(j)}(\mathbb{C})$ and $B = \lim_{j \to 0} M_{m(j)}(\mathbb{C})$. Since GI(A) = GI(B), we may assume

n(j)|m(j) and m(j)|n(j+1).

Then we have φ_j and ψ_j for all $j \in \mathbb{N}$ so that

commutes, and by the exercise we have $A \cong B$.

AF algebras

We move on to the classification problem for the next simplest class of unital separable C*-algebras.

A C*-algebra is AF (Approximately Finite) if it is a direct limit of finite-dimensional C*-algebras.

Lemma

Every finite-dimensional C*-algebra is a direct sum of full matrix algebras.

Bratteli diagrams

Consider unital *-homomorphism

$$\Phi\colon M_2(\mathbb{C})\oplus M_3(\mathbb{C})\to M_6(\mathbb{C})\oplus M_5(\mathbb{C})\oplus M_6(\mathbb{C})$$

 $(a, b) \mapsto (\operatorname{diag}(a, a, a), \operatorname{diag}(a, b), \operatorname{diag}(b, b)).$

The Bratteli diagram describing this map is the following:

Bratteli diagram determines *-homomorphism Φ uniquely, up to the unitary conjugacy.

Examples of Bratteli diagrams that describe AF algebras

More examples of Bratteli diagrams

Fibonacci algebra: a simple unital AF algebra with a unique trace that is not UHF.

Classification of AF algebras: Stabilization

If $n \in \mathbb{N}$ and A is a C*-algebra, then so is $M_n(A)$: $n \times n$ matrices of elements of A with respect to the matrix operations and the operator norm.

Consider the direct limit of $M_n(A)$, for $n \in \mathbb{N}$, with (non-unital) *-homomorphism

$$\Phi_n\colon M_n(A)\to M_{n+1}(A)$$

defined via

$$\Phi_n(a) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}.$$

Then $M_{\infty}(A) = \lim_{n \to \infty} M_n(A)$ is the stabilization of A.

Classification of AF algebras: Murray-von Neumann equivalence

Fix a C*-algebra A. Some $p \in A$ is a projection if $p^2 = p = p^*$. If p and q are projections in A, then we write $p \sim q$ and say that p and q are Murray von Neumann equivalent if there exists $v \in A$ such that

$$vv^* = p$$
 and $v^*v = q$.

Let V(A) be the set of projections on $M_{\infty}(A)$ modulo \sim , equipped with the operation \oplus defined by

$$egin{aligned} [p] \oplus [q] &:= \left[egin{pmatrix} p & 0 \ 0 & q \end{pmatrix}
ight]. \end{aligned}$$

This is an abelian semigroup and its Grothendieck group is $K_0(A)$. $K_0(A)^+$ is the set of elements of $K_0(A)$ that correspond to projections in $M_{\infty}(A)$.

K-theoretic classification

Example

If A is UHF then $K_0(A) = \{k/m : k \in \mathbb{Z}, m \text{ divides } GI(A)\}.$

Theorem (Elliott, 1975)

Separable unital AF algebras are classified by the ordered (countable, abelian) group

$$\mathbf{K}_0(A) = (K_0(A), K_0(A)^+, [1_A]).$$

Categories of AF algebras and their K₀ groups are equivalent.

Elliott's program

Conjecture (Elliott, 1990's)

All nuclear,¹ separable, simple, unital, infinite-dimensional *C*-algebras are classified by the K-theoretic invariant*,

Ell(A): $((K_0(A), K_0(A)^+, 1), K_1(A), T(A), \rho_A).$

This conjecture has lead to some spectacular developments.

¹I shall define nuclear C*-algebras on Saturday. All algebras mentioned today (except $\mathcal{B}(H)$) are nuclear.

Examples

If $\mathbb K$ is a class of compact Hausdorff spaces, then $A\mathbb K$ algebras have building blocks of the form

 $C(X, M_m(\mathbb{C})) = \{f \colon X \to M_m(\mathbb{C}) | X \in \mathbb{K} \text{ and } f \text{ is continuous} \}$

With $\mathbb{K} = \{[0,1]\}$ we have AI algebras, if $\mathbb{K} = \{\{z \in \mathbb{C} : |z| = 1\}\}\$ we have AT algebras, if \mathbb{K} is the class of all compact metric spaces then we have AH algebras.

Theorem (Elliott-Gong-Li, 2010)

If sup{dim(X) : $X \in \mathbb{K}$ } < ∞ then simple unital AK algebras are classified by their Elliott invariant.

It actually suffices to have algebras of *slow dimension growth*.

Jiang-Su, 1999

There exists an infinite-dimensional C*-algebra \mathcal{Z} such that $\text{Ell}(\mathcal{Z}) = \text{Ell}(\mathbb{C})$ and $\text{Ell}(A \otimes \mathcal{Z}) = \text{Ell}(A)$ for all A.

Rørdam 2003, Toms, 2004

There are AH algebras A such that $A \ncong A \otimes \mathcal{Z}$ (yet $EII(A) = EII(A \otimes \mathcal{Z})$).

The algebra A constructed by Toms cannot be distinguished from $A\otimes \mathcal{Z}$ by any 'reasonable' invariant.

Elliott's conjecture recast

Conjecture (Toms-Winter, 2009)

All nuclear, separable, simple, unital algebras A such that $A \otimes \mathcal{Z} \cong A$ are classified by Elliott's invariant.

Theorem (Toms-Winter, 2009)

For 'natural' AH algebras A, $A \otimes Z$ has slow dimension growth and is therefore subject to Elliott–Gong–Li classification theorem.

Toms-Winter conjecture has been confirmed in many cases, largely by the work of Winter.

Next time:

1. What is the descriptive complexity of the isomorphism relation of C*-algebras?