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Saddle Point Problems
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B 0
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Saddle Point Problems

A BT u f
= (S)
B 0 p g

A finite dimensional discretization of the following
infinite-dimensional problem: find (u,p) € V' x W such that

a(u,v) + b(v,p) = f(v) Vv eV,
b(u,q) =g(q) VgeW.

(V)

Where, V and W represent Hilbert spaces; a: V x V — R and
b:V x W — R are bounded bilinear forms and f : V — R and
g : W — R are linear functionals.
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Saddle Point Problems 11

A BT
B 0

u

p

(5)

That is, for given approximation spaces V;, C V and W, Cc W, we
want to compute (uy, pr) € Vi x Wy, such that

a(up,v) + b(v,pn) = f(v)
b(un,q) = g(q)

Yv € Vj,
Vq € Wy,
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There is a natural energy norm for measuring the quality of
approximation for functions in the space V" x W,

[(w, )|y o = llully + lIpllw -

Our goal is to construct an optimal iterative solver for (.59)...
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There is a natural energy norm for measuring the quality of
approximation for functions in the space V" x W,

[(w, )|y o = llully + lIpllw -

Our goal is to construct an optimal iterative solver for (.59)...

that is, we would like to construct a sequence of rapidly converging
iterates (ug), pg)), (uf), pf)), (uf’) : pf’)), ... with the property that
the iteration is terminated once the energy norm of the algebraic
error (uy, — ul™, p, — p\"™) is commensurate with the discretization
error:

(m (m)

lun = u$™ v + Ion — 2™ lw ~ lu = ™ v + Ip — 2™ [l
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The deterministic case is sorted in case where the bilinear
form is symmetric:

m David Silvester & Valeria Simoncini.
EST MINRES: An optimal iterative solver for symmetric
indefinite systems stemming from mixed approximation
ACM Trans. Math. Softw., vol. 37 no. 4, 2010.

Working title ....
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Does the optimal solver concept extend to stochastic
(possibly non-symmetric) saddle point problems?
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Fluid flow with random data

Deterministic incompressible flow models:
m Potential flow
m Stokes flow
m Navier—Stokes flow

Solution schemes require the following data:

e the spatial domain (geometry)

e boundary conditions

e source terms

e coefficients (e.g. permeability, viscosity, ...)
any, or all of which, may be uncertain.
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Navier—Stokes problem
Find u(x,w) and p(x,w) such that P-a.s.,

—v(WVu+u-Vu+Vp = f inDCR?(d=2,3)
V-u = 0 inD,

u = g ondDp,
ou

V(w)%—np = 0 ondDy.

If the viscosity Iis uncertain, we might model it via

v(w) = p+ of(w).

If ¢ ~ U(—+/3,v/3), then v is a uniform random variable with

Elv] = u, Var[v] = 0.
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N-S example I: flow over a step

Streamlines of the mean flow field (top) and plot of the mean pressure field (bottom):

pw=1/50, o =p/10
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Variance of the magnitude of flow field (top) and variance of the pressure (bottom)
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N-S example II: flow around an obstacle

Streamlines of the mean flow field (top) and plot of the mean pressure field (bottom):

p=1/100, o =3u/10
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Variance of the magnitude of flow field (top) and variance of the pressure (bottom)
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Stochastic discretisation methods

Monte Carlo Methods

Perturbation Methods

Stochastic Galerkin Methods
Stochastic Collocation Methods
Stochastic Reduced Basis Methods
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Stochastic discretisation methods

e Monte Carlo Methods

e Perturbation Methods

e Stochastic Galerkin Methods

e Stochastic Collocation Methods

e Stochastic Reduced Basis Methods

Key points

m If the number of random variables describing the input
data is small then Stochastic Galerkin and Stochastic
Collocation methods can outperform Monte Carlo.

m If software for the deterministic problem is to be useful
for Stochastic Galerkin approximation then specialised
solvers need to be developed.
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Potential flow problem

—A(,w)Vp = wu in D,
V-u = 0 in D C R? (d =2,3)
p =9 on dDp,
u-n = 0 on 0Dy .

: : — plx,w) hydraulic head (pressure)
Solution variables: (@, )

u = wu(x,w) velocity field
T = A Yx,w) inverse permeabiliy
Data: g = g(x) boundary data
D C R4 spatial domain
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® ['(x,w)Is arandom field with a given mean u(x) and
covariance function C'(x, x

#® Individual realisations of particle paths (left), mean velocity field
(right):

- ) " S , Streamlines of interpolated Mean RTO flux solution
x 10" Individial Particle Paths from Unconditioned Simulations x 10
T T T T T T T T T

25 A

inmN

x 10"
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Rest of the talk ...

m Linear algebra/solver issues
e Navier—Stokes equations
e potential flow (linear in stochastic parameters)

m Open questions
e potential flow (nonlinear in stochastic parameters)
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Steady-state flow with random data

Problem statement

We model uncertainty in the viscosity as
v(w) = p+of(w).
If ¢ ~ U(—+/3,v/3), then v is a uniform random variable with

Elv(w)| = pu, Var[v(w)] = o
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Stochastic Galerkin discretisation I

Ingredients
e Picard iteration;
e standard finite element spaces X" and M";

e a suitable finite-dimensional subspace S* c L3(A),
where A:=¢(2), A>y.
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Stochastic Galerkin discretisation I

Ingredients
e Picard iteration;
e standard finite element spaces X" and M";

e a suitable finite-dimensional subspace S* c L3(A),
where A:=¢(2), A>y.

Discrete formulation
Find u}' € X ® S* and piitt € M @ S* satisfying:

E|v(y) (Vg !, Vo) |+E| (- Vg, 9)|-E| (", v - 7)| =0

E|(V- dptq)| =0
for all ¥ € X! ® S* and ¢ € M" @ S*.
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Stochastic Galerkin discretisation I1

Discrete formulation
Find @} ' € X% @ S* and piitt € M" @ S* satisfying:

E|v(y) (Vg !, Vo) |+E| (- Vi, 9)|-E| (o', v - 7)| =0

E|(V- iy q)| =0
for all ¥ € X! ® S* and ¢ € M" @ S*.
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Stochastic Galerkin discretisation I1

Discrete formulation
Find @} ' € X% @ S* and piitt € M" @ S* satisfying:

E|v(y) (Vg !, Vo) |+E| (- Vi, 9)|-E| (o', v - 7)| =0

E[(V- @ q)| =0
forall ¥ € X} @ S¥ and ¢ € M" ® S*. _ _
Sets of basis functions

X{§ = span{(¢i(7),0),(0,¢;( %))}, ; M" = span {¢;(F)}.2;

S = span {pu(y)}y_o:
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Stochastic Galerkin discretisation 111

The linear system at the (n + 1)st Picard iteration is

(200 ) ()

with
F" 0
= v | IB%:(G B., G Bx>
< 0 F,?) 0 X 1 0 2
and "
Ff::(uGo%—aGl)@A%—ZHg@Ng,
(=0

B.., B,, are discrete representations of the first derivatives.
The system dimension is: (n, +ny)(k+1) X (ny +np)(k+1).
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(1

-1) block: F' .= (uGo 4+ 0G1) ® A + ZIZ:O H; ® Ny.

e F’'Is a non-symmetric matrix.
e convection matrices N, (¢ =0,..., k) are given by

(Nelij = (Upe(Z) - Vi, ¢5) 4,5 =0,...,n4.
where ,, are the ‘spatial coefficients’ in the expansion
of the lagged velocity field,

k
i (Zy) =) Din ?7?5 ¢i(Z) | eely).

=0 -

ﬁZe(x)
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(1-1) block: F} := (uGo + 0G1) @ A + Z’ZZO Hy® Ny.

e F’'Is a non-symmetric matrix.
e convection matrices N, (¢ =0,..., k) are given by

(Nelij = (Upe(Z) - Vi, d5) 4,5 =0,..., 0.
e Gy, Gyand Hyareall (k+1) x (k+ 1) matrices:
Go = [Goles = Elps(y) pe(y)],

G1:=[Gies = Elyos(y)eey)],
Hy = [Hé]ms = K :gpg(y) @s(y) @m(y)] :
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(1-1) block: F} := (uGo + 0G1) @ A + Z’ZZO Hy® Ny.

e F’'Is a non-symmetric matrix.
e convection matrices N, (¢ =0,..., k) are given by

(Nelij = (Upe(Z) - Vi, d5) 4,5 =0,..., 0.
e Gy, Gyand Hyareall (k+1) x (k+ 1) matrices:
Go = [Goles = Elps(y) pe(y)],

G1:=[Gies = Elyos(y)eey)],
Hy = [Hé]ms = K :gpg(y) gps(y) @m(y)] :

If {xe(y)},_, are scaled Legendre polynomials on A, then
o Go=Hy=1, G; = Hp Is sparse (2 non-zeros per row);
e /1, is dense for ¢ > 2.
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Ideal preconditioning

F BT\ a fu
An ideal preconditioner is given by

F B\ (F~Y F'BTS Y\ [ T 0
B 0 0 e - \BF-! 1]

~~

7)—1

For an efficient preconditioner we need to construct a
sparse approximation to the “exact” Schur complement

5=t — (BF—1BT)1
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Preconditioning I

Rearrange the (1-1) block:

F' = (,LLGQ—I—OGl)@A—I—ZIZ:OHg@Ng
= I®(pdo+No)+0G1 @A+ Hy® N,

and define
Fy = (,LLA() -+ N()).
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Preconditioning I
Rearrange the (1-1) block:
F' = (uGo+0G) QA+ S5 H; @ N,
= [®(,LLA0—|—N())—|—OG1®A+Z§:1Hg®]\fg

and define
Fy = (,LLA() + N()).

A natural candidate for Py is the block-diagonal
mean-based approximation:

P I ® Fq 0
B 0 I ® Fp .

This is a good approximation when o IS not too large.
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Preconditioning 11

Replacing F” by [Fy in the Schur-complement gives

S

Y
Y

BF, ' B!
(I® By,)(I @ Fy ) ® By,) + (I® By,) (I ® Fy )1 © By,)
[ ® (Byy, Buy)Fly ' (Byy, Buy)! =: 1 ® Sy =:Sp = Pg.
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Preconditioning 11
Replacing F” by [Fy in the Schur-complement gives

S ~ BF;'B’
= (I®By)I® Fy ' )(I®By,) +(I® Ba,)(I® Fy ') (I ® By,)
= 1 ® (Byg,, By,)Fy (B, Be,)' = T® Sy = Sp = Ps.

Sy is the Schur-complement corresponding to the
deterministic problem with

e ViScCosity u

e convection coefficient @, (the mean component of
velocity at the previous Picard step)
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Preconditioning 111
Replacing F” by F in the Schur-complement gives

S ~ BF;'B’
= (1©B:,)I® Fy )1 ®By,) + (1 ® By,) (I ® Fy ) (I ® By,)
= 1 ® (Bg,, By,)Fy (B, Bey)' = T® Sy =: Sy = Ps.

To apply P¢' in each GMRES iteration requires (k + 1)
solves with Sy. This can be done

e exactly (ideal preconditioner); or

e inexactly with the deterministic approaches:
— pressure convection—diffusion approximation (PCD)
— least—squares commutator approximation (LSC).
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Flow over a step

10° : 10° :
ideal ideal
—x—PCD ——PCD
—o—LSC —©—LSC
107 } 10
c c
2 S
S . . S .
S 10 S 10
o o
© ©
> )
o §=)
8 10° 8 10°
10° 10°
0 20 40 60 0 20 40 60
iteration number iteration number

GMRES convergence for a coarsened grid (left) and for a
reference grid (right) (x = 1/50; o = 214/10).
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Typical GMRES iteration counts

Coarse grid Fine grid
E[Re] | k=2 4 6 |k=2 4 6

o=pup/10 | 67 14 14 14| 14 14 15
ldeal | 0 =2u/10 | 70 18 20 21| 14 20 21
o=3u/10| 74 20 28 29| 25 28 29

c=pu/10] 67 | 37 38 39| 37 39 39
PCD |0 =2u/10| 70 | 43 44 50| 44 48 50
c=3u/10 74 | 53 56 61| 54 58 62

c=pu/10| 67 | 25 26 27| 43 49 52
LSC |o=2u4/10| 70 | 31 34 36| 48 58 63
o=3u/10| 74 | 35 45 48| 51 68 77
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For further details, see

m David Silvester & Alex Bespalov & Catherine Powell
A framework for the development of implicit solvers for
incompressible flow problems. Discrete and Continuous
Dynamical Systems — Series S, vol. 5, 1195-1221,

2012.

m Catherine Powell & David Silvester
Preconditioning steady-state Navier—Stokes equations
with random data. SIAM J. Scientific Computing, vol.
34, A2482—A2506, 2012.
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Potential flow | linear stochastic formulation

Let D c R? (d = 2, 3), and let (2, F,P) be a complete probability
space.

Suppose that the input A~ (x,w) : D x Q — R is a second-order
correlated random field.

We seek random fields p(x,w), u(x,w) such that P-almost
everywhere in €):

AN (z,w)u (z,w) — Vp(x,w) = 0,
Vou(z,w) = 0 xin D,
p(x,w) = g(®) xondDp,
u(r,w) - n = 0 x on 0Dy.
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AN (z,w)u(z,w) — Vp(x,w) = 0,
Vou(e,w) = 0 xin D,
p(x,w) = g(®) xondDp,
u(z,w) - n = 0 x on 0Dy.

Weak formulation

Find u(z,w) € V := L4(Q, Hy(div, D)) and
p(x,w) € W= Lz(Q, L*(D)) such that for all v(z,w) € V and
w(x,w) € W:

(A ) + (. V-v) = ((9:v)p, ),
(w,V -u)) = O0.
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Discretisation strategy

Three levels of approximation

e Approximation of random data: the permeability
A~!(z,w) is approximated by a function A, (z, £(w)) of
M random variables &£ = (&3, ..., &) taking values in
I' ¢ RM. Note that A (x, &) could be a linear or a
nonlinear function in €.

e Spatial discretisation on D: e.g., lowest-order mixed
FEM with mesh-size h;

e Approximation on I': e.g., orthogonal polynomials of
total degree < k.
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Discretisation strategy
Three levels of approximation
e Approximation of random data: the permeability
A~!(z,w) is approximated by a function A, (z, £(w)) of
M random variables &£ = (&3, ..., &) taking values in

I' ¢ RM. Note that A (x, &) could be a linear or a
nonlinear function in €.

e Spatial discretisation on D: e.g., lowest-order mixed
FEM with mesh-size h;

e Approximation on I': e.g., orthogonal polynomials of
total degree < k.

m (M + d)—dimensional deterministic PDE to solve;

m [hree discretisation parameters (M, h, k), hence, three
separate sources of error ...
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.... see the definitive reference:

m Alex Bespalov & Catherine Powell & David Silvester.
A priori error analysis of stochastic Galerkin mixed
approximations of elliptic PDEs with random data,
SIAM J. Numerical Analysis, vol. 50, 2039-2063, 2012.
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Linearity assumption
M
AN @, w) = Ay (@,w) = E[AT](@) + >V Anpa(®@) & (w),
n=1

where

e {N\,,on},n=1,2, ... are eigenvalues and eigenfunctions of the
operator associated with the covariance C(x, z') of A~ (x,w);
for example,

Clal(z,z') =exp (—3|lz — '|l), =, o' €[-1, 1]°.

o £1,&9,... are independent (uniform) random variables with
mean zero and unit variance.
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Linear algebra system

Tvg

Vh — Span {('PZ}Z,%:ul ) Wh — Span {¢j}?il 7Sp — Span {¢k(}’) k=1

A B u
=% (S)
B 0 P f
o The system dimension is n,nes where n, = n, + n,.

4R [@Ag+ S, Gro A, BT

Properties

I ® B 0

o [Aolij = [pu(x) ;- p;de,
:Ak]z‘j — fD \/)\7:%01{:(33) Pi P dx,
B]zs — = fD ¢Sv " P de, [Gk]rs — <yk %(y)%(y) > '
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A B
B 0

Sparsity structure:

(I®A0+Zﬁi1Gk®Ak IoBT

\ I®B 0 )

M =2,k =2 (left) and M = 4,k = 2 (right)

ooooo O
O o o o oo oooo O
o O O ooo O
O O O O OO O
o 0o o o o O m| O O oo O
O O O
O m| o o m| oo a a
o O O O
O O O O
O O O O 0 0
oo O O
o O O | O O O |
O O O
O O O oo O O
O O O
O
o O
O
O O
O
O
= o
O
O O
O
O O
O
O
o O
O
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Schur complement preconditioner

Approximate A ~ I ® diag(Ap). An efficient preconditioner is

b o_ I ® diag(Ap) 0
0 B(I®diag(Ay)) BT
B I ® diag(Ap) 0
0 [ ® (Bdiag(A)~'BY)
Properties

e Bdiag(A4yg)™ B! ~ V. u(x)V and optimal elliptic PDE solvers
(based on AMG) can be utilised for the Schur complement
solves (exactly as for the deterministic case).

e The cost of computing P~ 'r is O(ng x (n, + ny)).
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Science & Technology
aspen @ Facilities Council

HSL HSL MI20

PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

Given an n X n sparse matrix A and an n—vector z, HSL_MI20 computes the vector x = Mz, where M is an algebraic
multigrid (AMG) v-cycle preconditioner for A. A classical AMG method is used, as described in [1] (see also Section
5 below for a brief description of the algorithm). The matrix A must have positive diagonal entries and (most of) the
off-diagonal entries must be negative (the diagonal should be large compared to the sum of the off-diagonals). During
the multigrid coarsening process, positive off-diagonal entries are ignored and, when calculating the interpolation
weights, positive off-diagonal entries are added to the diagonal.

Reference

[1] K. Stiiben. An Introduction to Algebraic Multigrid. In U. Trottenberg, C. Oosterlee, A. Schiiller, eds, ‘Multigrid’,
Academic Press, 2001, pp 413-532.

ATTRIBUTES — Version: 1.1.0 Types: Real (single, double). Uses: HSL MA48, HSL MC65, HSL_ZD11, and the
LAPACK routines _GETRF and _GETRS. Date: September 2006. Origin: J. W. Boyle, University of Manchester and J.
A. Scott, Rutherford Appleton Laboratory. Language: Fortran 95, plus allocatable dummy arguments and allocatable
components of derived types. Remark: The development of HSL_MI20 was funded by EPSRC grants EP/C000528/1
and GR/S42170.
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Sample results ...

Bessel covariance function for random input with u(x) = 1 and
M = 6 random variables — capture 98% of the total variance.

k 2 3 4 9
ne (M, + nyp) 344,064 1,032,192 2,580,480 5,677,056
> =01 #MINRES itns 45 46 48 48
# V-cycles 1,260 3,864 10,080 22,176
total solve time 14.0s 45.35s 119.01s 262.04s
2 =02 #MINRES itns 55 59 62 63
# V-cycles 1,540 4,956 13,020 29,106
total solve time  17.18s 58.51s 154.82s 379.01
> =03 #MINRES itns 66 74 80 86
# V-cycles 1,848 6,216 16,800 39,732
total solve time  20.66s 72.97s 199.75s 486.74
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Full details are in the references ...

m O. Ernst & C. Powell & D. Silvester & E. Ullmann,
Efficient solvers for a linear stochastic Galerkin mixed

formulation of the steady-state diffusion equation
SIAM J. Sci. Comput., 31, 1424—-1447, 2009.

m H. ElIman & D. Furnival & C.Powell,
H (dw) preconditioning for a mixed finite element

formulation of the stochastic diffusion equation. Math.
Comput. 79, 733—760, 2010.

m C. Powell & E. Ullmann, Preconditioning stochastic
Galerkin saddle point systems. SIAM J. Matrix. Anal.,
31, 2813-2840, 2010.

m A. Gordon & C. Powell, On solving stochastic
collocation systems with algebraic multigrid. IMA J.
Numer. Anal., 32, 1051-1070, 2012.
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