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from late 1960s (Reid)

large-scale NLP solver LANCELOT in 1990 (Conn, G., Toint)

CUTE optimization testing environment in 1992 (Bongartz, Conn, G., Toint)

GALAHAD library in 2003 replaces V chapter (G., Orban, Toint)
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FASTR (SQP filter) and FUNNEL (SQP funnel), both forthcoming

unconstrained optimization

TRU (trust-region) and ARC (cubic regularization)

quadratic programming

QPA (nonconvex active set) and QPB (nonconvex interior point)

CQP (convex path-following) and DQP (convex gradient projection)

regularization subproblems

GLTR (trust-region) and GLRT (polynomial regularization)

generic linear system interfaces (via HSL and others)

SLS (symmetric), ULS (unsymmetric) and SBLS(saddle-point)

various support (root finding, scaling, presolving, preconditioning . . . )
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Linear algebraic needs

Sparse linear equations Ax = b

usually symmetric, often indefinite, sometimes block structured

good preconditioners for generic and PDE-constrained problems

singular systems and Fredholm alternatives

sparse right-hand sides

bandwidth reduction
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sparse right-hand sides

bandwidth reduction

Factorization updates rows and columns of A changed/appended

explicit

implicit (via Schur complement)

Minimum-norm solution of over/under determined linear systems

min ‖Ax − b‖ in ℓ1, ℓ2 and ℓ∞-norms

Regularization (A + λB)x(λ) = b, with scalar “secular” equation

p(λ) = 0 and definite B

Traditionally strong RAL group interactions on subjects such as these
MNR13, U. Manchester, 23rd October 2013 – p. 5/21
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aim to satisfy (KKT) criticality conditions

Ax∗ ≥ b (primal feasibility)

g + Hx∗ − ATy∗ = 0 & y∗ ≥ 0 (dual feasibility)

(Ax∗ − b) · y∗ = 0 (complementary slackness)

or to deduce that the problem is infeasible

interested in case where n is large and H and A ∈ ℜm×n are sparse

easy extension to more general constraint structures (equations, upper

and both-sided bounds, simple bounds, . . . )

many real-world applications as well as SQP
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Competing methods

interior-point methods

usually very efficient

relatively poor at warm starting

active-set methods

worst-case combinatorics due to pedestrian active-set changes

good at warm starting

gradient projection methods

more rapid active-set changes

restricted to constraint sets for which projection is “easy”
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Digression I: gradient projection

convergence and active-set determination driven by projection

current iterate xk ∈ F = {x : Ax ≥ b}

current gradient gk = Hxk + g

improved Cauchy point xc
k = P [xk − αkgk]

projection P [y] = argminx∈F ‖y − x‖

step length αk ≈ argmin q(P [xk − αgk]) (Rosen,1960)

xk

−gk
P (xk−αgk)

xc
k

F
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Accelerated gradient projection

acceleration by subspace minimization

pick active set as subset of constraints Ak active at xc
k

find (approximate) solution sk to equality constrained QP

EQP: minimize
s∈IRn

q(xc
k + s) subject to AAk

s = 0

set xk+1 ≈ argmin q(P [xc
k + αsk])
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k

find (approximate) solution sk to equality constrained QP

EQP: minimize
s∈IRn

q(xc
k + s) subject to AAk

s = 0

set xk+1 ≈ argmin q(P [xc
k + αsk])

solve EQP by

direct factorization (HSL, PARDISO, WSMP,. . . )

(

H AT
k

Ak 0

)(

sk

wk

)

= −

(

Hxc
k + g

0

)
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EQP: minimize
s∈IRn

q(xc
k + s) subject to AAk

s = 0

set xk+1 ≈ argmin q(P [xc
k + αsk])

solve EQP by

direct factorization (HSL, PARDISO, WSMP,. . . )

(

H AT
k

Ak 0

)(

sk

wk

)

= −

(

Hxc
k + g

0

)

factorization-free projected CG (G., Hribar & Nocedal, Luksan & Vlcek,90s. . . )
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Projected search within simple bounds xL
≤ x ≤ xU

Find α+ ≈ argmin q(P [x + αs]) for α ≥ 0 (Conn, G. & Toint,1988)
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∆α2sTi Hsi,

where nonzero components of si are those of s “not fixed” at xi

si = si−1 − ∆si, where nonzero components of very sparse ∆si
are those of si “just fixed” at xi =⇒

Hsi = Hsi−1 − H∆si involves likely very sparse H∆si if H
is sparse =⇒

possible to recur required coefficients gT si, x
T
i Hsi and sTi Hsi of

qi(α) very efficiently

approximate “Armijo”projected search also possible (Moré & Toraldo,Toint,90s)
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Anecdotal and empirical evidence

large change possible in the active set per iteration

often very effective in practice for convex bound-constrained QP

few overall iterations compared to active-set methods (Moré & Toraldo)

competitive with interior-point methods for such problems

basis of LANCELOT (Conn, G. & Toint)

generally impractical for general convex feasible regions as projection is

too expensive

projection effectively requires the solution of a QP!
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large change possible in the active set per iteration

often very effective in practice for convex bound-constrained QP

few overall iterations compared to active-set methods (Moré & Toraldo)

competitive with interior-point methods for such problems

basis of LANCELOT (Conn, G. & Toint)

generally impractical for general convex feasible regions as projection is

too expensive

projection effectively requires the solution of a QP!

How might we apply such methods for QP over a general polyhedral feasible

region?
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Digression II: duality

QP : minimize
x

q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒ minimize
x,s

q(x) subject to Ax − s = b and s ≥ 0
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q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒ minimize
x,s

q(x) subject to Ax − s = b and s ≥ 0 =⇒ (KKT)

(

Hx + g

0

)

−

(

AT

−I

)

y −

(

0

I

)

z = 0, z ≥ 0 & sT z = 0
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(
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I
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z = 0, z ≥ 0 & sT z = 0 =⇒
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q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒ minimize
x,s
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0

)

−

(
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)

y −

(

0

I

)

z = 0, z ≥ 0 & sT z = 0 =⇒

g = ATy − Hx, Ax = s + b, (s, y) ≥ 0 and sTy = 0

Suppose g = ATy − Hx, Ax = s + b and (s, y) ≥ 0 =⇒

gTx = yTAx − xTHx = yT (s + b) − xTHx ≥ yT b − xTHx

MNR13, U. Manchester, 23rd October 2013 – p. 12/21



Digression II: duality

QP : minimize
x

q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒ minimize
x,s

q(x) subject to Ax − s = b and s ≥ 0 =⇒ (KKT)

(

Hx + g

0

)

−

(

AT

−I

)

y −

(

0

I

)

z = 0, z ≥ 0 & sT z = 0 =⇒

g = ATy − Hx, Ax = s + b, (s, y) ≥ 0 and sTy = 0

Suppose g = ATy − Hx, Ax = s + b and (s, y) ≥ 0 =⇒

gTx = yTAx − xTHx = yT (s + b) − xTHx ≥ yT b − xTHx

=⇒ q(x) ≥ − 1

2
xTHx + bTy

MNR13, U. Manchester, 23rd October 2013 – p. 12/21



Digression II: duality

QP : minimize
x

q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒ minimize
x,s
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(
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(
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−I

)

y −

(

0

I

)

z = 0, z ≥ 0 & sT z = 0 =⇒

g = ATy − Hx, Ax = s + b, (s, y) ≥ 0 and sTy = 0

Suppose g = ATy − Hx, Ax = s + b and (s, y) ≥ 0 =⇒

gTx = yTAx − xTHx = yT (s + b) − xTHx ≥ yT b − xTHx

=⇒ q(x) ≥ − 1

2
xTHx + bTy =⇒ equivalent dual problem

DQP : maximize
x,y

− 1

2
xTHx + bTy s.t. Hx − ATy = −g & y ≥ 0
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Duality II

QP : minimize
x

q(x) = 1

2
xTHx + gTx subject to Ax ≥ b

⇐⇒

DQP : maximize
x,y

− 1

2
xTHx + bTy s.t. Hx − ATy = −g & y ≥ 0

⇐⇒

DQP : minimize
x,y

1

2
xTHx − bTy s.t. Hx − ATy = −g & y ≥ 0

⇐⇒ (nonsingular H)

DQP : minimize
y

1

2
(yTA − gT )H−1(ATy − g) − bTy s.t. y ≥ 0
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Dual gradient projection methods

DQP : minimize
y

1

2
(yTA − gT )H−1(ATy − g) − bTy s.t. y ≥ 0

for strictly-convex QP (i.e., H positive definite)

dual objective qD(y) = 1

2
yTHDy + gT

D y

HD = AH−1AT and gD = −AH−1g − b

HD may only be positive semi-definite

since feasible region is simple, can use gradient projection to allow rapid

changes in active set

require sparse factorization H = LLT but everything else

“matrix-free”
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Dual gradient projection methods

DQP : minimize
y

1

2
(yTA − gT )H−1(ATy − g) − bTy s.t. y ≥ 0

for strictly-convex QP (i.e., H positive definite)

dual objective qD(y) = 1

2
yTHDy + gT

D y

HD = AH−1AT and gD = −AH−1g − b

HD may only be positive semi-definite

since feasible region is simple, can use gradient projection to allow rapid

changes in active set

require sparse factorization H = LLT but everything else

“matrix-free”

Questions:

can we perform projected search efficiently?

can we perform subspace minimization efficiently?
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Dual projected search

have HD = AH−1AT and gD = −AH−1g − b

recall require α+ ≈ argmin qD(P [y + αs]) for α ≥ 0

investigate for α = αi + ∆α ≤ αi+1 and yi = P [yi + αis]:

qi(α) = qD(yi) + ∆α(gT
D si + yT

i HDsi) +
1

2
∆α2sTi HDsi

recur via HDsi = HDsi−1 − HD∆si with very sparse ∆si but likely

dense HD . . . looks expensive ©⌢··
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i HDsi) +
1

2
∆α2sTi HDsi

recur via HDsi = HDsi−1 − HD∆si with very sparse ∆si but likely

dense HD . . . looks expensive ©⌢··

instead maintain ui = L−1AT si and vi = L−1ATyi =⇒

possible to recur required coefficients gT
D si and sTi HDsi ≡ uT

i ui very

efficiently via ui = ui−1 − ∆ui, where L∆ui = AT∆si
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possible to recur required coefficients gT
D si and sTi HDsi ≡ uT

i ui very

efficiently via ui = ui−1 − ∆ui, where L∆ui = AT∆si

as ∆si, A and H are sparse, result of forward solve ∆ui is often very

sparse ©⌣··
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have HD = AH−1AT and gD = −AH−1g − b

recall require α+ ≈ argmin qD(P [y + αs]) for α ≥ 0

investigate for α = αi + ∆α ≤ αi+1 and yi = P [yi + αis]:
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D si + yT

i HDsi) +
1
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∆α2sTi HDsi

recur via HDsi = HDsi−1 − HD∆si with very sparse ∆si but likely

dense HD . . . looks expensive ©⌢··

instead maintain ui = L−1AT si and vi = L−1ATyi =⇒

possible to recur required coefficients gT
D si and sTi HDsi ≡ uT

i ui very

efficiently via ui = ui−1 − ∆ui, where L∆ui = AT∆si

as ∆si, A and H are sparse, result of forward solve ∆ui is often very

sparse ©⌣··

required yT
i HDsi ≡ uT

i vi looks harder as update to vi is dense . . . but

can also be performed using inner-products involving ∆ui
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Dual projected search

have HD = AH−1AT and gD = −AH−1g − b

recall require α+ ≈ argmin qD(P [y + αs]) for α ≥ 0

investigate for α = αi + ∆α ≤ αi+1 and yi = P [yi + αis]:

qi(α) = qD(yi) + ∆α(gT
D si + yT

i HDsi) +
1

2
∆α2sTi HDsi

recur via HDsi = HDsi−1 − HD∆si with very sparse ∆si but likely

dense HD . . . looks expensive ©⌢··

instead maintain ui = L−1AT si and vi = L−1ATyi =⇒

possible to recur required coefficients gT
D si and sTi HDsi ≡ uT

i ui very

efficiently via ui = ui−1 − ∆ui, where L∆ui = AT∆si

as ∆si, A and H are sparse, result of forward solve ∆ui is often very

sparse ©⌣··

required yT
i HDsi ≡ uT

i vi looks harder as update to vi is dense . . . but

can also be performed using inner-products involving ∆ui

sparse forward solves now available for HSL solvers HSL MA57/87/97 ©⌣··
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Dual subspace minimization

acceleration by subspace minimization along yc
k + s

partition variables s into active sAk
and free sFk

components

according to status of yc
k

find (approximate) solution sk to

EQP : minimize
s∈IR

m

qD(y
c
k + s) subject to sAk

= 0

set yk+1 ≈ argmin qD(P [yc
k + αsk])
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Dual subspace minimization

acceleration by subspace minimization along yc
k + s

partition variables s into active sAk
and free sFk

components

according to status of yc
k

find (approximate) solution sk to

EQP : minimize
s∈IR

m

qD(y
c
k + s) subject to sAk

= 0

set yk+1 ≈ argmin qD(P [yc
k + αsk])

EQP equivalent to minimize
s∈IR

mk

1

2
sTHks + gT

k s

Hk = AkH
−1AT

k and gk = −AkH
−1(g − AT

k y
c
k) − bk

Ak and bk are respectively the rows of A and components of b
corresponding to the mk free components sFk

Hk is positive semi-definite but may be singular
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Digression III: the Fredholm Alternative

DEQP : minimize
s∈IRmk

qk(s) = 1

2
sTHks + gT

k s

Two possibilities:

1. qk has a finite critical point sk for which

Hksk = −gk

always if Hk is positive definite

true if gk ∈ Range(Hk)
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true if gk /∈ Range(Hk)
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Digression III: the Fredholm Alternative

DEQP : minimize
s∈IRmk

qk(s) = 1

2
sTHks + gT

k s

Two possibilities:

1. qk has a finite critical point sk for which

Hksk = −gk

always if Hk is positive definite

true if gk ∈ Range(Hk)

2. qk decreases linearly without bound along a direction sk for which

Hksk = 0 and gT
k sk < 0

true if gk /∈ Range(Hk)

This is the Fredholm Alternative for the data [Hk, gk]
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The structured Fredholm Alternative

Seek Fredholm Alternative for data [Hk, gk] where

Hk = AkH
−1AT

k and gk = AkH
−1(AT

k y
c
k − g) − bk

Hksk = −gk equivalent to
(

H AT
k

Ak 0

)(

tk

−sk

)

=

(

AT
k y

c
k − g

bk

)

for auxiliary unknowns tk
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The structured Fredholm Alternative

Seek Fredholm Alternative for data [Hk, gk] where

Hk = AkH
−1AT

k and gk = AkH
−1(AT

k y
c
k − g) − bk

Hksk = −gk equivalent to
(

H AT
k

Ak 0

)(

tk

−sk

)

=

(

AT
k y

c
k − g

bk

)

for auxiliary unknowns tk

Fredholm Alternative for data
[(

H AT
k

Ak 0

)

,

(

AT
k y

c
k − g

bk

)]

gives required alternative Hksk = 0 and gT
k sk < 0

⇐⇒ [Hk, gk] is inconsistent
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The structured Fredholm Alternative

Seek Fredholm Alternative for data [Hk, gk] where

Hk = AkH
−1AT

k and gk = AkH
−1(AT

k y
c
k − g) − bk

Hksk = −gk equivalent to
(

H AT
k

Ak 0

)(

tk

−sk

)

=

(

AT
k y

c
k − g

bk

)

for auxiliary unknowns tk

Fredholm Alternative for data
[(

H AT
k

Ak 0

)

,

(

AT
k y

c
k − g

bk

)]

gives required alternative Hksk = 0 and gT
k sk < 0

⇐⇒ [Hk, gk] is inconsistent

HSL sparse solvers HSL MA57/86/97 now provide Fredholm Alternative
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Alternative to the Fredholm Alternative

DEQP : minimize
s∈IRmk

qk(s) = 1

2
sTHks + gT

k s

Hk = AkH
−1AT

k and gk = AkH
−1(AT

k y
c
k − g) − bk

apply conjugate-gradient method with safeguards to detect steps to

infinity

each matrix-vector product Hkp requires solve with H and sparse

matrix-vector products with Ak and AT
k

preconditioning possible but no obvious simple preconditioner
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An example

POWELL20: n = 10000, m = 10000

solve problem using interior-point package CQP from GALAHAD

perturb constraints and resolve by dual gradient-projection DQP

size of perturbation before DQP solve

CQP 0 10−6 10−5 10−4 10−3 10−2

time 4.60 0.03 0.13 0.41 1.92 9.21 7.94

its 0 1 1 15 32 35

changes 0 1 8 594 3506 4763
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An example

POWELL20: n = 10000, m = 10000

solve problem using interior-point package CQP from GALAHAD

perturb constraints and resolve by dual gradient-projection DQP

size of perturbation before DQP solve

CQP 0 10−6 10−5 10−4 10−3 10−2

time 4.60 0.03 0.13 0.41 1.92 9.21 7.94

its 0 1 1 15 32 35

changes 0 1 8 594 3506 4763

Active-set changes per iteration with perturbation 10−2:

584 285 245 345 331 340 332 297 291 255
249 223 223 213 207 197 205 192 166 146
129 123 133 134 124 115 114 114 107 87

63 44 16 1 0
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Summary

dual gradient-projection method for large-scale, strictly-convex QP

requires sparse factorization of Hessian but otherwise can be used

“factorization-free”

allows rapid change to the “active set”

particularly suited to “warm starting”

efficient projected search

extensive use of Fredholm alternative

many technical details

easily generalised for regularization problems in ℓ1 and ℓ∞ norms using

appropriate simple projections onto boxes and simplices

implemented as a fortran 2003 module DQP in GALAHAD (G., Hogg, Scott)
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