
Experts in numerical algorithms
and HPC services

The Evolving Hardware Landscape and the
Implications for Libraries

Mike Dewar

Date of presentation

2

Overview

 Introduction to NAG
 General hardware trends
 Thoughts about Library design
 Conclusions & Discussion

3

 Founded 1970
 Co-operative software project
 Not-for-profit Company since 1976

 NAG Library released 1971
 Currently at mark 24 with 1784 routines

 ~£8m financial turnover
 Strong links to academia

 Sponsor PhD students, collaborative projects etc.

 Current business areas
 Numerical and Statistical Libraries (finance, engineering, R&D, …)
 Consulting: Code development, tuning, tailoring (finance, AMD, …)
 HPC Services/Computational Science & Engineering (HECToR, CHPC, …)

Numerical Algorithms Group Ltd

4

Example: HECToR

XT4: 63TF

XT4
208TF

XE6
827TF

2007

Ca
pa

bi
lit

y

2008 2009 2010 2011 2012 2013

XT6/XE6
374TF

11,328 cores 22,656 cores 44,544 cores

2.8GHz Santa Rosa
2 cores per node
3 GB per core

2.3GHz Barcelona
4 cores per node
2 GB per core

2.1GHz Magny-Cours
24 cores per node
1.33 GB per core

89,856 cores

2.3GHz Interlagos
32 cores per node
1 GB per core

XT4
113TF

5

2.3GHz processor
8 FPU per processor
8 FLOPs/clock (vector) per FPU

Theoretical
Peak Performance
(GFLOPS)

Against
Maximum

multi-threaded and vectorized 147.2 100.00%

2.3GHz processor
8 FPU per processor
8 FLOPs/clock (vector) per FPU

Theoretical
Peak Performance
(GFLOPS)

Against
Maximum

multi-threaded and vectorized 147.2 100.00%
multi-threaded & not vectorized 18.4 12.5%
serial and vectorized 18.4 12.5%

e.g. Xeon SNB

2.6 GHz processor
8 cores (FPU) per processor
8 DP FLOPs/cycle per FPU

Theoretical
Peak Performance
(GFLOPS)

Against
Maximum

multi-threaded and vectorized 166.4 100.00%
multi-threaded & not vectorized 20.8 12.5%
serial and vectorized 20.8 12.5%
serial and not vectorized 2.6 1.6%

>98% of the possible FLOPS performance
comes from parallel processing techniques

6

Accelerators

 Energy efficient
 Lots of cores – limited memory

 E.g. Xeon Phi 7100p has 61 physical cores @ 1.238GHz, 244
virtual cores and 16GB memory

 Offload costs
 Unpredictable host environment

 Need to tune for user’s combination of CPUs and
accelerators

7

8

9

Kalman filter scaling example using MKL

 Parallelises over DGEMV and Householder reflections (MKL)

 Memory bound, hence drop-off in scaling at 29 threads

0

0.2

0.4

0.6

0.8

1

1.2

0 30 60 90 120

Scaling
(t1/(tn*nt))

Number of threads (nt)

10

A workstation (or HPC node) might have …

Peak DP GF Clock GHz DP FLOPS parallel Total parallel

Opteron (Abu Dhabi) 160 2.5 8fpu x 8ops 64

Xeon (Sandy Bridge EP) 166 2.6 8fpu x 8ops 64

Xeon Phi (Knights Corner) 1,074 1.1 61c x 16ops 976

Tesla GPU (Kepler K20x) 1,312 0.7 14sm x 64c x 2ops 1,792

FirePro GPU (S10k Tahiti) 1,478 0.8 2gpu x 28cu x 4v x 8ops? 1,792

NB: excluding the whole FMA confusion

11

Memory

 Memory bandwidth has failed to increase in line with
available flops
 Use of libraries inhibits

 loop fusion
 function inlining

 … leading to increased memory access cost
 See e.g. Built to Order BLAS

http://ecee.colorado.edu/wpmu/btoblas/
 Increasing need to manage memory/data structures

at the application level

http://ecee.colorado.edu/wpmu/btoblas/

12

Traditional Library Design
 Input:

 Problem definition
 Algorithmic options

 Output:
 Problem result
 Measure of accuracy
 Feedback on solution process

 Ease of use
 Sensible default values
 Natural data structures

 Robustness
 Never give the wrong answer or fail unexpectedly

 Modularity
 Should be able to combine components in sensible ways

13

Issues with libraries

 Need to find and exploit more parallelism
 Modular design not so good
 Possible trade-off between mathematical rigour and

performance

 Need to make better use of memory
 Shouldn’t impose data structures on users
 Should make better use of mixed precision algorithms
 Need hooks to allow application to manage memory better

 Reproducibility of results

15

Reverse-communication interfaces

 Already used in the NAG Library
 Useful for interacting with other software environments,

e.g. calling Fortran from Excel

 Don’t pass whole problem description to routine,
pass a piece at a time
 At intermediate stages, routine requests data from

user
 User manages traversal of data structures 
 Much more complicated to use than conventional

design 

16

Summary
 General hardware trends:

 Available flops increasing but dependent on parallel
programming

 Overall memory and memory bandwidth increasing much
more slowly

 Software always evolves more slowly than hardware
 Need to minimise memory access, and do as much

work as possible per memory access
 Need to focus on algorithms – and implementations

of algorithms – that parallelise (and vectorise) well
 Libraries are still worthwhile!

	The Evolving Hardware Landscape and the Implications for Libraries
	Overview
	Numerical Algorithms Group Ltd
	Slide Number 4
	e.g. Xeon SNB
	Accelerators
	Slide Number 7
	Slide Number 8
	Kalman filter scaling example using MKL
	A workstation (or HPC node) might have …
	Memory
	Traditional Library Design
	Issues with libraries
	Reverse-communication interfaces
	Summary

