Tropical eigenspaces and their reachability by matrix orbits

Peter Butkovic

Credits

(Chronological order)
R.A.Cuninghame-Green
N.N.Vorobyev
M.Gondran
G.Cohen
E. Wagneur
S.Gaubert
M.Joswig
S.Sergeev

1. Introduction

Max-plus and variants

- $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty\}$
- $a \oplus b=\max (a, b)$
- $a \otimes b=a+b$
- $(\overline{\mathbb{R}}, \oplus, \otimes)$... idempotent, commutative semiring

Max-plus and variants

- $\mathcal{G}=(G, \otimes, \leq) \ldots$ linearly ordered commutative group
- $a \oplus b=\max (a, b)$
- $\varepsilon \leq a$ for all $a \in G$ (adjoined)
- $(G \cup\{\varepsilon\}, \oplus, \otimes)$... commutative idempotent semiring
- $\mathcal{G}_{0}=(\mathbb{R},+, \leq) \ldots$ max-plus
- $\mathcal{G}_{1}=(\mathbb{R},+, \geq) \ldots$ min-plus $(x \longrightarrow-x)$
- $\mathcal{G}_{2}=\left(\mathbb{R}^{+}, \cdot, \leq\right) \ldots$ max-times $\left(x \longrightarrow e^{x}\right)$
- $\mathcal{G}_{3}=(\mathbb{Z},+, \leq)$
- ...
- In what follows: $\mathcal{G}_{0}, \overline{\mathbb{R}}:=\mathbb{R} \cup\{\varepsilon=-\infty\}$

Extension to matrices and vectors

- $A \oplus B=\left(a_{i j} \oplus b_{i j}\right)$
- $A \otimes B=\left(\sum_{k}^{\oplus} a_{i k} \otimes b_{k j}\right)$
- $\alpha \otimes A=\left(\alpha \otimes a_{i j}\right)$

Some basic properties

- A^{-1} exists $\Longleftrightarrow A$ is a generalised permutation matrix
- $a \oplus a=a$
- $(a \oplus b)^{k}=a^{k} \oplus b^{k}$, if $a, b \geq 0$
- $(A \oplus B)^{k} \neq A^{k} \oplus B^{k}$
- $(I \oplus A)^{k}=I \oplus A \oplus A^{2} \oplus \ldots \oplus A^{k}$

Associated digraph

- $A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n} \longrightarrow D_{A}=\left(N,\left\{(i, j) ; a_{i j}>-\infty\right\},\left(a_{i j}\right)\right)$
... associated digraph
- A is irreducible iff D_{A} strongly connected

Tropical linear algebra: Non-linear problems treated as linear

$$
\begin{aligned}
x_{3} & =\max \left(x_{1}+a_{1}, x_{2}+a_{2}\right) \\
& =a_{1} \otimes x_{1} \oplus a_{2} \otimes x_{2}=\left(a_{1}, a_{2}\right) \otimes\binom{x_{1}}{x_{2}}
\end{aligned}
$$

The eigenproblem

Given $A \in \overline{\mathbb{R}}^{n \times n}$, find $\lambda \in \overline{\mathbb{R}}$ and $x \neq \varepsilon$ such that $A \otimes x=\lambda \otimes x$

MULTI-PROCESSOR INTERACTIVE SYSTEM (MPIS)

(R.A.Cuninghame-Green)

- Processors P_{1}, \ldots, P_{n} work interactively and in stages
- $x_{i}(r) \ldots$ starting time of the $r^{\text {th }}$ stage on processor P_{i} $(i=1, \ldots, n ; r=0,1, \ldots)$
- $a_{i j}$... time P_{j} needs to prepare the component for P_{i}
- $x_{i}(r+1)=\max \left(x_{1}(r)+a_{i 1}, \ldots, x_{n}(r)+a_{i n}\right)$ $(i=1, \ldots, n ; r=0,1, \ldots)$
- $x_{i}(r+1)=\sum_{k}^{\oplus} a_{i k} \otimes x_{k}(r)(i=1, \ldots, n ; r=0,1, \ldots)$
- $x(r+1)=A \otimes x(r) \quad(r=0,1, \ldots)$
- $A: x(0) \rightarrow x(1) \rightarrow x(2) \rightarrow \ldots$

MPIS: STEADY REGIME

- Given $x(0)$, will the MPIS reach a steady regime (that is, will it move forward in regular steps)?
- Equivalently, is there a λ and an r_{0} such that

$$
\begin{gathered}
x(r+1)=\lambda \otimes x(r) \quad\left(r \geq r_{0}\right) ? \\
x(r+1)=A \otimes x(r) \quad(r=0,1, \ldots)
\end{gathered}
$$

- Steady regime is reached if and only if for some λ and $r, x(r)$ is a solution to

$$
A \otimes x=\lambda \otimes x
$$

- Since

$$
x(r)=A \otimes x(r-1)=A^{(2)} \otimes x(r-2)=\ldots=A^{(r)} \otimes x(0)
$$

a steady regime is reached if and only if $A^{(r)} \otimes x(0)$ "hits" an eigenvector of A for some r.

- Problem 1 (Eigenproblem): Given $A \in \overline{\mathbb{R}}^{n \times n}$, find $\lambda \in \overline{\mathbb{R}}$ and $x \neq \varepsilon$ such that $A \otimes x=\lambda \otimes x$
- Problem 2 (Reachability of an eigenspace): Given $A \in \overline{\mathbb{R}}^{n \times n}$ and an $x \in \overline{\mathbb{R}}^{n}, x \neq \varepsilon$, is there a k such that $A^{(k)} \otimes x$ is an eigenvector of A ?

2. TROPICAL EIGENPROBLEM

Maximum cycle mean

- Given $A=\left(a_{i j}\right) \in \overline{\mathbb{R}}^{n \times n}$, the mean of a cycle $\sigma=\left(i_{1}, \ldots, i_{k}\right)$:

$$
\mu(\sigma, A)=\frac{a_{i_{1} i_{2}}+a_{i_{2} i_{3}}+\ldots+a_{i_{k} i_{1}}}{k}
$$

- Maximum cycle mean of $A \in \overline{\mathbb{R}}^{n \times n}$:

$$
\lambda(A)=\max \{\mu(\sigma, A) ; \sigma \text { cycle }\}
$$

- $\mu(\sigma, A)=\lambda(A) \ldots \sigma$ is critical
- If

$$
A=\left(\begin{array}{rr|r}
-2 & 1 & -3 \\
3 & 0 & 3 \\
\hline 5 & 2 & 1
\end{array}\right)
$$

- then

$$
\begin{aligned}
\lambda(A) & =\max \{-2,0,1,2,1,5 / 2,3,2 / 3\}=3 \\
\sigma & =(1,2,3) \text { is critical }
\end{aligned}
$$

Maximum cycle mean is the principal eigenvalue

- For any $A, \lambda(A)$ is
- an eigenvalue of A
- the greatest (principal) eigenvalue of A
- the only eigenvalue of A whose corresponding eigenvectors may be finite
- the unique eigenvalue if A is irreducible
- Every eigenvalue of A is the maximum cycle mean of some principal submatrix

Definite matrices

- A is definite if $\lambda(A)=0$
- $\lambda(\alpha \otimes A)=\alpha \otimes \lambda(A)$
- In particular: $\lambda\left((\lambda(A))^{-1} \otimes A\right)=(\lambda(A))^{-1} \otimes \lambda(A)=0$
- $A \longrightarrow A_{\lambda}=(\lambda(A))^{-1} \otimes A$ (transition to a definite matrix)

Maximum cycle mean

- Many algorithms for the computation of $\lambda(A)$ (Karp's is $\left.O\left(n^{3}\right)\right)$
- $\lambda(A)=\varepsilon$ if and only if D_{A} acyclic
- The eigenproblem for $\lambda(A)=\varepsilon$ treated separately
- For $A \in \overline{\mathbb{R}}^{n \times n}$ we define:
- $A^{+}=A \oplus A^{2} \oplus A^{3} \oplus \ldots$ (metric matrix/weak transitive closure)
- $A^{*}=I \oplus A \oplus A^{2} \oplus A^{3} \oplus \ldots$ (Kleene star/strong transitive closure)
- If A is definite:
- $A^{+}=A \oplus A^{2} \oplus \ldots \oplus A^{n-1} \oplus A^{n}$
- $A^{*}=I \oplus A \oplus A^{2} \oplus \ldots \oplus A^{n-1}$

Critical graph

- $\mu(\sigma, A)=\lambda(A) \ldots \sigma$ is critical
- Critical graph of $A: C_{A}=\left(N, E_{c}\right)$ where E_{c} is the set of arcs of all critical cycles
- $N_{c} \ldots$ the set of nodes of critical cycles
- $i \sim j$ (equivalent nodes) $\ldots i$ and j belong to the same critical cycle

Eigenproblem: The principal eigenvalue and eigenvectors

$$
A=\left(\begin{array}{cccccc}
7 & 9 & 5 & 5 & 3 & 7 \\
\hline 7 & 5 & 2 & 7 & 0 & 4 \\
8 & 0 & 3 & 3 & 8 & 0 \\
7 & 2 & 5 & 7 & 9 & 5 \\
4 & 2 & 6 & 6 & 8 & 8 \\
3 & 0 & 5 & 7 & 1 & 2
\end{array}\right), \quad \lambda(A)=8
$$

- Critical cycles: $(1,2,1),(5,5),(4,5,6,4)$
- Node sets of all strongly connected components:
$\{1,2\},\{3\},\{4,5,6\}$
- $N_{c}=\{1,2,4,5,6\}$

Eigenspaces

- $V(A, \lambda)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x=\lambda \otimes x, x \neq \varepsilon\right\}, \lambda \in \overline{\mathbb{R}}$
- $V(A, \lambda) \cup\{\varepsilon\}$ is a tropical subspace: for $x, y \in V(A, \lambda)$ and $\alpha \in \overline{\mathbb{R}}:$
- $x \oplus y \in V(A, \lambda)$ and
- $\alpha \otimes x \in V(A, \lambda)$
- $V(A)=\bigcup_{\lambda \in \Lambda(A)} V(A, \lambda)$
- $\Lambda(A)=\{\lambda \in \overline{\mathbb{R}} ; V(A, \lambda) \neq \varnothing\} \ldots$ spectrum of A
- $\lambda(A)$ is an eigenvalue for any matrix $A \in \overline{\mathbb{R}}^{n \times n}$ (principal eigenvalue)
- $A \longrightarrow A_{\lambda} \longrightarrow\left(A_{\lambda}\right)^{+}$(briefly A_{λ}^{+})
- If $\lambda(A)>\varepsilon$ then every column of A_{λ}^{+}with zero diagonal entry is an eigenvector of A with corresponding eigenvalue $\lambda(A)$ (principal eigenvector)
- An essentially unique basis of $V(A, \lambda(A))$ (principal eigenspace) can be obtained by taking exactly one principal eigenvector of A for each equivalence class in $\left(N_{c}, \sim\right)$
- If $A_{\lambda}^{+}=\left(g_{1}, \ldots, g_{n}\right)$ then $i \sim j$ if and only if $g_{i}=\alpha \otimes g_{j}, \alpha \in \mathbb{R}$
- If A is irreducible then $V(A)=V(A, \lambda(A))$ and $V(A) \subseteq \mathbb{R}^{n}$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccccccc}
7 & 9 & 5 & 5 & 3 & 7 \\
7 & 5 & 2 & 7 & 0 & 4 \\
8 & 0 & 3 & 3 & 8 & 0 \\
7 & 2 & 5 & 7 & 9 & 5 \\
4 & 2 & 6 & 6 & 8 & 8 \\
3 & 0 & 5 & 7 & 1 & 2
\end{array}\right)}_{A} \xrightarrow{-8} \underbrace{\left(\begin{array}{ccccccc}
-1 & 1 & -3 & -3 & -5 & -1 \\
\hline-1 & -3 & -6 & -1 & -8 & -4 \\
0 & -8 & -5 & -5 & 0 & -8 \\
-1 & -6 & -3 & -1 & 1 & -3 \\
-4 & -6 & -2 & -2 & 0 & 0 \\
-5 & -8 & -5 & -1 & -7 & -6
\end{array}\right)}_{A_{\lambda}} \\
& \underbrace{\left(\begin{array}{rrrrrr}
\hline 0 & 1 & -1 & 0 & 1 & 1 \\
-1 & 0 & 2 & -1 & 0 & 0 \\
0 & 1 & -1 & 0 & 1 & 1 \\
-1 & 0 & -1 & 0 & 1 & 1 \\
-2 & -1 & -2 & -1 & 0 & 0 \\
-2 & -1 & -2 & -1 & 0 & 0 \\
\hline
\end{array}\right.}_{A_{\lambda}^{+}} \longrightarrow\left(\begin{array}{rrrrrr}
0 & . & . & 0 & . & . \\
-1 & . & . & -1 & . & . \\
0 & . & . & 0 & . & . \\
-1 & . & . & 0 & . & . \\
-2 & . & . & -1 & . & . \\
-2 & . & . & -1 & . & .
\end{array}\right)
\end{aligned}
$$

Eigenproblem: The principal eigenvalue and eigenvectors

- $A=\left(\begin{array}{rrrr}0 & 3 & & \\ 1 & -1 & & \\ & & 2 & \\ & & & 1\end{array}\right)$, blank $=\varepsilon$
- $\lambda(A)=2$
- $N_{c}=\{1,2,3\}$
- $1 \sim 2$
- $\operatorname{dim}(A)=2$
- $A_{\lambda}^{+}=\left(\begin{array}{rrrr}0 & 1 & & \\ -1 & 0 & & \\ & & 0 & \\ & & & -1\end{array}\right)$
- A basis of the principal eigenspace is e.g.

$$
\left\{g_{2}=(1,0, \varepsilon, \varepsilon)^{T}, g_{3}=(\varepsilon, \varepsilon, 0, \varepsilon)^{T}\right\}
$$

Link to nonnegative matrices

"Passage Theorem" (Friedland 1986)

- $A \ldots$ an irreducible nonnegative matrix
- $\rho(A) \ldots$ the Perron root of A
- $\left\{A^{k}\right\}_{k=1}^{\infty} \ldots$ sequence of Hadamard (Schur) powers
- Then $\left(\rho\left(A^{k}\right)\right)^{1 / k} \longrightarrow \lambda(A)$ (in max-times) and

$$
\lambda(A) \leq \rho(A) \leq n \lambda(A)
$$

- This is based on $\left(a^{k}+b^{k}\right)^{1 / k} \longrightarrow \max (a, b)$ for $k \longrightarrow \infty$
- Similarly we have

$$
\left(\operatorname{per}\left(A^{k}\right)\right)^{1 / k} \longrightarrow \sum_{\pi}^{\oplus} \prod_{i}^{\otimes} a_{i, \pi(i)}=\max _{\sigma} \sum_{i} a_{i, \sigma(i)}
$$

Finding all eigenvalues: Reduced digraph

- $A \sim B$ for matrices A and $B: A$ can be obtained from B by a simultaneous permutation of rows and columns
- If $A \sim B$ then $\Lambda(A)=\Lambda(B)$ and there is a bijection between $V(A)$ and $V(B)$
- Frobenius Normal Form (FNF):

$$
\left(\begin{array}{ccccc}
A_{11} & & & & \\
A_{21} & A_{22} & & \varepsilon & \\
\vdots & & \ddots & & \\
\vdots & & & \ddots & \\
A_{r 1} & A_{r 2} & \cdots & \cdots & A_{r r}
\end{array}\right), A_{11}, \ldots, A_{r r} \text { irreducible }
$$

- The corresponding partition of $N: N_{1}, \ldots, N_{r} \ldots$ classes (of A)
- Reduced digraph (partially ordered set):

$$
R_{A}=\left(\left\{N_{1}, \ldots, N_{r}\right\},\left\{\left(N_{i}, N_{j}\right) ;\left(\exists k \in N_{i}\right)\left(\exists \ell \in N_{j}\right) a_{k \ell}>\varepsilon\right\}\right)
$$

- $N_{i} \longrightarrow N_{j}$ means: there is a directed path from N_{i} to N_{j} in R_{A}

Finding all eigenvalues: Reduced digraph

$\left(\begin{array}{cccccc}A_{11} & \varepsilon & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ * & A_{22} & \varepsilon & \varepsilon & \varepsilon & \varepsilon \\ * & * & A_{33} & \varepsilon & \varepsilon & \varepsilon \\ * & \varepsilon & \varepsilon & A_{44} & \varepsilon & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & A_{55} & \varepsilon \\ \varepsilon & \varepsilon & \varepsilon & \varepsilon & * & A_{66}\end{array}\right)(*=$ finite $)$

- Initial classes: no incoming arcs
- Final classes: no outgoing arcs

Finding all eigenvalues: Spectral Theorem

- A in an FNF:

$$
\left(\begin{array}{ccccc}
A_{11} & & & & \\
A_{21} & A_{22} & & \varepsilon & \\
\vdots & & \ddots & & \\
\vdots & & & \ddots & \\
A_{r 1} & A_{r 2} & \cdots & \cdots & A_{r r}
\end{array}\right), A_{11}, \ldots, A_{r r} \text { irreducible }
$$

- Spectral Theorem (Gaubert, Bapat, 1992):

$$
\Lambda(A)=\left\{\lambda\left(A_{i i}\right) ; \lambda\left(A_{i i}\right) \geq \lambda\left(A_{j j}\right) \text { if } j \longrightarrow i\right\}
$$

- i is called spectral if $\lambda\left(A_{i j}\right) \geq \lambda\left(A_{j j}\right)$ whenever $j \longrightarrow i$

Finding all eigenvalues

- $\lambda\left(A_{11}\right)=4, \lambda\left(A_{22}\right)=4, \lambda\left(A_{33}\right)=3, \lambda\left(A_{44}\right)=5, r=4$
- $\lambda(A)=5$
- $\Lambda(A)=\{4,5\}$
- N_{1}, N_{4} are spectral (N_{2} is not)

Finding all eigenvectors

- Let $A \in \overline{\mathbb{R}}^{n \times n}$ be in an FNF, N_{1}, \ldots, N_{r} be the classes of A and $R=\{1, \ldots, r\}$
- Let $\lambda \in \Lambda(A), \lambda>\varepsilon$ and

$$
I(\lambda)=\left\{i \in R ; \lambda\left(N_{i}\right)=\lambda, N_{i} \text { spectral }\right\}
$$

- $A \longrightarrow \lambda^{-1} \otimes A \longrightarrow\left(\lambda^{-1} \otimes A\right)^{+}=\left(g_{i j}\right)=\left(g_{1}, \ldots, g_{n}\right)$
- $N_{c}(\lambda)=\bigcup_{i \in I(\lambda)} N_{c}\left(A_{i i}\right)=\left\{j \in N ; g_{j j}=0, j \in \underset{i \in I(\lambda)}{ } N_{i}\right\}$
- $i, j \in N_{c}(\lambda)$ are called λ - equivalent (notation $i \sim_{\lambda} j$) if i and j belong to the same cycle of cycle mean λ

Finding all eigenvectors

Theorem

Let $A \in \overline{\mathbb{R}}^{n \times n}$ and $\lambda \in \Lambda(A), \lambda>\varepsilon$.

- For each $\lambda \in \Lambda(A)$ we have

$$
V(A, \lambda)=\left\{\left(\lambda^{-1} \otimes A\right)^{+} \otimes z ; z \in \overline{\mathbb{R}}^{n}, z_{j}=\varepsilon \text { for all } j \notin N_{c}(\lambda)\right\}
$$

- A basis of $V(A, \lambda)$ can be obtained by taking one g_{j} for each λ - equivalence class
- The spectrum and bases of all eigenspaces for $A \in \overline{\mathbb{R}}^{n \times n} \ldots$ $O\left(n^{3}\right)$

3. Reachability of eigenspaces by matrix orbits

Attraction set

Problem 2 (Reachability of an eigenspace): Given A and an
$x \neq \varepsilon$, is there a k such that $A^{k} \otimes x$ is an eigenvector of A ?

- Matrix orbit with starting vector x :

$$
A \otimes x, A^{2} \otimes x, \ldots, A^{k} \otimes x, \ldots
$$

- Attraction set:

$$
\operatorname{Attr}(A)=\left\{x ;(\exists k) A^{k} \otimes x \in V(A)\right\}
$$

-

$$
V(A) \subseteq \operatorname{attr}(A) \subseteq \overline{\mathbb{R}}^{n}-\{\varepsilon\}
$$

Cyclicity of a matrix

- Cyclicity of a strongly connected digraph = g.c.d. of the lengths of its cycles
- Cyclicity of a digraph = I.c.m. of cyclicities of its SCC
- Let $A \in \overline{\mathbb{R}}^{n \times n}$
- C_{A}.. critical digraph of A
- Cyclicity of a matrix A : $\sigma(A)=$ cyclicity of C_{A}
- A is primitive if $\sigma(A)=1$

Cyclicity Theorem

- Cyclicity Theorem (Cohen et al 1985)

Every irreducible matrix A is ultimately periodic with period $\sigma=\sigma(A)$:

$$
A^{k+\sigma}=(\lambda(A))^{\sigma} \otimes A^{k} \text { for all } k \geq k_{0}
$$

- Corollary

If A is irreducible:
$(\forall x \neq \varepsilon) A^{k} \otimes x \in V\left(A^{s}\right)$ for some k and $s \leq \sigma(A)$

- Given A irreducible and x, find the smallest s for which $(\exists k) A^{k} \otimes x \in V\left(A^{s}\right)$
- $O\left(n^{3} \log n\right)$ algorithm (Sergeev 2009)

Strongly and weakly stable matrices

- $V(A) \subseteq \operatorname{attr}(A) \subseteq \overline{\mathbb{R}}^{n}-\{\varepsilon\}$
- Two extremes:
- $\operatorname{attr}(A)=\overline{\mathbb{R}}^{n}-\{\varepsilon\} \quad$... A strongly stable (robust)
- $\operatorname{attr}(A)=V(A) \quad$.. A weakly stable

Strong stability (robustness)

- If A is irreducible and primitive then by the Cyclicity Theorem:
- $A^{k+1}=\lambda(A) \otimes A^{k}$ for k large
- $A^{k+1} \otimes x=\lambda(A) \otimes A^{k} \otimes x$ for k large and any $x \in \overline{\mathbb{R}}^{n}$
- A irreducible: A is robust $\Longleftrightarrow A$ is primitive
- Robustness criterion for reducible matrices (PB \& Gaubert \& RACG 2009):
A with FNF classes $N_{1}, \ldots N_{r}$ and no ε column is robust if and only if
- All nontrivial classes are primitive and spectral
- ($\forall i, j)$ If N_{i}, N_{j} are non-trivial, $N_{i} \nrightarrow N_{j}$ and $N_{j} \nrightarrow N_{i}$ then

$$
\lambda\left(A_{i i}\right)=\lambda\left(A_{j j}\right)
$$

Strongly stable (robust) matrices

Reduced digraph of a robust matrix with $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$:

Weakly stable matrices

- A weakly stable: $\operatorname{attr}(A)=V(A)$
- Let A be irreducible
- $V(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x=\lambda(A) \otimes x, x \neq \varepsilon\right\} \quad \ldots$ eigenvectors
- $V_{*}(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x \leq \lambda(A) \otimes x, x \neq \varepsilon\right\} \ldots$ subeigenvectors
- $V^{*}(A)=\left\{x \in \overline{\mathbb{R}}^{n} ; A \otimes x \geq \lambda(A) \otimes x, x \neq \varepsilon\right\} \ldots$ supereigenvectors

Weakly stable matrices

- $V(A) \subseteq V_{*}(A) \subseteq \operatorname{Attr}(A)$
- $V(A) \subseteq V^{*}(A) \subseteq \operatorname{Attr}(A)$
- A weakly stable $\Longrightarrow V(A)=V^{*}(A)=V_{*}(A)=\operatorname{Attr}(A)$

Weakly stable matrices

Theorem (PB+Sergeev, 2011)
Let A be irreducible.
A is weakly stable $\Longleftrightarrow C_{A}$ is a Hamilton cycle in D_{A}.

Theorem (PB+Sergeev, 2011)

A (reducible) is weakly stable if and only if every spectral class is initial and weakly stable

THANK YOU
P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer Monographs in Mathematics, Springer-Verlag 2010)

