Provability Logic and the Arithmetics of a Theory

Albert Visser

Theoretical Philosophy, Department of Philosophy, Faculty of the Humanities, Utrecht University

Special Session on Proof Theory Logic Colloquium 2012

Thursday, June 12, 2012

Universiteit Utrecht

Provability Logic

Solovay's Theorem

An Example

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ のへで

Provability Logic Solovay's Theorem An Example

Provability Logic

Solovay's Theorem

An Example

Solovay's Theorem An Example

Provability Logic

Solovay's Theorem

An Example

Provability Logic Solovay's Theorem An Example

Provability Logic

Solovay's Theorem

An Example

Provability Logic Solovay's Theorem An Example

The Logic GL

The Logic GL is the normal modal logic given by the following principles.

 $\begin{array}{l} \mathsf{G1} \ \vdash \phi \ \Rightarrow \vdash \Box \phi \\ \mathsf{G2} \ \vdash \Box (\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi) \\ \mathsf{G3} \ \vdash \Box \phi \rightarrow \Box \Box \phi \\ \mathsf{G4} \ \vdash \Box (\Box \phi \rightarrow \phi) \rightarrow \Box \phi \end{array}$

G3 follows from the other axioms

The logic GL is complete for finite, transitive, irreflexive Kripke Frames.

Degrees of Falsehood

We define:

- ▶ $□^0 \bot := \bot$,
- $\blacktriangleright \Box^{n+1} \bot := \Box \Box^n \bot,$
- $\blacktriangleright \ \Box^{\infty} \bot := \top.$

Shavrukov calls these *lies*.

Let *a* range over $0, 1, \ldots \infty$. GL_{*a*} is GL + $\Box^{a} \bot$.

Arithmetical Interpretations of GL

Consider any interpretation $N : S_2^1 \rightarrow U$, where U is Δ_1^b -axiomatized. We call N an *arithmetic in U*.

We consider the arithmetical formula giving the axioms of a theory U as part of the data for U. Source and target theory are part of the data for an interpretation.

An arithmetical interpretation of GL in *N* is a mapping σ from the formulas of GL to the sentences of *U*, that commutes with the propositional connectives, such that:

•
$$(\Box \phi)^{\sigma} := (\Box_U \phi^{\sigma})^N := (\operatorname{prov}_U(\underline{}^{\sigma} \phi^{\sigma}))^N.$$

The Provability Logic of a Theory

We define:

- $\phi \in prl(N)$ iff, for all *N*-translations σ , $U \vdash \phi^{\sigma}$,
- $\phi \in \operatorname{prl}_{\operatorname{all}}(U)$ iff, for all arithmetics N in U, $\phi \in \operatorname{prl}(N)$.
- deg(N) := min({ $a \mid \Box^a \perp \in prl(N)$ }).
- $\deg_{all}(U) := \min(\{a \mid \Box^a \bot \in prl_{all}(U)\}).$

If there are no arithmetics in U, then $\deg_{all}(U) = 0$.

if $N : S_2^1 \to U$ is an identical embedding $\mathcal{E}_{S_2^1, U}$, we speak also of the provability logic prl(U) of U.

Theorem

GL is always part of prl(N), for an arbitrary arithmetic N in any theory U.

Provability Logic

Solovay's Theorem

An Example

Solovay's Theorem An Example

Solovay's Theorem for Single Arithmetics

Let (N, Γ) -comp be the principle $\vdash A \rightarrow \Box_U A^N$, for A in Γ . Here Γ is a set of arithmetical sentences.

Let $\exists \Pi_1^{b,sent}$ be the class of all $\exists \Pi_1^{b}$ -sentences.

Solovay's Theorem Let *N* be an arithmetic in *U* such that

$$U \vdash (\mathsf{T}_2^1 + (N, \exists \Pi_1^{\mathsf{b},\mathsf{sent}})\text{-}\mathsf{comp})^N.$$

Then $prl(N) = GL_{deg(N)}$.

The proof uses the careful analysis of the Solovay argument due to De Jongh, Jumelet and Montagna.

The substitution instances are disjunctions of conjunctions of $\forall \Delta_1^b$ -sentences and $\exists \Pi_1^b$ -sentences.

Other Results in the Same Niche 1

Theorem

Suppose *U* contains a Σ_1^0 -sound arithmetic *N*. Then, there is an arithmetic *M* in *U*, such that prl(M) = GL.

By bootstrapping and by the second incompleteness theorem U interprets T_2^1 + incon(U). So, a fortiori, U interprets

 $W := \mathsf{T}_2^1 + \{(K, \exists \Pi_1^{\mathsf{b},\mathsf{sent}}) \text{-comp} \mid K \text{ is an arithmetic in } U\}.$

Since, *U* contains a Σ_1^0 -sound arithmetic, by results of Per Lindström, we can find a faithful interpretation *M* of *W*. Since *W* is a true theory, it follows that prl(*M*) = GL.

Other Results in the Same Niche 2

Theorem

Suppose *A* is a finitely axiomatized sequential theory. Then, there is an arithmetic *M* in *A*, such that prl(M) = GL.

By results of Harvey Friedman and, independently, Jan Krajíček, the theory A contains a Σ_1^0 -sound arithmetic.

Other Results in the Same Niche 3

The theory CFL is introduced by A. Cordón-Franco, A. Fernández-Margarit and F. F. Lara-Martin as an axiomatization of the boole(Σ_1)-consequences both of I Π_1^- and of EA.

CFL is $I\Delta_0$ plus

$$\blacktriangleright \vdash \exists x \ S_0(x) \rightarrow \exists x \ \exists y \ (2^x = y \land S_0(x)).$$

where S_0 is $\Sigma_1(x)$.

CFL is incomparable with S_2^1 . If we replace S_2^1 by CFL in our definition of arithmetic, we get Solovay's full theorem.

The theory CFL is locally interpretable in Q but not globally interpretable.

Provability Logic Solovay's Theorem An Example

Great Open Problems

- What is the provability logic of S¹₂?
- What is the provability logic of $S_2^1 + \exists \Pi_1^{b,sent}$ -comp?
- What is the provability logic of T₂¹?
- What is the provability logic of $S_2 = I\Delta_0 + \Omega_1$?

Verbrugge and Razborov: If $S_2^1 \vdash \exists \Pi_1^{b,sent}$ -comp, then $NP \cap co-NP = P$.

The Initial Arithmetic Ordering

Consider arithmetics *N* and *M* in *U*. We define $N \leq M$ if there is a *U*-definable and *U*-verifiable initial embedding *F* of *N* in *M*.

A theory U is sequential if it has good sequence coding.

Theorem (Pudlák-Dedekind) Suppose *U* is sequential. Then, for all arithmetics *N* and *M* in *U*, there is an arithmetic *K* in *U* such that $K \leq N$ and $K \leq M$.

Theorem (Visser) Consider a finite set of Σ_1^0 -sentences S, a theory U and an arithmetic N in U. Then, there is an arithmetic $M \leq N$, such that

 $U \vdash (\mathsf{T}_1^2 + \mathcal{S}\text{-comp})^M.$

Solovay's Theorem for All Arithmetics of a Given Theory

Theorem

Consider any theory U. We have: $prl_{all}(U) = GL_{deg_{all}(U)}$.

The proof uses the previous theorem in combination with the work of De Jongh, Jumelet and Montagna.

The theorem also works when U does not contain any arithmetic.

Provability Logic

Solovay's Theorem

An Example

Provability Logic Solovay's Theorem An Example

The Example

Suppose *A* is a finitely axiomatized sequential theory. We consider the theory:

• $W := A + \{ (\Box_A^{\#N} \bot)^N \mid N \text{ is an arithmetic in } A \}.$

WARNING: sloppy formulation.

We have:

- $\deg_{all}(W) = \infty$,
- for any arithmetic N in W, $deg(N) < \infty$.
- The predicate logic of W is complete Π⁰₂.
- $A \not\bowtie W, A \triangleright_{mod} W.$

The Lemma 1

Consider a sequential sentence A.

• N is Σ_1^0 -veracious in A iff

$$\mathsf{S}_2^1 \vdash \forall S \in \Sigma_1^0 \text{-sent} \, (\Box_{\mathsf{A}} S^{\mathsf{N}} \to \Box_{\mathsf{S}_2^1}(\mathsf{con}_{\rho(\mathsf{A})}(\mathsf{A}) \to S)).$$

So Σ_1^0 -veracity is the S_2^1 -verifiable Σ_1^0 -conservativity of N over $ID_{S_2^1+con_{\rho(A)}(A)}$.

- *N* is strong in *A* iff $A \vdash \operatorname{con}_{\rho(A)}^{N}(A)$.
- *N* is *deep in A* iff *N* is both Σ_1^0 -veracious and strong in *A*.

Theorem

Suppose that A is a sequential sentence and N is Σ_1^0 -veracious in A. Then,

 $I\Delta_0 + supexp \vdash \forall S \in \Sigma_1^0$ -sent $((con(A) \land \Box_A S^N) \to true(S)).$

Here true is a Σ_1^0 truth predicate.

Universiteit Utrecht

The Lemma 2

Theorem

Suppose N is a deep arithmetic in A. We have:

$$\mathsf{S}_2^1 \vdash \forall \mathcal{S} \in \Sigma_1^{\mathsf{0}}\text{-sent}\,(\Box_{\mathcal{A}}\mathcal{S}^{\mathcal{N}} \leftrightarrow \Box_{\mathsf{S}_2^1}(\mathsf{con}_{\rho(\mathcal{A})}(\mathcal{A}) \to \mathcal{S})).$$

Theorem

Both Σ_1^0 -veracity and strength are downwards closed w.r.t. \leq .

Theorem

For every arithmetic N in A, there is a deep arithmetic M in A with $M \leq N$.

Theorem

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Suppose *N* is Σ_1^0 -veracious in *A*. We have:

$$S_2^1 \vdash \Box_A \Box_A^{N,n} \bot \leftrightarrow \Box_{S_2^1}^n \Box_A \bot.$$

Solovay's Theorem

Strange but True

Suppose *N* is a deep arithmetic in GB. Then, (suppressing the von Neumann interpretation):

```
GB + con(GB) \vdash con(GB + con^{N}(GB)).
```

This is *not* an example of a theory proving its own consistency! We *do* have:

$$GB + con(GB) \nvDash con^{N}(GB + con(GB)).$$

and:

```
\mathsf{GB} + \mathsf{con}^{\mathsf{N}}(\mathsf{GB}) \nvdash \mathsf{con}^{\mathsf{N}}(\mathsf{GB} + \mathsf{con}^{\mathsf{N}}(\mathsf{GB})).
```


Universiteit Utrecht

An Example