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Definition

A formula φ(x ; y) has the independence property if one can find
some infinite set B such that for every C ⊆ B, there is yC such
that for x ∈ B,

φ(x ; yC ) ⇐⇒ x ∈ C .

A theory is NIP if no formula has the independence property.

Example

Stable theories,

o-minimal,

Qp,

ACVF.
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T is a complete countable theory.
S(M): space of types in countably many variables over M.
Recall:

Fact

T is stable if and only if, for all M |= T , |S(M)| ≤ |M|ℵ0 .

(GCH) If T is unstable, then for every κ, there is M of size κ such
that |S(M)| = 2κ = κ+.

Shelah’s idea: instead of counting types, count types up to
automorphisms.
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Let M be saturated.
Saut(M): quotient of S(M) under the action of Aut(M).
f (κ) = |Saut(M)|, where M is saturated of size κ. (So f is only
defined when 2<κ = κ, κ is regular.)

Observations

f (κ) is bounded iff T is stable. In this case f (κ) ≤ 2ℵ0 .

If T has IP, then f (κ) = 2κ.

For T =DLO, counting only 1-types instead of countable
types, we have:
f1(ℵ0) = 6;
f1(ℵα) = 2 · |α|+ 6.
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Theorem (Shelah)

If T is NIP, and κ = ℵα ≥ iω, then

f (κ) ≤ |α|ℵ0 + iω.
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Finitely satisfiable types.

Definition

p ∈ S(M) is finitely satisfiable in N ≺ M, if:
|N| < |M|;
for every formula φ(x ; d) ∈ p, there is a ∈ N such that
M |= φ(a; d).

In particular, such a p is invariant under Aut(M/N).

Fact

There are at most 2<κ = κ finitely satisfiable types, up to
automorphisms.

In fact, such a p is determined up to automorphisms by tp(N) and
p(ω)|N .
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Types weakly orthogonal to finitely satisfiable types.

Lemma

Let p ∈ S(M) and a |= p. Assume that p is weakly orthogonal to
every finitely satisfiable type, then for every small A ⊂ M, there is
eA ∈ M such that tp(a/eA) ` tp(a/A).

In general, given a type p ∈ S(M), we have to decompose p.

Proposition

(NIP) Let p ∈ S(M) and a |= p. Then there is b ∈ C, such that:
– tp(b/M) is finitely satisfiable in some N ⊂ M;
– for any A ⊂ M, there is eA ∈ M with tp(a/beA) ` tp(a/bA).
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Proof for κ weakly compact

Start with p ∈ S(M) any type.

Extract a finitely satisfiable component Find b ∈ C such
that tp(b/M) is finitely satisfiable and tp(a/bM) is weakly
orthogonal to q|Mb for any q ∈ S(M) finitely satisfiable.
Hence for every small A ⊂ M, we have some eA ∈ M such
that tp(a/beA) ` tp(a/bA).

By weak compactness, we may assume that tp(eA/Aab) is
increasing,
i.e., there is e ∈ C such that tp(eA/Aab) = tp(e/Aab).

Replace a by â e and iterate ω times.
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Proof for κ weakly compact

In the end, we have extended a to some a′ and we have b′, e ′ such
that:
• tp(b′/M) is finitely satisfiable in some small N;
• a′ ≡M e ′;
• for any small A ⊂ M, there is eA ≡Aa′b′ e ′ such that
tp(a′/b′eA) ` tp(a′/b′A).

Then tp(a′/M) is determined up to automorphisms by tp(N),
q(ω)|N (where q = tp(b′/M)), tp(a′e ′/N).
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Honest definitions

Replace non-orthogonality by commuting.

If p and q are invariant types, we can define p(x)⊗ q(y) as
tp(a, b/M) where b |= q and a |= p|Mb.
We say that p and q commute if p(x)⊗ q(y) = q(y)⊗ p(x).

Using NIP, there is a way to generalize this definition to the case
where only p is invariant and q is any type over M.

Remark: If p and q are weakly-orthogonal, then they commute.
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Proposition

(NIP) A type p ∈ S(M) commutes with every finitely satisfiable
type in M if and only if:
For any small A ⊂ M, and formula φ(x ; y), there is a formula
ψ(x ; z) and eA ∈ M such that:

φ(A; a) ⊆ ψ(M; eA) ⊆ φ(M; a).
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Problem: there does not seem to be a corresponding notion of
decomposition.

Let p ∈ S(M) and a |= p. Let Mp denote the expansion of M
obtained by making all the sets φ(M; a) definable.

Lemma

If Mp is saturated, then p commutes with any type finitely
satisfiable in M.

Remark: This generalizes the fact that a definable type commutes
with every finitely satisfiable type.
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Now let N be any model and p ∈ S(N). Take a saturated
extension Np ≺ Mp0 . Then we can apply the previous proposition
to p0 ∈ S(M) and drag the result down to N.

We obtain:

Theorem (Chernikov-S.)

(NIP) Let p ∈ S(N), and φ(x ; y) a formula. Then there is a
formula ψ(x ; z) such that for any finite A ⊆ N, we can find eA ∈ N
such that:

φ(A; a) ⊆ ψ(N; eA) ⊆ φ(N; a).

The same thing is true for a type over an arbitrary set B, instead
of model N, with the same proof.
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A. Chernikov and P. Simon
Externally definable sets and dependent pairs.

S. Shelah
Dependent theories and the generic pair conjecture.

S. Shelah
Dependent dreams: recounting types.
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