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§1. Input—Output Theories.

» EA(/; O) is a 2-sorted theory with elementary strength.

v

EA(I;0) C EA(I;0)" I &3(x) | .

> EA(h; O)H(h)t F £4(x?) | .

v

EA(l, b, ... I O))F = EFF2(xK) |

v

EA(h, b, L; O) T F E9(x*) |.

The Main Principles:

(1) Inputs govern induction-length.

(2) If a value is computable from inputs only, then it may be used
as an input.



§2. EA(I; O) — Leivant (1995), Ostrin-Wainer (2005)

» Quantified “output” variables a, b, c, ... .
» Unquantified “input” variables x, y, z, ... (constants).
» Terms 0, Succ, +, X, w, m, 71, - . . with usual axioms.
» “Predicative Induction” up to x:
A(0) AVa(A(a) — A(a+ 1)) — A(x)
A(0) AVa(A(a) — A(a+ 1)) — Va < xA(a).

Theorem
Define f(x)| = 3aC¢(x, a) for some X1 formula C¢. Then

EA(I; O) - f(x)] if and only if f is an elementary function.



Gentzen iterated exponentials

With formula A(a) associate
A'(b) = Va(A(a) — a+2°] A A(a+2))
Then in EA(/; O)

F ProgA(a) — ProgA'(b).

Therefore

F ProgA(a) — A(x)
and hence

F ProgA(a) — A(2)

- ProgA(a) — A(2%")
etcetera.

Hence all elementary functions are provably defined.



§3. EA(l; 0)*.

EA(I; O) is not “user-friendly” since composition of functions

f 11 — O cannot be proved straightforwardly — however Wirz
(2005) developed a variety of derived rules showing this.

To remedy this, add a X1-“Reflection Rule” as in Cantini (2002):

¥ (X),daA(a, X)
2(X), IyA(y, X)
where the only free parameters are inputs X. And add /-quantifiers:

LAKX)  TLA(ER))
FYYA(y) T avA(y)

Note: the inductions are still restricted to EA(/; O) formulas only.

Then if - f(x)| and - g(x)| we can directly prove Vyf(y)| and
(by reflection) Jy(g(x) = y). Therefore EA(/; O)* I f(g(x))l.



Upper Bounds via EA(/; O)L..

The infinitary system n: [;m: O F* T has rules, where § <, a:

mmbY k nymP T A(K) m— Lk nm P T AK)

(30) n;m T, 3aA(a) (31 n;m Ee T, 3xA(x)

{n; max(m, i) 5 MA(D}
n; mEa T, VaA(a)

{max(n,i); mHF T, A®i)};

(vO) n; mE2 T VxA(x)

(V1)

and (V), (A) and (Cut) as usual, together with Computation Rules:

n;ml—lém’ n;m’l—@k
n;ml—%k

(Ax) i, mE¢ k if k<gq(m) (C)

where g is some quadratic majorising the term constructors.



Bounding Functions.

The ordinal assignmnet is “slow growing”, i.e.

{6 : 8 <n a}| = Ga(n).

Lemma

n,mE¢ k if and only if k < q"(m) where r = Goa(n).
This is elementary if a < €g.

Theorem
By embedding and cut-reduction, if EA(l; O)" & f(x)| then there
is an o < &g such that for every n,

n;, — % JaC¢(n, a)

with, at worst, >1 cuts.
Therefore f is definable by a bounded formula with elementary
bounds, so f € £3.



§4 EA(/l, O)+(/2)Jr

Add to EA(l; O)" new h—inputs u, v, ... and a new level of
inductions:

A(0) A Va(A(a) — A(a+1)) — Au)

where A is now any EA(l;; O)" formula. Then:

» EA(l; O)F2¥|

> EA(l; O)F FV¥x3y(2X = y)

> EA(h; O) - 3y(25 = y) — Iy(251 =)

> EA(l; O)"(h) FVx3Jy(2X = y)
Then add h—quantifier rules and a X j—reflection rule for /. This
allows compositions of the superexponential etc., so

EA(I; O) Y ()T F&%u) | .



Layered infinitary system EA(l; O)"(h)L.

Tait-style sequents are now ny : h;ny : lh;m: O F*7 T,
Ordinal assignment is governed by 3 <,, o with v a parameter.

New (3h) and (V) rules are added on top of EA(h; O)L.
The layering axiom is ny; ny; mE*Y T if ny;mEYT.

The new computation rule is

no; ny; — I—g"y n ny;n’;m I—%V k

ny; ny; mEgT k

Lemma (£* Bounding)
Let B,(n1) = q(M)(0) be the bounding function at level 1. Then

no;ny; — &k iff k < BE () (ny).



§5. Theorem.

By embedding into EA(/1; O)* (k)L reducing cut-rank, and using
the above bounding lemma, every function provably defined in
EA(ly; O)T (k)T is £*-definable.

This extends similarly to higher levels:

EA(K; O)Y - &3(h) |

EA(K; O)H(h)" F &4 k) |

EA(Il; O)+(12)+(/3)+ F 55(/3) l

EA(l, b, b3, . ., I O)F F EX42(1) |

EA(l, b, s, ..., Ly; O)F F (L) |.



§6. Level w — Ackermann.

A version of Ackermann: Fo(n) = n+1 and F,41(n) = F](n).
Suppressing ordinal bounds, EA(l, b, ..., l,; O)% proves:

n:l X3y (Fr(x) = y) = 3y (F2(n) = y) — 3y"(FF(n) = y)
Hence by induction on a, using repeated cuts:
k:lypyn:l FVYx" 3y (F(x) =y) — 3y (FK(n) = y)
Hence with n:= k and a Cut on Vx"3y"(F,(x) = y):
k1 =3y (Fria(k) = y)
Then by Reflection, k : I, 11 - 3y"™(F,11(k) = y) and so:
F VXY (Fraa(x) = y)

Therefore by induction on r:  F Vr*Vx"3y"(F.(x) = y).



Bounding in EA(h, b, ..., 1,; O)%

00"

» Cut rank p may now be infinite, so apply predicative C-E:
©p(a)
Fo T = 7T

where po(a) = a+ 1, gpr1(e) = 5 (a),pu(a) = sup or(a).
» The slow-growing G-collapse of ¢, is the Ackermann F.
» The computation rules are, with § <, «:

rodosn:ilpo B¢kl if rilyinily 0 lpo1 FE kit lp—1
and

r:/w;n:lpl—gn':lp r:Iw;n’:Ipl—’gk:lp
rolo;n: b B¢kl

» Thenr:l;n: -t k:l, = k< Bp(a,r,n) where

Bp(a, r,n) = the Gya(r) iterate of By_1(cr, —,0) on max(r, n) .
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