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Yes.
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A finite dimensional discretization of the following

infinite-dimensional problem: find (u, p) ∈ V ×W such that

a(u, v) + b(v, p) = f(v) ∀v ∈ V,

b(u, q) = g(q) ∀q ∈ W.
(V )

Where, V and W represent Hilbert spaces; a : V × V → R and

b : V ×W → R are bounded bilinear forms and f : V → R and

g : W → R are linear functionals.
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Saddle Point Problems II
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That is, for given approximation spaces Vh ⊂ V and Wh ⊂ W , we

want to compute (uh, ph) ∈ Vh ×Wh such that

a(uh, v) + b(v, ph) = f(v) ∀v ∈ Vh,

b(uh, q) = g(q) ∀q ∈ Wh.
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There is a natural energy norm for measuring the quality of

approximation for functions in the space V ×W ,

‖(u, p)‖V×W = ‖u‖V + ‖p‖W .

Our goal is to construct an optimal iterative solver for (S)...
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There is a natural energy norm for measuring the quality of

approximation for functions in the space V ×W ,

‖(u, p)‖V×W = ‖u‖V + ‖p‖W .

Our goal is to construct an optimal iterative solver for (S)...

that is, we would like to construct a sequence of rapidly converging

iterates (u
(1)
h , p

(1)
h ), (u

(2)
h , p

(2)
h ), (u

(3)
h , p

(3)
h ), . . . with the property that

the iteration is terminated once the energy norm of the algebraic

error (uh − u
(m)
h , ph − p

(m)
h ) is commensurate with the discretization

error:

‖uh − u
(m)
h ‖V + ‖ph − p

(m)
h ‖W ∼ ‖u− u

(m)
h ‖V + ‖p− p

(m)
h ‖W .
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The deterministic case is sorted in case where the bilinear
form is symmetric:

David Silvester & Valeria Simoncini.
EST_MINRES: An optimal iterative solver for symmetric
indefinite systems stemming from mixed approximation
ACM Trans. Math. Softw., vol. 37 no. 4, 2010.

Working title ....
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Does the optimal solver concept extend to stochastic
(possibly non-symmetric) saddle point problems?
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Fluid flow with random data

Deterministic incompressible flow models:

Potential flow

Stokes flow

Navier–Stokes flow

Solution schemes require the following data:

• the spatial domain (geometry)

• boundary conditions

• source terms

• coefficients (e.g. permeability, viscosity, ...)

any, or all of which, may be uncertain.
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Navier–Stokes problem

Find u(x, ω) and p(x, ω) such that P-a.s.,

−ν(ω)∇2u+ u · ∇u+∇p = f in D ⊂ R
d (d = 2, 3)

∇ · u = 0 in D,

u = g on ∂DD,

ν(ω)
∂u

∂n
− np = 0 on ∂DN .

If the viscosity is uncertain, we might model it via

ν(ω) = µ+ σξ(ω).

If ξ ∼ U(−
√
3,
√
3), then ν is a uniform random variable with

E[ν] = µ, Var[ν] = σ2.
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N–S example I: flow over a step

Streamlines of the mean flow field (top) and plot of the mean pressure field (bottom):

µ = 1/50, σ = µ/10
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Variance of the magnitude of flow field (top) and variance of the pressure (bottom)
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N–S example II: flow around an obstacle

Streamlines of the mean flow field (top) and plot of the mean pressure field (bottom):

µ = 1/100, σ = 3µ/10
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Variance of the magnitude of flow field (top) and variance of the pressure (bottom)
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Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...
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Stochastic discretisation methods

• Monte Carlo Methods

• Perturbation Methods

• Stochastic Galerkin Methods

• Stochastic Collocation Methods

• Stochastic Reduced Basis Methods

• ...

Key points

If the number of random variables describing the input
data is small then Stochastic Galerkin and Stochastic
Collocation methods can outperform Monte Carlo.

If software for the deterministic problem is to be useful
for Stochastic Galerkin approximation then specialised
solvers need to be developed.

Manchester–NAG–RAL Workshop 2013 – p. 14/41



Potential flow problem

−A(·, ω)∇p = u in D,

∇ · u = 0 in D ⊂ R
d (d = 2, 3)

p = g on ∂DD,

u · n = 0 on ∂DN.

Solution variables:
p = p(x, ω) hydraulic head (pressure)

u = u(x, ω) velocity field

Data:

T = A−1(x, ω) inverse permeabiliy

g = g(x) boundary data

D ⊂ R
d spatial domain
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T (x, ω) is a random field with a given mean µ(x) and

covariance function C(x,x)

Individual realisations of particle paths (left), mean velocity field

(right):

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

0.5

1

1.5

2

2.5

3

x 10
4

in mE

in
 m

N

Individial Particle Paths from Unconditioned Simulations

0.5 1 1.5 2

x 10
4

0.5

1

1.5

2

2.5

x 10
4 Streamlines of interpolated Mean RT0 flux solution

H1H2
H3

H4

H5H6

H7

H9

H10

H11

H12

H14

H15H16

H17

H18

DOE1

DOE2

P14

P15

P17

P18

WIPP12
WIPP13

WIPP18
WIPP19
WIPP21WIPP22

WIPP25

WIPP26

WIPP27

WIPP28

WIPP30

ERDA9

CB1

ENGLE

USGS1

D268

AEC7

Manchester–NAG–RAL Workshop 2013 – p. 16/41



Rest of the talk ...

Linear algebra/solver issues

• Navier–Stokes equations

• potential flow (linear in stochastic parameters)

Open questions

• potential flow (nonlinear in stochastic parameters)

• ...
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Steady-state flow with random data

Problem statement

~u · ∇~u− ν∇2~u+∇p = 0 in Ω

∇ · ~u = 0 in Ω

~u = ~g on ΓD

ν∇~u · ~n− p~n = ~0 on ΓN .

We model uncertainty in the viscosity as

ν(ω) = µ+ σξ(ω).

If ξ ∼ U(−
√
3,
√
3), then ν is a uniform random variable with

E[ν(ω)] = µ, Var[ν(ω)] = σ2.
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Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
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Stochastic Galerkin discretisation I

Ingredients

• Picard iteration;

• standard finite element spaces Xh
E and Mh;

• a suitable finite-dimensional subspace Sk ⊂L2
ρ(Λ),

where Λ := ξ(Ξ), Λ∋ y.
Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.
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Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.
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Stochastic Galerkin discretisation II

Discrete formulation

Find ~un+1
hk ∈ Xh

E ⊗ Sk and pn+1
hk ∈Mh ⊗ Sk satisfying:

E

[

ν(y)
(
∇~un+1

hk ,∇~v
)]

+E

[(
~unhk · ∇~un+1

hk , ~v
)]

−E

[(
pn+1
hk ,∇ · ~v

)]

= 0

E

[(
∇ · ~un+1

hk , q
)]

= 0

for all ~v ∈ Xh
0 ⊗ Sk and q ∈Mh ⊗ Sk.

Sets of basis functions

Xh
0 = span

{
(φi(~x), 0), (0, φi(~x))

}nu

i=1
;Mh = span {ψj(~x)}np

j=1;

Sk = span {ϕℓ(y)}kℓ=0.

Manchester–NAG–RAL Workshop 2013 – p. 20/41



Stochastic Galerkin discretisation III

The linear system at the (n+ 1)st Picard iteration is

(

Fn
ν BT

B 0

)(

αn

βn

)

=

(

fn

gn

)

with

F
n
ν =

(

Fn
ν 0

0 Fn
ν

)

, B =
(

G0 ⊗ Bx1
G0 ⊗ Bx2

)

and

Fn
ν := (µG0 + σG1)⊗A+

k∑

ℓ=0

Hℓ ⊗Nℓ,

Bx1
, Bx2

are discrete representations of the first derivatives.

The system dimension is: (nu + np)(k+ 1)× (nu + np)(k+ 1).
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

where ~unhℓ are the ‘spatial coefficients’ in the expansion
of the lagged velocity field,

~unhk(~x, y) =
k∑

ℓ=0






∑nu

i=1 ~u
n
iℓ φi(~x)

︸ ︷︷ ︸

~un
hℓ(~x)




ϕℓ(y).
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .
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(1-1) block: Fn
ν := (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ.

• Fn
ν is a non-symmetric matrix.

• convection matrices Nℓ (ℓ = 0, . . . , k) are given by

[Nℓ]ij = (~unhℓ(~x) · ∇φi, φj) i, j = 0, . . . , nu.

• G0, G1 and Hℓ are all (k + 1)× (k + 1) matrices:

G0 := [G0]ℓs = E [ϕs(y)ϕℓ(y)] ,

G1 := [G1]ℓs = E [y ϕs(y)ϕℓ(y)] ,

Hℓ := [Hℓ]ms = E [ϕℓ(y)ϕs(y)ϕm(y)] .

If {ϕℓ(y)}kℓ=0 are scaled Legendre polynomials on Λ, then

• G0 = H0 = I, G1 = H1 is sparse (2 non-zeros per row);

• Hℓ is dense for ℓ ≥ 2.
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Ideal preconditioning

(

F BT

B 0

)

P−1 P
(

αu

αp

)

=

(

fu

fp

)

An ideal preconditioner is given by

(

F BT

B 0

)(

F−1 F−1BTS−1

0 −S−1

)

︸ ︷︷ ︸

P−1

=

(

I 0

BF−1 I

)

.

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

S−1 = (BF−1BT )−1
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Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).
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Preconditioning I

Rearrange the (1-1) block:

Fn
ν = (µG0 + σG1)⊗ A+

∑k
ℓ=0Hℓ ⊗Nℓ

= I ⊗ (µA0 +N0) + σG1 ⊗A+
∑k

ℓ=1Hℓ ⊗Nℓ

and define

F0 := (µA0 +N0).

A natural candidate for PF is the block-diagonal
mean-based approximation:

PF = F0 :=

(

I ⊗ F0 0

0 I ⊗ F0

)

.

This is a good approximation when σ
µ is not too large.
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Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .
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Preconditioning II

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗ Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

S0 is the Schur-complement corresponding to the
deterministic problem with

• viscosity µ

• convection coefficient ~u0hk (the mean component of
velocity at the previous Picard step)
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Preconditioning III

Replacing Fn
ν by F0 in the Schur-complement gives

S ≈ BF
−1
0 B

T

= (I ⊗Bx1
)(I ⊗ F−1

0 )(I ⊗ BT
x1
) + (I ⊗ Bx2

)(I ⊗ F−1
0 )(I ⊗ BT

x2
)

= I ⊗ (Bx1
, Bx2

)F−1
0 (Bx1

, Bx2
)T =: I ⊗ S0 =: S0 = PS .

To apply P
−1
S in each GMRES iteration requires (k + 1)

solves with S0. This can be done

• exactly (ideal preconditioner); or

• inexactly with the deterministic approaches:
– pressure convection–diffusion approximation (PCD)
– least–squares commutator approximation (LSC).
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Flow over a step
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GMRES convergence for a coarsened grid (left) and for a
reference grid (right) (µ = 1/50; σ = 2µ/10).
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Typical GMRES iteration counts

Coarse grid Fine grid

E[Re] k = 2 4 6 k = 2 4 6

σ = µ/10 67 14 14 14 14 14 15

Ideal σ = 2µ/10 70 18 20 21 14 20 21

σ = 3µ/10 74 25 28 29 25 28 29

σ = µ/10 67 37 38 39 37 39 39

PCD σ = 2µ/10 70 43 44 50 44 48 50

σ = 3µ/10 74 53 56 61 54 58 62

σ = µ/10 67 25 26 27 43 49 52

LSC σ = 2µ/10 70 31 34 36 48 58 63

σ = 3µ/10 74 35 45 48 51 68 77
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For further details, see

David Silvester & Alex Bespalov & Catherine Powell
A framework for the development of implicit solvers for
incompressible flow problems. Discrete and Continuous
Dynamical Systems — Series S, vol. 5, 1195–1221,
2012.

Catherine Powell & David Silvester
Preconditioning steady-state Navier–Stokes equations
with random data. SIAM J. Scientific Computing, vol.
34, A2482–A2506, 2012.
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Potential flow | linear stochastic formulation

Let D ⊂ R
d (d = 2, 3), and let (Ω,F ,P) be a complete probability

space.

Suppose that the input A−1(x, ω) : D × Ω → R is a second-order

correlated random field.

We seek random fields p(x, ω), u(x, ω) such that P-almost

everywhere in Ω:

A−1 (x, ω)u (x, ω)−∇p (x, ω) = 0,

∇ · u (x, ω) = 0 x in D,

p (x, ω) = g(x) x on ∂DD,

u (x, ω) · n = 0 x on ∂DN.
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A−1 (x, ω)u (x, ω)−∇p (x, ω) = 0,

∇ · u (x, ω) = 0 x in D,

p (x, ω) = g(x) x on ∂DD,

u (x, ω) · n = 0 x on ∂DN.

Weak formulation

Find u(x, ω) ∈ V := L2
P
(Ω,H0(div,D)) and

p(x, ω) ∈ W := L2
P
(Ω, L2(D)) such that for all v(x, ω) ∈ V and

w(x, ω) ∈ W :

〈(
A−1u,v

)〉
+ 〈(p,∇ · v)〉 =

〈

(g,v · n)∂DD

〉

,

〈(w,∇ · u)〉 = 0.
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Discretisation strategy
Three levels of approximation

• Approximation of random data: the permeability

A−1 (x, ω) is approximated by a function A−1
M (x, ξ(ω)) of

M random variables ξ = (ξ1, . . . , ξM ) taking values in

Γ ⊂ RM . Note that AM (x, ξ) could be a linear or a
nonlinear function in ξ.

• Spatial discretisation on D: e.g., lowest-order mixed
FEM with mesh-size h;

• Approximation on Γ: e.g., orthogonal polynomials of
total degree ≤ k.
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Discretisation strategy
Three levels of approximation

• Approximation of random data: the permeability

A−1 (x, ω) is approximated by a function A−1
M (x, ξ(ω)) of

M random variables ξ = (ξ1, . . . , ξM ) taking values in

Γ ⊂ RM . Note that AM (x, ξ) could be a linear or a
nonlinear function in ξ.

• Spatial discretisation on D: e.g., lowest-order mixed
FEM with mesh-size h;

• Approximation on Γ: e.g., orthogonal polynomials of
total degree ≤ k.

(M + d)–dimensional deterministic PDE to solve;

Three discretisation parameters (M,h, k), hence, three
separate sources of error ...
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.... see the definitive reference:

Alex Bespalov & Catherine Powell & David Silvester.
A priori error analysis of stochastic Galerkin mixed
approximations of elliptic PDEs with random data,
SIAM J. Numerical Analysis, vol. 50, 2039–2063, 2012.
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Linearity assumption

A−1(x, ω) ≈ A−1
M (x, ω) = E[A−1](x) +

M∑

n=1

√

λnϕn(x) ξn(ω),

where

• {λn, ϕn}, n = 1, 2, . . . are eigenvalues and eigenfunctions of the

operator associated with the covariance C(x,x′) of A−1(x, ω);

for example,

C[a](x,x′) = exp
(
−1

2‖x− x′‖ℓ1
)
, x, x′ ∈ [−1, 1]2.

• ξ1, ξ2, . . . are independent (uniform) random variables with

mean zero and unit variance.
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Linear algebra system

Vh = span {ϕi}nu

i=1 ,Wh = span {φj}np

j=1 , Sp = span {ψk(y)}nξ

k=1

(

A BT

B 0

)(

u

p

)

=

(

g

f

)

(S)

Properties

• The system dimension is nxnξ where nx = nu + np.

•
(

A BT

B 0

)

=






I ⊗A0 +
∑M

k=1Gk ⊗ Ak I ⊗ BT

I ⊗ B 0






• [A0]ij =
∫

D µ(x)ϕi ·ϕj dx,

[Ak]ij =
∫

D

√
λkϕk(x)ϕi ·ϕj dx,

[B]is = −
∫

D φs∇ ·ϕi dx, [Gk]rs = 〈 yk ψr(y)ψs(y) 〉 .
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A BT

B 0



 =








I ⊗A0 +
∑M

k=1Gk ⊗Ak I ⊗BT

I ⊗B 0








Sparsity structure: M = 2, k = 2 (left) and M = 4, k = 2 (right)
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Schur complement preconditioner

Approximate A ≈ I ⊗ diag(A0). An efficient preconditioner is

P =




I ⊗ diag(A0) 0

0 B (I ⊗ diag(A0))
−1 BT





=




I ⊗ diag(A0) 0

0 I ⊗
(
B diag(A0)

−1BT
)



 .

Properties

• B diag(A0)
−1BT ≈ ∇ · µ(x)∇ and optimal elliptic PDE solvers

(based on AMG) can be utilised for the Schur complement

solves (exactly as for the deterministic case).

• The cost of computing P−1r is O(nξ × (nu + np)).
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HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n×n sparse matrix A and an n−vector z, HSL MI20 computes the vector x=Mz, whereM is an algebraic

multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section

5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the

off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During

the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation

weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stüben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schüller, eds, ‘Multigrid’,

Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL ZD11, and the

LAPACK routines GETRF and GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.

A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable

components of derived types. Remark: The development of HSL MI20 was funded by EPSRC grants EP/C000528/1

and GR/S42170.
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Sample results ...

Bessel covariance function for random input with µ(x) = 1 and

M = 6 random variables −→ capture 98% of the total variance.

k 2 3 4 5

nξ(nu + np) 344,064 1,032,192 2,580,480 5,677,056

σ
µ
= 0.1 # MINRES itns 45 46 48 48

# V-cycles 1,260 3,864 10,080 22,176

total solve time 14.0s 45.35s 119.01s 262.04s

σ
µ
= 0.2 # MINRES itns 55 59 62 63

# V-cycles 1,540 4,956 13,020 29,106

total solve time 17.18s 58.51s 154.82s 379.01

σ
µ
= 0.3 # MINRES itns 66 74 80 86

# V-cycles 1,848 6,216 16,800 39,732

total solve time 20.66s 72.97s 199.75s 486.74
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Full details are in the references ...

O. Ernst & C. Powell & D. Silvester & E. Ullmann,
Efficient solvers for a linear stochastic Galerkin mixed
formulation of the steady-state diffusion equation
SIAM J. Sci. Comput., 31, 1424–1447, 2009.

H. Elman & D. Furnival & C.Powell,
H(div) preconditioning for a mixed finite element
formulation of the stochastic diffusion equation. Math.
Comput. 79, 733–760, 2010.

C. Powell & E. Ullmann, Preconditioning stochastic
Galerkin saddle point systems. SIAM J. Matrix. Anal.,
31, 2813–2840, 2010.

A. Gordon & C. Powell, On solving stochastic
collocation systems with algebraic multigrid. IMA J.
Numer. Anal., 32, 1051–1070, 2012.
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