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The Logic GL

The Logic GL is the normal modal logic given by the following
principles.

G1 ` φ ⇒ ` 2φ

G2 ` 2(φ→ ψ)→ (2φ→ 2ψ)

G3 ` 2φ→ 22φ

G4 ` 2(2φ→ φ)→ 2φ

G3 follows from the other axioms

The logic GL is complete for finite, transitive, irreflexive Kripke
Frames.
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Degrees of Falsehood

We define:

I 20⊥ := ⊥,
I 2n+1⊥ := 22n⊥,
I 2∞⊥ := >.

Shavrukov calls these lies.

Let a range over 0,1, . . .∞. GLa is GL + 2a⊥.
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Arithmetical Interpretations of GL

Consider any interpretation N : S1
2 → U, where U is

∆b
1-axiomatized. We call N an arithmetic in U.

We consider the arithmetical formula giving the axioms of a theory
U as part of the data for U. Source and target theory are part of
the data for an interpretation.

An arithmetical interpretation of GL in N is a mapping σ from the
formulas of GL to the sentences of U, that commutes with the
propositional connectives, such that:

I (2φ)σ := (2Uφ
σ)N := (provU(pφσq))N .
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The Provability Logic of a Theory

We define:
I φ ∈ prl(N) iff, for all N-translations σ, U ` φσ,
I φ ∈ prlall(U) iff, for all arithmetics N in U, φ ∈ prl(N).
I deg(N) := min({a | 2a⊥ ∈ prl(N)}).
I degall(U) := min({a | 2a⊥ ∈ prlall(U)}).

If there are no arithmetics in U, then degall(U) = 0.

if N : S1
2 → U is an identical embedding ES1

2,U
, we speak also of

the provability logic prl(U) of U.

Theorem
GL is always part of prl(N), for an arbitrary arithmetic N in any
theory U.



Provability Logic

Solovay’s Theorem

An Example

8

Overview

Provability Logic

Solovay’s Theorem

An Example



Provability Logic

Solovay’s Theorem

An Example

9

Solovay’s Theorem for Single Arithmetics

Let (N, Γ)-comp be the principle ` A→ 2UAN , for A in Γ. Here Γ is
a set of arithmetical sentences.

Let ∃Πb,sent
1 be the class of all ∃Πb

1-sentences.

Solovay’s Theorem
Let N be an arithmetic in U such that

U ` (T1
2 + (N,∃Πb,sent

1 )-comp)N .

Then prl(N) = GLdeg(N).

The proof uses the careful analysis of the Solovay argument due
to De Jongh, Jumelet and Montagna.

The substitution instances are disjunctions of conjunctions of
∀∆b

1-sentences and ∃Πb
1-sentences.
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Other Results in the Same Niche 1

Theorem
Suppose U contains a Σ0

1-sound arithmetic N. Then, there is an
arithmetic M in U, such that prl(M) = GL.

By bootstrapping and by the second incompleteness theorem U
interprets T1

2 + incon(U). So, a fortiori, U interprets

W := T1
2 + {(K ,∃Πb,sent

1 )-comp | K is an arithmetic in U}.

Since, U contains a Σ0
1-sound arithmetic, by results of Per

Lindström, we can find a faithful interpretation M of W . Since W is
a true theory, it follows that prl(M) = GL.
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Other Results in the Same Niche 2

Theorem
Suppose A is a finitely axiomatized sequential theory. Then, there
is an arithmetic M in A, such that prl(M) = GL.

By results of Harvey Friedman and, independently, Jan Krajíček,
the theory A contains a Σ0

1-sound arithmetic.
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Other Results in the Same Niche 3

The theory CFL is introduced by A. Cordón-Franco, A.
Fernández-Margarit and F. F. Lara-Martin as an axiomatization of
the boole(Σ1)-consequences both of IΠ−1 and of EA.

CFL is I∆0 plus
I ` ∃x S0(x)→ ∃x ∃y (2x = y ∧ S0(x)).

where S0 is Σ1(x).

CFL is incomparable with S1
2. If we replace S1

2 by CFL in our
definition of arithmetic, we get Solovay’s full theorem.

The theory CFL is locally interpretable in Q but not globally
interpretable.
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Great Open Problems

I What is the provability logic of S1
2?

I What is the provability logic of S1
2 + ∃Πb,sent

1 -comp?
I What is the provability logic of T1

2?
I What is the provability logic of S2 = I∆0 + Ω1?

Verbrugge and Razborov:
If S1

2 ` ∃Πb,sent
1 -comp, then NP ∩ co-NP = P.



Provability Logic

Solovay’s Theorem

An Example

14

The Initial Arithmetic Ordering

Consider arithmetics N and M in U. We define N � M if there is a
U-definable and U-verifiable initial embedding F of N in M.

A theory U is sequential if it has good sequence coding.

Theorem (Pudlák-Dedekind)
Suppose U is sequential. Then, for all arithmetics N and M in U,
there is an arithmetic K in U such that K � N and K � M.

Theorem (Visser)
Consider a finite set of Σ0

1-sentences S, a theory U and an
arithmetic N in U. Then, there is an arithmetic M � N, such that

U ` (T2
1 + S-comp)M .
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Solovay’s Theorem for All Arithmetics of a
Given Theory

Theorem
Consider any theory U. We have: prlall(U) = GLdegall(U).

The proof uses the previous theorem in combination with the work
of De Jongh, Jumelet and Montagna.

The theorem also works when U does not contain any arithmetic.
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The Example

Suppose A is a finitely axiomatized sequential theory. We
consider the theory:

I W := A + {(2#N
A ⊥)N | N is an arithmetic in A}.

WARNING: sloppy formulation.

We have:
I degall(W ) =∞,
I for any arithmetic N in W , deg(N) <∞.
I The predicate logic of W is complete Π0

2.
I A 6� W , A �mod W .
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The Lemma 1
Consider a sequential sentence A.

I N is Σ0
1-veracious in A iff

S1
2 ` ∀S ∈ Σ0

1-sent (2ASN → 2S1
2
(conρ(A)(A)→ S)).

So Σ0
1-veracity is the S1

2-verifiable Σ0
1-conservativity of N over

IDS1
2+conρ(A)(A).

I N is strong in A iff A ` conN
ρ(A)(A).

I N is deep in A iff N is both Σ0
1-veracious and strong in A.

Theorem
Suppose that A is a sequential sentence and N is Σ0

1-veracious in
A. Then,

I∆0 + supexp ` ∀S ∈ Σ0
1-sent ((con(A) ∧2ASN)→ true(S)).

Here true is a Σ0
1 truth predicate.
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The Lemma 2

Theorem
Suppose N is a deep arithmetic in A. We have:

S1
2 ` ∀S ∈ Σ0

1-sent (2ASN ↔ 2S1
2
(conρ(A)(A)→ S)).

Theorem
Both Σ0

1-veracity and strength are downwards closed w.r.t. �.

Theorem
For every arithmetic N in A, there is a deep arithmetic M in A with
M � N.

Theorem
Suppose N is Σ0

1-veracious in A. We have:

S1
2 ` 2A2

N,n
A ⊥ ↔ 2n

S1
2
2A⊥.
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Strange but True

Suppose N is a deep arithmetic in GB. Then, (suppressing the von
Neumann interpretation):

GB + con(GB) ` con(GB + conN(GB)).

This is not an example of a theory proving its own consistency!
We do have:

GB + con(GB) 0 conN(GB + con(GB)).

and:

GB + conN(GB) 0 conN(GB + conN(GB)).
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