A practical dual gradient-projection method for large-scale, strictly-convex quadratic programming

Nick Gould STFC Rutherford Appleton Laboratory with

Jonathan Hogg & Jennifer Scott

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad \tfrac{1}{2} x^T H x + g^T x \ \text{ subject to } \ A x \geq b$$

Manchester-NAG-RAL Workshop The University of Manchester, 23rd October 2013

Summary of the talk

- optimization at RAL
- convex quadratic programming
- bound-constrained QP via gradient projection
- duality
- dual gradient-projection methods for QP
- DQP
- conclusions

■ ∨ chapter in Harwell Subroutine Library (later HSL)

- VA01 in HSL, Feb. 1963
- Apollo 11 uses Mike Powell's code in 1969
- a new ∨ routine each month in 1970

(Powell)

(Fletcher, Powell)

■ V chapter in Harwell Subroutine Library (later HSL)

- VA01 in HSL, Feb. 1963
- Apollo 11 uses Mike Powell's code in 1969
- a new ∨ routine each month in 1970

separate L (linear programming) and N (nonlinear equations) chapters from late 1960s
(Reid)

(Powell)

(Fletcher, Powell)

■ V chapter in Harwell Subroutine Library (later HSL	<i>(</i>)					
VA01 in HSL, Feb. 1963	(Powell)					
Apollo 11 uses Mike Powell's code in 1969						
a new V routine each month in 1970	(Fletcher, Powell)					
separate L (linear programming) and N (nonlinear equations) chapters						
from late 1960s	(Reid)					
large-scale NLP solver LANCELOT in 1990	(Conn, G., Toint)					
CUTE optimization testing environment in 1992	(Bongartz, Conn, G., Toint)					

V chapter in Harwell Subroutine Library (later HSL))					
VA01 in HSL, Feb. 1963	(Powell)					
Apollo 11 uses Mike Powell's code in 1969						
a new V routine each month in 1970	(Fletcher, Powell)					
separate L (linear programming) and N (nonlinear equations) chapters						
from late 1960s	(Reid)					
large-scale NLP solver LANCELOT in 1990	(Conn, G., Toint)					
CUTE optimization testing environment in 1992	(Bongartz, Conn, G., Toint)					
■ GALAHAD library in 2003 replaces ∨ chapter	(G., Orban, Toint)					
CUTEr in 2004, CUTEst in 2013	(G., Orban, Toint)					

GALAHAD (G., Orban, Toint and friends)

MNR13, U. Manchester, 23rd October 2013 - p. 4/21

GALAHAD (G., Orban, Toint and friends)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming

GALAHAD (G., Orban, Toint and friends)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming
- unconstrained optimization
 - **TRU** (trust-region) and **ARC** (cubic regularization)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming
- unconstrained optimization
 - **TRU** (trust-region) and **ARC** (cubic regularization)
- quadratic programming
 - **QPA** (nonconvex active set) and **QPB** (nonconvex interior point)
 - **CQP** (convex path-following) and **DQP** (convex gradient projection)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming
- unconstrained optimization
 - **TRU** (trust-region) and **ARC** (cubic regularization)
- quadratic programming
 - **QPA** (nonconvex active set) and **QPB** (nonconvex interior point)
 - **CQP** (convex path-following) and **DQP** (convex gradient projection)
- regularization subproblems
 - **GLTR** (trust-region) and **GLRT** (polynomial regularization)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming
- unconstrained optimization
 - **TRU** (trust-region) and **ARC** (cubic regularization)
- quadratic programming
 - **QPA** (nonconvex active set) and **QPB** (nonconvex interior point)
 - **CQP** (convex path-following) and **DQP** (convex gradient projection)
- regularization subproblems
 - **GLTR** (trust-region) and **GLRT** (polynomial regularization)
- generic linear system interfaces (via HSL and others)
 - **SLS** (symmetric), **ULS** (unsymmetric) and **SBLS**(saddle-point)

- general nonlinear optimization
 - LANCELOT B (augmented Lagrangian)
 - **FASTR** (SQP filter) and **FUNNEL** (SQP funnel), both forthcoming
- unconstrained optimization
 - **TRU** (trust-region) and **ARC** (cubic regularization)
- quadratic programming
 - **QPA** (nonconvex active set) and **QPB** (nonconvex interior point)
 - **CQP** (convex path-following) and **DQP** (convex gradient projection)
- regularization subproblems
 - **GLTR** (trust-region) and **GLRT** (polynomial regularization)
- generic linear system interfaces (via HSL and others)
 - **SLS** (symmetric), **ULS** (unsymmetric) and **SBLS**(saddle-point)
- various support (root finding, scaling, presolving, preconditioning ...)

Sparse linear equations Ax = b

- usually symmetric, often indefinite, sometimes block structured
- good preconditioners for generic and PDE-constrained problems
- singular systems and Fredholm alternatives
- sparse right-hand sides
- bandwidth reduction

Sparse linear equations Ax = b

- usually symmetric, often indefinite, sometimes block structured
- good preconditioners for generic and PDE-constrained problems
- singular systems and Fredholm alternatives
- sparse right-hand sides
- bandwidth reduction

Factorization updates rows and columns of A changed/appended

- explicit
- implicit (via Schur complement)

Sparse linear equations Ax = b

- usually symmetric, often indefinite, sometimes block structured
- good preconditioners for generic and PDE-constrained problems
- singular systems and Fredholm alternatives
- sparse right-hand sides
- bandwidth reduction

Factorization updates rows and columns of A changed/appended

explicit

implicit (via Schur complement)

Minimum-norm solution of over/under determined linear systems

 $\min ||Ax - b|| \text{ in } \ell_1, \ell_2 \text{ and } \ell_{\infty} \text{-norms}$

Sparse linear equations Ax = b

- usually symmetric, often indefinite, sometimes block structured
- good preconditioners for generic and PDE-constrained problems
- singular systems and Fredholm alternatives
- sparse right-hand sides
- bandwidth reduction

Factorization updates rows and columns of A changed/appended

- explicit
- implicit (via Schur complement)

Minimum-norm solution of over/under determined linear systems

 $\min ||Ax - b|| \text{ in } \ell_1, \ell_2 \text{ and } \ell_{\infty} \text{-norms}$

Regularization $(A + \lambda B)x(\lambda) = b$, with scalar "secular" equation $p(\lambda) = 0$ and definite B

Sparse linear equations Ax = b

- usually symmetric, often indefinite, sometimes block structured
- good preconditioners for generic and PDE-constrained problems
- singular systems and Fredholm alternatives
- sparse right-hand sides
- bandwidth reduction

Factorization updates rows and columns of A changed/appended

- explicit
- implicit (via Schur complement)

Minimum-norm solution of over/under determined linear systems

 $\| \min \| Ax - b \|$ in ℓ_1, ℓ_2 and ℓ_∞ -norms

Regularization $(A + \lambda B)x(\lambda) = b$, with scalar "secular" equation $p(\lambda) = 0$ and definite B

Traditionally strong RAL group interactions on subjects such as these

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

assume that H positive definite \implies QP strictly convex

MNR13, U. Manchester, 23rd October 2013 - p. 6/21

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

assume that *H* positive definite => QP strictly convex
 aim to satisfy (KKT) criticality conditions

$$Ax_* \ge b$$
 (primal feasibility)
 $g + Hx_* - A^Ty_* = 0 \& y_* \ge 0$ (dual feasibility)
 $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

assume that *H* positive definite => QP strictly convex
 aim to satisfy (KKT) criticality conditions

 $Ax_* \ge b$ (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \ge 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

assume that *H* positive definite => QP strictly convex
 aim to satisfy (KKT) criticality conditions

 $Ax_* \ge b$ (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \ge 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

- interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse
- easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

assume that *H* positive definite => QP strictly convex
 aim to satisfy (KKT) criticality conditions

 $Ax_* \ge b$ (primal feasibility) $g + Hx_* - A^Ty_* = 0 \& y_* \ge 0$ (dual feasibility) $(Ax_* - b) \cdot y_* = 0$ (complementary slackness)

or to deduce that the problem is infeasible

- interested in case where n is large and H and $A \in \Re^{m \times n}$ are sparse
- easy extension to more general constraint structures (equations, upper and both-sided bounds, simple bounds, ...)
- many real-world applications as well as SQP

Competing methods

interior-point methods

- usually very efficient
- relatively poor at warm starting
- active-set methods
 - worst-case combinatorics due to pedestrian active-set changes
 - good at warm starting
- gradient projection methods
 - more rapid active-set changes
 - restricted to constraint sets for which projection is "easy"

Digression I: gradient projection

convergence and active-set determination driven by projection

- current iterate $x_k \in \mathcal{F} = \{x : Ax \ge b\}$
- current gradient $g_k = Hx_k + g$
- improved Cauchy point $x_k^c = P[x_k \alpha_k g_k]$
- Projection $P[y] = \arg\min_{x \in \mathcal{F}} \|y x\|$
- step length $\alpha_k \approx \arg \min q(P[x_k \alpha g_k])$

Accelerated gradient projection

acceleration by subspace minimization

- \blacksquare pick active set as subset of constraints \mathcal{A}_k active at x_k^c
- In find (approximate) solution s_k to equality constrained QP

EQP: minimize
$$q(x_k^c + s)$$
 subject to $A_{\mathcal{A}_k}s = 0$

set $x_{k+1} \approx \arg\min q(P[x_k^c + \alpha s_k])$

Accelerated gradient projection

acceleration by subspace minimization

- \blacksquare pick active set as subset of constraints \mathcal{A}_k active at x_k^c
- In find (approximate) solution s_k to equality constrained QP

EQP: minimize
$$q(x_k^c + s)$$
 subject to $A_{\mathcal{A}_k}s = 0$

set $x_{k+1} \approx \arg\min q(P[x_k^c + \alpha s_k])$

solve EQP by

direct factorization

(HSL, PARDISO, WSMP,...)

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{cc} s_k \ w_k \end{array}
ight) = - \left(egin{array}{cc} Hx_k^c + g \ 0 \end{array}
ight)$$

Accelerated gradient projection

acceleration by subspace minimization

- **u** pick active set as subset of constraints \mathcal{A}_k active at x_k^c
- If ind (approximate) solution s_k to equality constrained QP

EQP: minimize
$$q(x_k^c + s)$$
 subject to $A_{\mathcal{A}_k}s = 0$

set $x_{k+1} \approx \arg \min q(P[x_k^c + \alpha s_k])$

solve EQP by

direct factorization

(HSL, PARDISO, WSMP,...)

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight) \left(egin{array}{cc} s_k \ w_k \end{array}
ight) = - \left(egin{array}{cc} Hx_k^c + g \ 0 \end{array}
ight)$$

■ factorization-free projected CG (G., Hribar & Nocedal, Luksan & Vlcek,90s...)

Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$

(Conn, G. & Toint, 1988)

- Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988)
 - $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \dots, \alpha_m\}$
 - $\blacksquare q(P[x + \alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$
 - consider each $q_i(\alpha)$ in turn until first local minimizer found

Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988) **a** $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \dots, \alpha_m\}$ **b** $q(P[x + \alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$ **c** consider each $q_i(\alpha)$ in turn until first local minimizer found **b** for $\alpha = \alpha_i + \Delta \alpha \le \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$: **c** $q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i

Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988) $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$ $[q(P[x + \alpha s])]$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$ consider each $q_i(\alpha)$ in turn until first local minimizer found • for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$: $= q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i $s_i = s_{i-1} - \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at x_i

Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988) $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$ $[q(P[x + \alpha s])]$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$ consider each $q_i(\alpha)$ in turn until first local minimizer found for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$: $= q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i $s_i = s_{i-1} - \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \implies$ $\blacksquare Hs_i = Hs_{i-1} - H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if H is sparse

- Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988) $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$ $[q(P[x + \alpha s])]$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$ consider each $q_i(\alpha)$ in turn until first local minimizer found • for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$: $= q_i(\alpha) = q(x_i) + \Delta \alpha (g^T s_i + x_i^T H s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H s_i,$ where nonzero components of s_i are those of s "not fixed" at x_i $s_i = s_{i-1} - \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \implies$ $\blacksquare Hs_i = Hs_{i-1} - H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if His sparse \implies
 - possible to recur required coefficients $g^T s_i$, $x_i^T H s_i$ and $s_i^T H s_i$ of $q_i(\alpha)$ very efficiently

- Find $\alpha^+ \approx \arg \min q(P[x + \alpha s])$ for $\alpha \ge 0$ (Conn, G. & Toint, 1988) $P[x + \alpha s]$ piecewise linear, ordered breakpoints $\{0, \alpha_1, \ldots, \alpha_m\}$ $q(P[x + \alpha s])$ piecewise quadratic $q_i(\alpha)$ for $\alpha \in [\alpha_i, \alpha_{i+1}]$ consider each $q_i(\alpha)$ in turn until first local minimizer found • for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $x_i = P[x_i + \alpha_i s]$: where nonzero components of s_i are those of s "not fixed" at x_i $s_i = s_{i-1} - \Delta s_i$, where nonzero components of very sparse Δs_i are those of s_i "just fixed" at $x_i \implies$ $\blacksquare Hs_i = Hs_{i-1} - H\Delta s_i$ involves likely very sparse $H\Delta s_i$ if His sparse \implies
 - possible to recur required coefficients $g^T s_i$, $x_i^T H s_i$ and $s_i^T H s_i$ of $q_i(\alpha)$ very efficiently
 - approximate "Armijo" projected search also possible (Moré & Toraldo, Toint, 90s)

Anecdotal and empirical evidence

- large change possible in the active set per iteration
- often very effective in practice for convex bound-constrained QP
 - few overall iterations compared to active-set methods (Moré & Toraldo)
 competitive with interior-point methods for such problems
- basis of LANCELOT

(Conn, G. & Toint)

- generally impractical for general convex feasible regions as projection is too expensive
 - projection effectively requires the solution of a QP!

Anecdotal and empirical evidence

- large change possible in the active set per iteration
- often very effective in practice for convex bound-constrained QP
 - few overall iterations compared to active-set methods (Moré & Toraldo)
 competitive with interior-point methods for such problems
- basis of LANCELOT

(Conn, G. & Toint)

- generally impractical for general convex feasible regions as projection is too expensive
 - projection effectively requires the solution of a QP!

How might we apply such methods for QP over a general polyhedral feasible region?

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\iff \min_{x,s} q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\iff \underset{x,s}{\text{minimize } q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\text{KKT})} \\ \begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \ \& \ s^T z = 0 \end{cases}$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\iff \underset{x,s}{\operatorname{minimize}} q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\mathsf{KKT})$ $\begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \ \& \ s^T z = 0 \Longrightarrow$ $g = A^T y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \text{ and } s^T y = 0$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\Leftrightarrow \underset{x,s}{\operatorname{minimize}} q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\mathsf{KKT})$ $\begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \ \& \ s^T z = 0 \Longrightarrow$ $g = A^T y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \text{ and } s^T y = 0$ Suppose $g = A^T y - Hx, \ Ax = s + b \text{ and } (s, y) \ge 0$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\Leftrightarrow \text{ minimize } q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\mathbf{KKT})$ $\begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \& s^T z = 0 \Longrightarrow$ $g = A^T y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \text{ and } s^T y = 0$ Suppose $g = A^T y - Hx, \ Ax = s + b \text{ and } (s, y) \ge 0 \Longrightarrow$ $g^T x = y^T Ax - x^T Hx = y^T (s + b) - x^T Hx \ge y^T b - x^T Hx$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\Leftrightarrow \underset{x,s}{\operatorname{minimize}} q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\mathsf{KKT})$ $\begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \ \& \ s^T z = 0 \Longrightarrow$ $g = A^T y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \text{ and } s^T y = 0$ Suppose $g = A^T y - Hx, \ Ax = s + b \text{ and } (s, y) \ge 0 \Longrightarrow$ $g^T x = y^T Ax - x^T Hx = y^T (s + b) - x^T Hx \ge y^T b - x^T Hx$ $\Longrightarrow q(x) \ge -\frac{1}{2}x^T Hx + b^T y$

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$

 $\Leftrightarrow \text{ minimize } q(x) \text{ subject to } Ax - s = b \text{ and } s \ge 0 \Longrightarrow (\text{KKT})$ $\begin{pmatrix} Hx + g \\ 0 \end{pmatrix} - \begin{pmatrix} A^T \\ -I \end{pmatrix} y - \begin{pmatrix} 0 \\ I \end{pmatrix} z = 0, \ z \ge 0 \ \& \ s^T z = 0 \Longrightarrow$ $g = A^T y - Hx, \ Ax = s + b, \ (s, y) \ge 0 \text{ and } s^T y = 0$ Suppose $g = A^T y - Hx, \ Ax = s + b \text{ and } (s, y) \ge 0 \Longrightarrow$ $g^T x = y^T Ax - x^T Hx = y^T (s + b) - x^T Hx \ge y^T b - x^T Hx$ $\Rightarrow q(x) \ge -\frac{1}{2}x^T Hx + b^T y \implies \text{equivalent dual problem}$

DQP: maximize
$$-\frac{1}{2}x^THx + b^Ty$$
 s.t. $Hx - A^Ty = -g \& y \ge 0$

Duality II

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$
 \iff
DQP: maximize $-\frac{1}{2}x^T H x + b^T y$ s.t. $Hx - A^T y = -g \& y \ge 0$

Duality II

$$\begin{array}{l} \mathbf{QP:} \quad \underset{x}{\operatorname{minimize}} \quad q(x) = \frac{1}{2}x^{T}Hx + g^{T}x \text{ subject to } Ax \geq b \\ \\ \Leftrightarrow \\ \mathbf{DQP:} \quad \underset{x,y}{\operatorname{maximize}} - \frac{1}{2}x^{T}Hx + b^{T}y \text{ s.t. } Hx - A^{T}y = -g \And y \geq 0 \\ \\ \\ & \longleftrightarrow \\ \\ \mathbf{DQP:} \quad \underset{x,y}{\operatorname{minimize}} \quad \frac{1}{2}x^{T}Hx - b^{T}y \text{ s.t. } Hx - A^{T}y = -g \And y \geq 0 \end{array}$$

Duality II

QP: minimize
$$q(x) = \frac{1}{2}x^T H x + g^T x$$
 subject to $Ax \ge b$
 \iff
DQP: maximize $-\frac{1}{2}x^T H x + b^T y$ s.t. $Hx - A^T y = -g \& y \ge 0$
 \iff
DQP: minimize $\frac{1}{2}x^T H x - b^T y$ s.t. $Hx - A^T y = -g \& y \ge 0$
 \iff (nonsingular H)
DQP: minimize $\frac{1}{2}(y^T A - g^T)H^{-1}(A^T y - g) - b^T y$ s.t. $y \ge 0$

Dual gradient projection methods

DQP: minimize
$$\frac{1}{2}(y^T A - g^T)H^{-1}(A^T y - g) - b^T y$$
 s.t. $y \ge 0$

■ for strictly-convex QP (i.e., *H* positive definite)

dual objective
$$q_{\rm D}(y) = \frac{1}{2}y^T H_{\rm D} y + g_{\rm D}^T y$$

 $\blacksquare H_{\rm D} = AH^{-1}A^T \text{ and } g_{\rm D} = -AH^{-1}g - b$

 \blacksquare $H_{\rm D}$ may only be positive semi-definite

- since feasible region is simple, can use gradient projection to allow rapid changes in active set
- require sparse factorization $H = LL^T$ but everything else "matrix-free"

Dual gradient projection methods

DQP: minimize
$$\frac{1}{2}(y^T A - g^T)H^{-1}(A^T y - g) - b^T y$$
 s.t. $y \ge 0$

■ for strictly-convex QP (i.e., *H* positive definite)

dual objective
$$q_{\rm D}(y) = \frac{1}{2}y^T H_{\rm D} y + g_{\rm D}^T y$$

 $\blacksquare H_{\rm D} = AH^{-1}A^T \text{ and } g_{\rm D} = -AH^{-1}g - b$

 \blacksquare $H_{\rm D}$ may only be positive semi-definite

- since feasible region is simple, can use gradient projection to allow rapid changes in active set
- require sparse factorization $H = LL^T$ but everything else "matrix-free"

Questions:

- can we perform projected search efficiently?
- can we perform subspace minimization efficiently?

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg \min q_{\mathrm{D}}(P[y + \alpha s])$ for $\alpha \ge 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigcirc

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg \min q_{\mathrm{D}}(P[y + \alpha s])$ for $\alpha \ge 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigotimes
- instead maintain $u_i = L^{-1}A^T s_i$ and $v_i = L^{-1}A^T y_i$

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg \min q_{\mathrm{D}}(P[y + \alpha s])$ for $\alpha \ge 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigcirc
- instead maintain $u_i = L^{-1}A^T s_i$ and $v_i = L^{-1}A^T y_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg \min q_{\mathrm{D}}(P[y + \alpha s])$ for $\alpha \ge 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigcirc
- instead maintain $u_i = L^{-1}A^T s_i$ and $v_i = L^{-1}A^T y_i \implies$
- possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L \Delta u_i = A^T \Delta s_i$
- as Δs_i , A and H are sparse, result of forward solve Δu_i is often very sparse

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg \min q_{\mathrm{D}}(P[y + \alpha s])$ for $\alpha \ge 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigcirc
- instead maintain $u_i = L^{-1}A^T s_i$ and $v_i = L^{-1}A^T y_i \implies$
- Possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$
- as Δs_i , A and H are sparse, result of forward solve Δu_i is often very sparse
- required $y_i^T H_D s_i \equiv u_i^T v_i$ looks harder as update to v_i is dense ... but can also be performed using inner-products involving Δu_i

- have $H_{\rm D} = AH^{-1}A^T$ and $g_{\rm D} = -AH^{-1}g b$
- recall require $\alpha^+ \approx \arg\min q_{\mathrm{D}}(P[y+\alpha s])$ for $\alpha \geq 0$
- investigate for $\alpha = \alpha_i + \Delta \alpha \leq \alpha_{i+1}$ and $y_i = P[y_i + \alpha_i s]$: $q_i(\alpha) = q_D(y_i) + \Delta \alpha (g_D^T s_i + y_i^T H_D s_i) + \frac{1}{2} \Delta \alpha^2 s_i^T H_D s_i$
- recur via $H_D s_i = H_D s_{i-1} H_D \Delta s_i$ with very sparse Δs_i but likely dense H_D ... looks expensive \bigcirc
- instead maintain $u_i = L^{-1}A^T s_i$ and $v_i = L^{-1}A^T y_i \implies$
- Possible to recur required coefficients $g_D^T s_i$ and $s_i^T H_D s_i \equiv u_i^T u_i$ very efficiently via $u_i = u_{i-1} \Delta u_i$, where $L\Delta u_i = A^T \Delta s_i$
- as Δs_i , A and H are sparse, result of forward solve Δu_i is often very sparse
- required $y_i^T H_D s_i \equiv u_i^T v_i$ looks harder as update to v_i is dense ... but can also be performed using inner-products involving Δu_i

sparse forward solves now available for HSL solvers HSL_MA57/87/97

Dual subspace minimization

acceleration by subspace minimization along $y_k^c + s$

Partition variables s into active s_{A_k} and free s_{F_k} components according to status of y_k^c

find (approximate) solution s_k to

EQP: minimize $q_{\mathrm{D}}(y_k^c+s)$ subject to $s_{\mathrm{A}_k}=0$

set $y_{k+1} \approx \arg \min q_{\mathrm{D}}(P[y_k^c + \alpha s_k])$

Dual subspace minimization

• acceleration by subspace minimization along $y_k^c + s$

- Partition variables s into active s_{A_k} and free s_{F_k} components according to status of y_k^c
- find (approximate) solution s_k to

EQP: minimize $q_{\mathrm{D}}(y_k^c+s)$ subject to $s_{\mathrm{A}_k}=0$

set $y_{k+1} \approx \arg \min q_{\mathrm{D}}(P[y_k^c + \alpha s_k])$

EQP equivalent to minimize $\frac{1}{2}s^T H_k s + g_k^T s$

- $\blacksquare H_k = A_k H^{-1} A_k^T \text{ and } g_k = -A_k H^{-1} (g A_k^T y_k^c) b_k$
- A_k and b_k are respectively the rows of A and components of b corresponding to the m_k free components s_{F_k}
- \blacksquare H_k is positive semi-definite but may be singular

Digression III: the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + g_k^T s$$

Two possibilities:

1. q_k has a finite critical point s_k for which

$$H_k s_k = -g_k$$

always if H_k is positive definite
true if $g_k \in \text{Range}(H_k)$

Digression III: the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + g_k^T s$$

Two possibilities:

1. q_k has a finite critical point s_k for which

$$H_k s_k = -g_k$$

always if H_k is positive definite

• true if $g_k \in \text{Range}(H_k)$

2. q_k decreases linearly without bound along a direction s_k for which

$$H_k s_k = 0$$
 and $g_k^T s_k < 0$

u true if $g_k \notin \operatorname{Range}(H_k)$

Digression III: the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + g_k^T s$$

Two possibilities:

1. q_k has a finite critical point s_k for which

$$H_k s_k = -g_k$$

always if H_k is positive definite

• true if $g_k \in \text{Range}(H_k)$

2. q_k decreases linearly without bound along a direction s_k for which

$$H_k s_k = 0$$
 and $g_k^T s_k < 0$

• true if $g_k \notin \operatorname{Range}(H_k)$

This is the **Fredholm Alternative** for the data $[H_k, g_k]$

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where $H_k = A_k H^{-1} A_k^T$ and $g_k = A_k H^{-1} (A_k^T y_k^c - g) - b_k$ $H_k s_k = -g_k$ equivalent to $\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \begin{pmatrix} t_k \\ -s_k \end{pmatrix} = \begin{pmatrix} A_k^T y_k^c - g \\ b_k \end{pmatrix}$

for auxiliary unknowns t_k

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where $H_k = A_k H^{-1} A_k^T$ and $g_k = A_k H^{-1} (A_k^T y_k^c - g) - b_k$ $H_k s_k = -g_k$ equivalent to $\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \begin{pmatrix} t_k \\ -s_k \end{pmatrix} = \begin{pmatrix} A_k^T y_k^c - g \\ b_k \end{pmatrix}$

for auxiliary unknowns t_k

Fredholm Alternative for data

$$egin{pmatrix} H & A_k^T \ A_k & 0 \ \end{pmatrix}, egin{pmatrix} A_k^T y_k^c - g \ b_k \ \end{pmatrix} \end{bmatrix}$$

gives required alternative $H_k s_k = 0$ and $g_k^T s_k < 0$ $\iff [H_k, g_k]$ is inconsistent

The structured Fredholm Alternative

Seek Fredholm Alternative for data $[H_k, g_k]$ where $H_k = A_k H^{-1} A_k^T$ and $g_k = A_k H^{-1} (A_k^T y_k^c - g) - b_k$ $H_k s_k = -g_k$ equivalent to $\begin{pmatrix} H & A_k^T \\ A_k & 0 \end{pmatrix} \begin{pmatrix} t_k \\ -s_k \end{pmatrix} = \begin{pmatrix} A_k^T y_k^c - g \\ b_k \end{pmatrix}$

for auxiliary unknowns t_k

Fredholm Alternative for data

$$\left(egin{array}{cc} H & A_k^T \ A_k & 0 \end{array}
ight), \left(egin{array}{cc} A_k^T y_k^c - g \ b_k \end{array}
ight)
ight]$$

gives required alternative $H_k s_k = 0$ and $g_k^T s_k < 0$ $\iff [H_k, g_k]$ is inconsistent

HSL sparse solvers HSL_MA57/86/97 now provide Fredholm Alternative

Alternative to the Fredholm Alternative

DEQP: minimize
$$q_k(s) = \frac{1}{2}s^T H_k s + g_k^T s$$

$$\boldsymbol{H}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} \boldsymbol{A}_k^T$$
 and $\boldsymbol{g}_k = \boldsymbol{A}_k \boldsymbol{H}^{-1} (\boldsymbol{A}_k^T \boldsymbol{y}_k^c - \boldsymbol{g}) - \boldsymbol{b}_k$

- apply conjugate-gradient method with safeguards to detect steps to infinity
- each matrix-vector product $H_k p$ requires solve with H and sparse matrix-vector products with A_k and A_k^T
- preconditioning possible but no obvious simple preconditioner

An example

POWELL20: n = 10000, m = 10000

solve problem using interior-point package CQP from GALAHAD

perturb constraints and resolve by dual gradient-projection DQP

		size of perturbation before DQP solve					
	CQP	0	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}
time	4.60	0.03	0.13	0.41	1.92	9.21	7.94
its		0	1	1	15	32	35
changes		0	1	8	594	3506	4763

An example

POWELL20: n = 10000, m = 10000

solve problem using interior-point package CQP from GALAHAD

perturb constraints and resolve by dual gradient-projection DQP

		size of perturbation before DQP solve					
	CQP	0	10^{-6}	10^{-5}	10^{-4}	10^{-3}	10^{-2}
time	4.60	0.03	0.13	0.41	1.92	9.21	7.94
its		0	1	1	15	32	35
changes		0	1	8	594	3506	4763

Active-set changes per iteration with perturbation 10^{-2} :

584	285	245	345	331	340	332	297	291	255
249	223	223	213	207	197	205	192	166	146
129	123	133	134	124	115	114	114	107	87
63	44	16	1	0					

Summary

- dual gradient-projection method for large-scale, strictly-convex QP
- requires sparse factorization of Hessian but otherwise can be used "factorization-free"
- allows rapid change to the "active set"
- particularly suited to "warm starting"
- efficient projected search
- extensive use of Fredholm alternative
- many technical details
- easily generalised for regularization problems in ℓ_1 and ℓ_∞ norms using appropriate simple projections onto boxes and simplices
- implemented as a fortran 2003 module DQP in GALAHAD (G., Hogg, Scott)