Type decompositions in NIP theories

Pierre Simon

École Normale Supérieure, Paris

Logic Colloquium 2012, Manchester

Definition

A formula $\phi(x; y)$ has the independence property if one can find some infinite set *B* such that for every $C \subseteq B$, there is y_C such that for $x \in B$,

$$\phi(x;y_C) \iff x \in C.$$

A theory is NIP if no formula has the independence property.

Example

- Stable theories,
- o-minimal,
- Q_p,
- ACVF.

T is a complete **countable** theory. S(M): space of types in countably many variables over M. Recall:

Fact

T is stable if and only if, for all $M \models T$, $|S(M)| \le |M|^{\aleph_0}$.

(GCH) If T is unstable, then for every κ , there is M of size κ such that $|S(M)| = 2^{\kappa} = \kappa^+$.

Shelah's idea: instead of counting types, count types up to automorphisms.

Let *M* be saturated. $S_{aut}(M)$: quotient of S(M) under the action of Aut(M). $f(\kappa) = |S_{aut}(M)|$, where *M* is saturated of size κ . (So *f* is only defined when $2^{<\kappa} = \kappa$, κ is regular.)

Observations

• $f(\kappa)$ is bounded iff T is stable. In this case $f(\kappa) \leq 2^{\aleph_0}$.

• If T has IP, then
$$f(\kappa) = 2^{\kappa}$$

 For T =DLO, counting only 1-types instead of countable types, we have: f₁(ℵ₀) = 6;

$$f_1(\aleph_\alpha) = 2 \cdot |\alpha| + 6.$$

Theorem (Shelah)

If T is NIP, and $\kappa = \aleph_{\alpha} \ge \beth_{\omega}$, then

$$f(\kappa) \leq |\alpha|^{\aleph_0} + \beth_{\omega}.$$

Finitely satisfiable types.

Definition

$$p \in S(M)$$
 is finitely satisfiable in $N \prec M$, if:
 $|N| < |M|$;
for every formula $\phi(x; d) \in p$, there is $a \in N$ such that
 $M \models \phi(a; d)$.

In particular, such a p is invariant under Aut(M/N).

Fact

There are at most $2^{<\kappa} = \kappa$ finitely satisfiable types, up to automorphisms.

In fact, such a p is determined up to automorphisms by tp(N) and $p^{(\omega)}|_N$.

Shelah's recounting types theorem Honest definitions

Types weakly orthogonal to finitely satisfiable types.

Lemma

Let $p \in S(M)$ and $a \models p$. Assume that p is weakly orthogonal to every finitely satisfiable type, then for every small $A \subset M$, there is $e_A \in M$ such that $tp(a/e_A) \vdash tp(a/A)$.

In general, given a type $p \in S(M)$, we have to decompose p.

Proposition

(NIP) Let $p \in S(M)$ and $a \models p$. Then there is $b \in \mathfrak{C}$, such that: - tp(b/M) is finitely satisfiable in some $N \subset M$;

- for any $A \subset M$, there is $e_A \in M$ with $tp(a/bA) \vdash tp(a/bA)$.

Proof for κ weakly compact

- Start with $p \in S(M)$ any type.
- Extract a finitely satisfiable component Find b ∈ C such that tp(b/M) is finitely satisfiable and tp(a/bM) is weakly orthogonal to q|Mb for any q ∈ S(M) finitely satisfiable. Hence for every small A ⊂ M, we have some e_A ∈ M such that tp(a/be_A) ⊢ tp(a/bA).
- By weak compactness, we may assume that tp(e_A/Aab) is increasing,

i.e., there is $e \in \mathfrak{C}$ such that $tp(e_A/Aab) = tp(e/Aab)$.

• **Replace** *a* by a^{e} and iterate ω times.

Proof for κ weakly compact

In the end, we have extended a to some a' and we have b', e' such that:

- tp(b'/M) is finitely satisfiable in some small N;
- $a' \equiv_M e';$
- for any small $A \subset M$, there is $e_A \equiv_{Aa'b'} e'$ such that $\operatorname{tp}(a'/b'e_A) \vdash \operatorname{tp}(a'/b'A)$.

Then tp(a'/M) is determined up to automorphisms by tp(N), $q^{(\omega)}|_N$ (where q = tp(b'/M)), tp(a'e'/N).

Honest definitions

Replace non-orthogonality by commuting.

If p and q are invariant types, we can define $p(x) \otimes q(y)$ as tp(a, b/M) where $b \models q$ and $a \models p|Mb$. We say that p and q commute if $p(x) \otimes q(y) = q(y) \otimes p(x)$. Using NIP, there is a way to generalize this definition to the case where only p is invariant and q is any type over M.

Remark: If *p* and *q* are weakly-orthogonal, then they commute.

Proposition

(NIP) A type $p \in S(M)$ commutes with every finitely satisfiable type in M if and only if: For any small $A \subset M$, and formula $\phi(x; y)$, there is a formula $\psi(x; z)$ and $e_A \in M$ such that:

 $\phi(A; a) \subseteq \psi(M; e_A) \subseteq \phi(M; a).$

Problem: there does not seem to be a corresponding notion of *decomposition*.

Let $p \in S(M)$ and $a \models p$. Let M_p denote the expansion of M obtained by making all the sets $\phi(M; a)$ definable.

Lemma

If M_p is saturated, then p commutes with any type finitely satisfiable in M.

Remark: This generalizes the fact that a definable type commutes with every finitely satisfiable type.

Now let *N* be any model and $p \in S(N)$. Take a saturated extension $N_p \prec M_{p_0}$. Then we can apply the previous proposition to $p_0 \in S(M)$ and drag the result down to *N*.

We obtain:

Theorem (Chernikov-S.)

(NIP) Let $p \in S(N)$, and $\phi(x; y)$ a formula. Then there is a formula $\psi(x; z)$ such that for any finite $A \subseteq N$, we can find $e_A \in N$ such that:

 $\phi(A; a) \subseteq \psi(N; e_A) \subseteq \phi(N; a).$

The same thing is true for a type over an arbitrary set B, instead of model N, with the same proof.

A. Chernikov and P. Simon

Externally definable sets and dependent pairs.

🔋 S. Shelah

Dependent theories and the generic pair conjecture.

🔋 S. Shelah

Dependent dreams: recounting types.