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Prologue

Hilbert’s Question about Polynomial Equations

Is there an algorithm which can determine whether or not an
arbitrary polynomial equation in several variables has solutions in
integers?

This problem became known as Hilbert’s Tenth Problem
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Prologue

The Answer

This question was answered negatively (with the final piece in
place in 1970) in the work of Martin Davis, Hilary Putnam, Julia
Robinson and Yuri Matijasevich.
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Prologue

A General Question

A Question about an Arbitrary Recursive Ring R

Is there an algorithm, which if given an arbitrary polynomial
equation in several variables with coefficients in R, can determine
whether this equation has solutions in R?

Arguably, the most important open problems in the area concern
the Diophantine status of the ring of integers of an arbitrary
number field and the Diophantine status of Q.
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Prologue

Does Hilbert’s Question Make Sense over
Uncountable Rings?

Yes, it does make sense to consider uncountable rings

as long as we consider polynomial equations with coefficients
restricted to a countable recursive subring. We can still consider
solutions in the bigger ring. In other words, given a polynomial
equation with coefficients in a fixed finitely generated ring, we will
consider existence of an algorithm which can take the coefficients
as inputs and determine whether solutions exist in the bigger,
possibly uncountable ring.
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Fields of Positive Characterisitc and Their Transcendence Degrees

Fields of Positive Characteristic

Definition

Let p be a prime number and let k be a field such that for any
element x of the field px = 0. In this case we say that the field has
characterisitic p.

Example

For any prime number p it is the case that Z/p is a field of
characteristic p. Any field of characteristic p contains Z/p as a
subfield.
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Fields of Positive Characterisitc and Their Transcendence Degrees

Transcendence Degree of a Field

Definition (Algebraic Independence)

Let K/k be a field extension, and let y1, . . . , yn ∈ K . In this case,
if for any polynomial P(X1, . . . ,Xn) ∈ k[X1, . . . ,Xn] we have that
P(y1, . . . , yn) = 0 ⇐⇒ P(X1, . . . ,Xn) ≡ 0 as an element of
k[X1, . . . ,Xn], and n ∈ Z≥2, we say that y1, . . . , yn are
algebraically independent over k . If n = 1, then we say that y1 is
transcendental over k .

Definition (Transcendence Degree)

If K/k is a field extension, then the transcendence degree of K/k
is the size of the largest subset of elements of K algebraically
independent over k .



First-Order and Existential Definability and Decidability in Positive Characteristic

Fields of Positive Characterisitc and Their Transcendence Degrees

Transcendence Degree of a Field

Definition (Algebraic Independence)

Let K/k be a field extension, and let y1, . . . , yn ∈ K . In this case,
if for any polynomial P(X1, . . . ,Xn) ∈ k[X1, . . . ,Xn] we have that
P(y1, . . . , yn) = 0 ⇐⇒ P(X1, . . . ,Xn) ≡ 0 as an element of
k[X1, . . . ,Xn], and n ∈ Z≥2, we say that y1, . . . , yn are
algebraically independent over k . If n = 1, then we say that y1 is
transcendental over k .

Definition (Transcendence Degree)

If K/k is a field extension, then the transcendence degree of K/k
is the size of the largest subset of elements of K algebraically
independent over k .



First-Order and Existential Definability and Decidability in Positive Characteristic

Fields of Positive Characterisitc and Their Transcendence Degrees

Rational and Algebraic Function Fields of Positive
Characteristic

Definition (Rational Function Field of Positive Characteristic)

Let k be any field of positive characteristic. Let t be
transcendental over k. In this case k(t) is a rational function field
of positive characteristic over the field of constants k.

Definition (Algebraic Function Field of Positive
Characteristic)

Let k(t) be as above and let K/k(t) be a finite extension. In this
case K is a (algebraic) function field of positive characteristic. The
field of constants of K is the algebraic closure of k in K .
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Fields of Positive Characterisitc and Their Transcendence Degrees

Transcendence Degree of Function Fields

Remark

A function field is of transcendence degree 1 over its field of
constants. One can also consider the transcendence degree of a
function field over Z/p. This degree can be any positive integer or
infinity.
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A Brief History of Diophantine Undecidability over Function Fields of Positive Characteristic

HTP over Rational Function Fields of Positive
Characteristic

Theorem

HTP is unsolvable over the following fields:

rational function fields over finite fields of characteristic
greater than 2 (Pheidas, 1991);

rational function fields over a constant field k, where k is a
proper subfield of the algebraic closure of a finite field (Kim
and Roush, 1992).

rational function field of a finite transcendence degree greater
or equal to two over the algebraic closure of a finite field of
odd characteristic (Kim and Roush, 1992).

rational function fields over finite fields of characteristic 2
(Videla, 1994).
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A Brief History of Diophantine Undecidability over Function Fields of Positive Characteristic

HTP over Algebraic Function Fields of Positive
Characteristic of Transcendence Degree 1

Theorem

HTP is unsolvable over the following fields:

algebraic function fields over finite fields of characteristic greater
than 2 (S. 1996);
algebraic function fields over fields of constants k algebraic over
Z/p and having an extension of degree p > 2 (S. 2000);
fields as above for p = 2 ( Eisenträger 2003)
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A Brief History of Diophantine Undecidability over Function Fields of Positive Characteristic

HTP over Algebraic Function Fields of Positive
Characteristic of Higher Transcendence Degree

Theorem

HTP is unsolvable over the following fields.

a field K = k(u, v)⊗Z/p F , where p > 2, k is algebraic over
Z/p and has an extension of degree p, u is transcendental over
k, v is algebraic over k(u), and k(u, v) and F linearly disjoint
over Z/p (S. 2000);
K as above for p = 2 ( Eisenträger 2003)
any field K finitely generated over Z/p (S. 2002)
a field K = E ⊗Z/p F , where E is finitely generated over a field
k algebraic over Z/p and with an extension of degree p, and E
and F are linearly disjoint over Z/p (S. 2003)
an algebraic function field K of finite transcendence degree
greater or equal to two over the algebraic closure of a finite
field of odd characteristic (Eisenträger, 2012)
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any field K finitely generated over Z/p (S. 2002)
a field K = E ⊗Z/p F , where E is finitely generated over a field
k algebraic over Z/p and with an extension of degree p, and E
and F are linearly disjoint over Z/p (S. 2003)
an algebraic function field K of finite transcendence degree
greater or equal to two over the algebraic closure of a finite
field of odd characteristic (Eisenträger, 2012)
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First-Order and Existential Definability and Decidability in Positive Characteristic

The New Result and The Main Unsolved Question

Outline

1 Prologue

2 Fields of Positive Characterisitc and Their Transcendence
Degrees

3 A Brief History of Diophantine Undecidability over
Function Fields of Positive Characteristic

4 The New Result and The Main Unsolved Question

5 Some Ideas Involved in Proofs
Primes of Function Fields
Important Subsets of Rings

6 Proving Diophantine Undecidability over Function Fields
of Positive Characteristic

7 p-th Powers



First-Order and Existential Definability and Decidability in Positive Characteristic

The New Result and The Main Unsolved Question

Completing the Extension of Kim and Rousch

Theorem (K. Eisentraeger and S, work in progress)

Let K be any function field of positive characteristic not containing
the algebraic closure of a finite field. In this case HTP is
undecidable over K .
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The New Result and The Main Unsolved Question

Completing the Proof of the First-Order
Undecidability

Theorem (Eisentraeger, S. , work in progress)

If K is any function field of positive characteristic, then the
first-order theory of K in the language of rings is undecidable.
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The New Result and The Main Unsolved Question

The Main Unsolved Question

A Problem

Let Cp be the algebraic closure of Z/p for some rational prime p.
Show that HTP over a function field (or even a rational function
field) over Cp is undecidable.
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Some Ideas Involved in Proofs

Primes of Function Fields

Function Fields

Definition (Algebraic and Integral Functions)

Algebraic functions are roots of polynomials with coefficients in a
field of rational functions, in our case k(t). If γ is an algebraic
function, then it is an integral function if it satisfies a monic
irreducible over k(t) polynomial with coefficients in the polynomial
ring k[t].

Example
√

t2 + 1 is a root of a monic irreducible polynomial
X 2 − (t2 + 1) = 0. Thus,

√
t2 + 1 is an integral function. At the

same time
√

t+1
t−1 is a root of the polynomial (t + 1)X 2 − (t − 1),

which is irreducible over Z/p(t) and has polynomial coefficients but
is not monic. To make (t + 1)X 2 − (t − 1) monic we have to allow

rational function coefficients, and therefore
√

t+1
t−1 is not an integral

function.
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Some Ideas Involved in Proofs

Primes of Function Fields

Integral Functions and Primes of Function Fields

Definition

If K is a function field over a field of constants k (and a finite
extension of k(t)), then the set of all functions integral over k[t]
form a ring OK which we call the ring of integral functions of K .
We will also consider the integral closure in K of k[1t ] and denote
that ring by OK ,∞.

Definition

A prime of a function field K is a prime ideal of OK or a prime
ideal of OK ,∞. The prime ideals of OK ,∞ are referred to as infinite
primes. If p is a prime coming from a prime ideal of OK , then
OK/p is a finite extension of k and [OK/p : k] is called the degree
of the prime. For infinite primes we replace OK by OK ,∞.
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Some Ideas Involved in Proofs

Primes of Function Fields

Order at a Prime over Global Function Fields

Order at a Prime from OK over a Function Field

If K is a global function field, x 6= 0 and x ∈ OK , then for any
prime p of K originating in OK there exists a non-negative integer
m such that x ∈ pm but x 6∈ pm+1. We call m the order of x at p
and write m = ordp x . If y ∈ K and y 6= 0, we write y = x1

x2
, where

x1, x2 ∈ OK with x1x2 6= 0, and define ordp y = ordp x1 − ordp x2.
This definition is not dependent on the choice of x1 and x2 which
are of course not unique. We define ordp 0 =∞ for any prime p of
OK .

Order at a Prime from OK ,∞ over a Function Field

The order at the primes which are ideals of OK ,∞ are defined in
the analogous manner with OK ,∞ substituting for OK .
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Some Ideas Involved in Proofs

Primes of Function Fields

Primes of a Rational Function Field

In the case K = k(t) all but one prime correspond to irreducible
polynomials in t and the remaining (infinite) prime corresponds to

the degree of polynomials. For example, consider x = t2+1
t−1 over k

where −1 is not a square. Let p1 correspond t2 + 1, p2 correspond
to t − 1, p∞ correspond to degree. In this case,

ordp1 x = 1,

ordp2 x = −1,

ordp∞ x = ordp∞(t2 + 1)− ordp∞(t − 1) = −2− (−1) = −1.
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Some Ideas Involved in Proofs

Primes of Function Fields

Properties of Order

If x , y ∈ K , and q is a prime of K , then

ordq(xy) = ordq(x) + ordq(y).

In particular,
ordq(x r ) = r ordq(x).

Further, ordq(x + y) ≥ min(ordq x , ordq y) and if ordq x < ordq y ,
then ordq(x + y) = ordq(x)
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Some Ideas Involved in Proofs

Important Subsets of Rings

Diophantine Sets or Existentially Definable Sets

Let R be a commutative integral domain. A subset A ⊂ Rm is
called Diophantine over R if there exists a polynomial
p(T1, . . .Tm,X1, . . . ,Xk) with coefficients in R such that for any
element (t1, . . . , tm) ∈ Rm we have that

∃x1, . . . , xk ∈ R : p(t1, . . . , tm, x1, . . . , xk) = 0~�
(t1, . . . , tm) ∈ A.

In this case we call p(T1, . . . ,Tm,X1, . . . ,Xk) a Diophantine
definition of A over R.
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Some Ideas Involved in Proofs

Important Subsets of Rings

Integrality at Finitely Many Primes When the
Field of Constants is Finite

Proposition (Robert Rumely, 1980)

If K is a function field over a finite field of constants, {p1, . . . , pm}
is a finite collection of primes of K , then the set
{x ∈ K : ordpi x ≥ 0, i = 1, . . . ,m} is existentially definable over
K .



First-Order and Existential Definability and Decidability in Positive Characteristic

Proving Diophantine Undecidability over Function Fields of Positive Characteristic

Outline

1 Prologue

2 Fields of Positive Characterisitc and Their Transcendence
Degrees

3 A Brief History of Diophantine Undecidability over
Function Fields of Positive Characteristic

4 The New Result and The Main Unsolved Question

5 Some Ideas Involved in Proofs
Primes of Function Fields
Important Subsets of Rings

6 Proving Diophantine Undecidability over Function Fields
of Positive Characteristic

7 p-th Powers



First-Order and Existential Definability and Decidability in Positive Characteristic

Proving Diophantine Undecidability over Function Fields of Positive Characteristic

p-divisibility

Definition

Let x , y ∈ Z6=0 and let p be a rational prime. In this case we will
say that x |py if y = xps , where s ∈ Z≥0.

Proposition (Pheidas 1987)

If p is a rational prime, then multiplication is existentially definable
in the system (Z>0,+, |p).
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Proving Diophantine Undecidability over Function Fields of Positive Characteristic

Simulating Integers with Multiplication

What does this mean?

The exist linear polynomials

Li (T1,T2,T3,X1, . . . ,Xm),

Mi (T1,T2,T3,X1, . . . ,Xm),

Ni (T1,T2,T3,X1, . . . ,Xm),

with coefficients in Z and with i = 1 . . . , n such that for any
positive integers a1, a2, a3 the system

Li (a1, a2, a3,X1, . . . ,Xm)|pMi (a1, a2, a3,X1, . . . ,Xm),
Ni (a1, a2, a3,X1, . . . ,Xm) = 0,

i = 1, . . . , n

has solutions in positive integers if and only if a3 = a2a1.
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An Undecidability Consequence

Corollary

There is no algorithm to decide whether an arbitrary system of the
form 

Li (X1, . . . ,Xr )|pMi (X1, . . . ,Xr ),
Ni (X1, . . . ,Xr ) = 0,

i = 1, . . . , `

where
Li (X1, . . . ,Xr ),

MiX1, . . . ,Xr ),

Ni (X1, . . . ,Xr ),

are linear polynomials with coeffcients in Z, has solutions in
positive integers.
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Conmnecting to Diophantine Undecidability over
Function Fields

Proposition

Let K be a countable function field over a field of constants k of
positive characteristic p. Let q be a prime of K . Suppose the
following subsets of K are Diophantine over K:

INT = {x ∈ K : ordq x ≥ 0};

p(K ) = {(x , y) ∈ K 2 : y = xps , s ∈ Z≥0}.
Then HTP is unsolvable over K.
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Constructing a Model of (Z≥0,+, |p)

Proof.

Send n −→ An = {x ∈ K : ordq x = n}. Observe the following:

For any x ∈ K we have that ∃n : x ∈ An ⇔ ordq x ≥ 0

x , y ∈ An ⇔ ordq
x
y = 0

x ∈ An, y ∈ Am, z ∈ An+m ⇔ ordq
xy
z = 0

x ∈ An, y ∈ Am, n|pm⇔ ∃s ∈ Z≥0,∃z ∈ An : y = zps
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Integrality at a Prime for the Transcendence One
Degree Case

Theorem (S. 2000)

If K is a function field of positive characteristic and transcendence
degree one not containing the algebraic closure of a finite field,
then for any prime q of K the set

INT = {x ∈ K : ordq x ≥ 0}

is existentially definable over K .
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Integrality at a Prime for the Higher
Transcendence Degree Case

Theorem (Eisentraeger, S., work in progress)

If K is a function field of positive characteristic and not containing
the algebraic closure of a finite field, then for some prime q of K
there exists a set I ⊂ K such that

I is Diophantine over K .

If x ∈ I , then ordq x ≥ 0.

If x ∈ Z/p(t), and ordq x ≥ 0, then x ∈ I .
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p-th Powers

p-th Powers Are Definable Everywhere

Theorem (The New Result on p-th Powers)

Let K be any function field of positive characteristic p. In this case
the set

p(K ) = {(x , xpn) : x ∈ K , n ∈ Z≥0}
is definable over K . (Joint work with Kirsten Eisentraeger)
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p-th Powers

The General Plan

Notation

Let k be a field of characteristic p > 0,

let t be transcendental over k ,

let K be a finite separable extension of k(t).

The Three Step Program

1 Define p-th powers of t.

2 Define p-th powers of a set of functions with simple zeros and
poles.

3 Define p-th powers of arbitrary functions.
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p-th Powers

p-th Powers of t over Rational Function Field of
Characteristic Greater Than 2

Lemma (Pheidas)

Let k be a finite field of characteristic p > 2. Let t be
transcendental over k. Then the equations below are satisfied with
u, v ,w ∈ k(t) if and only if for some s ∈ Z≥0 we have that
w = tp

s
. {

w − t = vp − v
1
w − 1

t = up − u
(1)

Satisfiability is easy

For any x ∈ K and any s ∈ Z≥0

xps−x = (xp(s−1)
+xp(s−2)

+. . .+x)p−(xp(s−1)
+xp(s−2)

+. . .+x) (2)



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

p-th Powers of t over Rational Function Field of
Characteristic Greater Than 2

Lemma (Pheidas)

Let k be a finite field of characteristic p > 2. Let t be
transcendental over k. Then the equations below are satisfied with
u, v ,w ∈ k(t) if and only if for some s ∈ Z≥0 we have that
w = tp

s
. {

w − t = vp − v
1
w − 1

t = up − u
(1)

Satisfiability is easy

For any x ∈ K and any s ∈ Z≥0

xps−x = (xp(s−1)
+xp(s−2)

+. . .+x)p−(xp(s−1)
+xp(s−2)

+. . .+x) (2)



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

Conctructing p-th powers of t

We proceed in two steps. First we show that if w satisfies
equations below, then it is equal to t or it is a p-th power.{

w − t = vp − v
1
w − 1

t = up − u
(3)

Second, we show that if w = wp
1 we can rewrite the equations

above: {
w1 − t = (vp − wp

1 ) + (w1 − v) = vp
1 − v1

1
w1
− 1

t = up − 1
wp
1

+ 1
w1
− u = up

1 − u1
(4)
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p-th Powers

The Denominators of v p − v and w − t in a
rational field.

Suppose v = A
z2

, where A, z2 are relatively prime polynomials. In

this case vp − v = Ap

zp2
− A

zp2
=

Ap−Azp−1
2

zp2
. Observe that

(Ap − Azp−1
2 , zp

2 ) = 1 as polynomials over k . Indeed, if P is a
prime polynomial dividing zp

2 , then P divides z2 and P is prime to

A, and therefore to Ap − Azp−1
2 . Thus zp

2 is the reduced
denominator of vp − v .
We now have w − t = vp − v = a

zp2
, where z2, a are relatively prime

polynomials. Since t does not have a denominator, we conclude
that w = Z1

zp2
, where z2,Z1 are relatively prime polynomials.
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The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

The numerator of w .

We now consider the second equation 1
w − 1

t = up − u and by a

similar argument conclude that 1
w − 1

t = b
zp1

. Thus,

zp
2

Z1
− 1

t
=

tzp
2 − Z1

tZ1
=

b

zp
1

.

If (t,Z1) = 1 then tZ1 is the reduced denominator and tZ1 = zp
1 ,

leading to a contradiction.
So let Z1 = tk Z̃1, k ∈ Z>0, (Z̃1, t) = 1. In this case,

zp
2

Z1
− 1

t
=

zp
2 − tk−1Z̃1

Z1
=

b

zp
1

.

If k > 1, then (zp
2 , t

k−1Z̃1) = 1 and Z1 is the reduced denominator
forced to be equal to zp

1 . If k = 1, then the numerator is equal to
zp
2 − Z̃1 and may be divisible by t, so that Z1

t = zp
1 . In other words,

either w = t
zp1
zp2

or w =
zp1
zp2

. In the last case w is a p-th power.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

Why is w a p-th power in any case?

If w is not a p-th power, then w = t
zp1
zp2

, where z1, z2 are relatively

prime polynomials and it satisfies an equation
w − t = vp − v = A

zp2
− A

z2
. Thus, z2v is also a polynomial in t.

Now we rewrite the equation in the following form:

tzp
1 − zp

2 t = (z2v)p − (z2v)zp−1
2

tzp
1 − (z2v)p = zp

2 t − (z2v)zp−1
2

Looking at the right side observe that that any prime polynomial
dividing z2 occurs to the power at least 2 on the right. So if we
differentiate the left side with respect to t we should get a
polynomial which has all the zeros of z2. However the derivative of
the left side is zp

1 leading us to the conclusion that z2 is a constant.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

Why is w a p-th power in any case?

If w is not a p-th power, then w = t
zp1
zp2

, where z1, z2 are relatively

prime polynomials and it satisfies an equation
w − t = vp − v = A

zp2
− A

z2
. Thus, z2v is also a polynomial in t.

Now we rewrite the equation in the following form:

tzp
1 − zp

2 t = (z2v)p − (z2v)zp−1
2

tzp
1 − (z2v)p = zp

2 t − (z2v)zp−1
2

Looking at the right side observe that that any prime polynomial
dividing z2 occurs to the power at least 2 on the right. So if we
differentiate the left side with respect to t we should get a
polynomial which has all the zeros of z2. However the derivative of
the left side is zp

1 leading us to the conclusion that z2 is a constant.



First-Order and Existential Definability and Decidability in Positive Characteristic

p-th Powers

Why is w a p-th power in any case?

If w is not a p-th power, then w = t
zp1
zp2

, where z1, z2 are relatively

prime polynomials and it satisfies an equation
w − t = vp − v = A

zp2
− A

z2
. Thus, z2v is also a polynomial in t.

Now we rewrite the equation in the following form:

tzp
1 − zp

2 t = (z2v)p − (z2v)zp−1
2

tzp
1 − (z2v)p = zp

2 t − (z2v)zp−1
2

Looking at the right side observe that that any prime polynomial
dividing z2 occurs to the power at least 2 on the right. So if we
differentiate the left side with respect to t we should get a
polynomial which has all the zeros of z2. However the derivative of
the left side is zp

1 leading us to the conclusion that z2 is a constant.
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Divisors, and Height

Definition

If K is a function field, then a divisor is a formal product
∏

p p
a(p),

where the product is taken over all the primes of K , a(p) ∈ Z and
all but finitely many exponents are zero. If x ∈ K , then the divisor
of x is

(x) =
∏
p

pordp x

The height of x is∑
p,ordp x>0

deg(p) ordp x = −
∑

p,ordp x<0

deg(p) ordp x .
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Principal Divisors and Class Number

Definition

A divisor is principal if it is a divisor of a field element. A class
number (if it is exists) can be defined as the size of the group of
divisors with the same degree of ”zeros” and ”poles” modulo the
group of principal divisors. Any divisor with the same degree of
”zeros” and ”poles” raised to the class number becomes principal.
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Remarks on the General Case

The preceding argument works for a rational function field over any
field of constants of characteristic greater than 2, but it relies on
the following facts:

the class number of a rational field is one;
t has a divisor of the form p

q (i.e one pole and one zero, both
of degree 1);
the positive order at a prime goes down by at most one under
differentiation.

To overcome these difficulties we usually have to establish that the
divisor not just of w is a p-th power of another divisor but also
that the divisors of w + a for sufficiently many constants a are p-th
powers of other divisors. We also need to use a consequence of
Riemann-Roch theorem to show that if w does not have a divisor
which is a p-th power of another divisor, then it can be of bounded
height only with the bound depending on the genus of the field. If
the height of w is bounded, then we can “push” it into the rational
subfield where things proceed essentially as above.
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Flowchart

w+ai
w+bi

− t+ai
t+bi

=
u(ai , bi )

p −
u(ai , bi )

Is the divisor
of w+ai

w+bi
a

p-th power?

bounded height

w is a p-th power

take the p-th root

push to the
rational subfield

w = t or w is
a p-th power

stop

yes

no

w is a p-power

w = t
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