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1. Introduction
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Max-plus and variants

R = R[ f�∞g
a� b = max (a, b)
a
 b = a+ b�
R,�,


�
... idempotent, commutative semiring
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Max-plus and variants

G = (G ,
,�) ... linearly ordered commutative group
a� b = max (a, b)
ε � a for all a 2 G (adjoined)

(G [ fεg ,�,
) ... commutative idempotent semiring
G0 = (R,+,�) ... max-plus
G1 = (R,+,�) ... min-plus (x �! �x)
G2 = (R+, �,�) ... max-times (x �! ex )

G3 = (Z,+,�)
...

In what follows: G0, R := R[ fε = �∞g
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Extension to matrices and vectors

A� B = (aij � bij )
A
 B =

�
∑�
k aik 
 bkj

�
α
 A = (α
 aij )
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Some basic properties

A�1 exists () A is a generalised permutation matrix

a� a = a
(a� b)k = ak � bk , if a, b � 0
(A� B)k 6= Ak � Bk

(I � A)k = I � A� A2 � ...� Ak
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Associated digraph

A = (aij ) 2 R
n�n �! DA = (N, f(i , j); aij > �∞g, (aij ))

... associated digraph

A is irreducible i¤ DA strongly connected
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Tropical linear algebra: Non-linear problems treated as
linear

x1

x2

x3

a1

a2

x3 = max (x1 + a1, x2 + a2)

= a1 
 x1 � a2 
 x2 = (a1, a2)

�
x1
x2

�
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The eigenproblem

Given A 2 R
n�n
, �nd λ 2 R and x 6= ε such that A
 x = λ
 x
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MULTI-PROCESSOR INTERACTIVE SYSTEM (MPIS)

(R.A.Cuninghame-Green)

Processors P1, ...,Pn work interactively and in stages

xi (r) . . . starting time of the r th stage on processor Pi
(i = 1, . . . , n; r = 0, 1, ...)
aij . . . time Pj needs to prepare the component for Pi
xi (r + 1) = max(x1(r) + ai1, . . . , xn(r) + ain)
(i = 1, . . . , n; r = 0, 1, ...)
xi (r + 1) = ∑�

k aik 
 xk (r) (i = 1, . . . , n; r = 0, 1, ...)
x(r + 1) = A
 x(r) (r = 0, 1, . . .)
A : x(0)! x(1)! x(2)! ...
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Processor 1

Processor 2

Processor 3

Processor 4

Processor 5

x (0) x (1) x (2) x (6)x (5)x (3) x (4)
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MPIS: STEADY REGIME

Given x(0), will the MPIS reach a steady regime (that is, will
it move forward in regular steps)?
Equivalently, is there a λ and an r0 such that

x(r + 1) = λ
 x(r) (r � r0)?

x(r + 1) = A
 x(r) (r = 0, 1, . . .)

Steady regime is reached if and only if for some λ and r , x(r)
is a solution to

A
 x = λ
 x
Since

x(r) = A
 x(r � 1) = A(2) 
 x(r � 2) = . . . = A(r ) 
 x(0),

a steady regime is reached if and only if A(r ) 
 x(0) �hits� an
eigenvector of A for some r .
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Two problems

Problem 1 (Eigenproblem): Given A 2 R
n�n
, �nd λ 2 R

and x 6= ε such that A
 x = λ
 x
Problem 2 (Reachability of an eigenspace): Given
A 2 R

n�n
and an x 2 R

n
, x 6= ε, is there a k such that

A(k ) 
 x is an eigenvector of A?
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2. TROPICAL EIGENPROBLEM
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Maximum cycle mean

Given A = (aij ) 2 R
n�n
, the mean of a cycle σ = (i1, ..., ik ):

µ(σ,A) =
ai1 i2 + ai2 i3 + ...+ aik i1

k

Maximum cycle mean of A 2 R
n�n :

λ(A) = max fµ(σ,A); σ cycleg
µ(σ,A) = λ(A) ... σ is critical
If

A =

0@ -2 1 -3
3 0 3
5 2 1

1A
then

λ(A) = max f�2, 0, 1, 2, 1, 5/2, 3, 2/3g = 3
σ = (1, 2, 3) is critical
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Maximum cycle mean is the principal eigenvalue

For any A, λ(A) is

an eigenvalue of A
the greatest (principal) eigenvalue of A
the only eigenvalue of A whose corresponding eigenvectors
may be �nite
the unique eigenvalue if A is irreducible

Every eigenvalue of A is the maximum cycle mean of some
principal submatrix
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De�nite matrices

A is de�nite if λ(A) = 0

λ (α
 A) = α
 λ (A)

In particular: λ
�
(λ (A))�1 
 A

�
= (λ (A))�1 
 λ (A) = 0

A �! Aλ = (λ (A))
�1 
 A (transition to a de�nite matrix)
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Maximum cycle mean

Many algorithms for the computation of λ (A) (Karp�s is
O
�
n3
�
)

λ (A) = ε if and only if DA acyclic

The eigenproblem for λ (A) = ε treated separately
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Transitive closures

For A 2 R
n�n

we de�ne:

A+ = A� A2 � A3 � ... (metric matrix/weak transitive
closure)

A� = I � A� A2 � A3 � ... (Kleene star/strong transitive
closure)

If A is de�nite:

A+ = A� A2 � ... �An�1 � An
A� = I � A� A2 � ...� An�1
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Critical graph

µ(σ,A) = λ(A) ... σ is critical

Critical graph of A: CA = (N,Ec ) where Ec is the set of arcs
of all critical cycles

Nc ... the set of nodes of critical cycles

i � j (equivalent nodes) ... i and j belong to the same critical
cycle
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Eigenproblem: The principal eigenvalue and eigenvectors

A =

0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA , λ (A) = 8

Peter Butkovic MOPNET 27 April 2011



Eigenproblem: The principal eigenvalue and eigenvectors

1 2

36

5 4

Critical cycles: (1, 2, 1), (5, 5), (4, 5, 6, 4)

Node sets of all strongly connected components:
f1, 2g , f3g , f4, 5, 6g
Nc = f1, 2, 4, 5, 6g
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Eigenspaces

V (A,λ) = fx 2 R
n
;A
 x = λ
 x , x 6= εg,λ 2 R

V (A,λ) [ fεg is a tropical subspace: for x , y 2 V (A,λ) and
α 2 R :

x � y 2 V (A,λ) and
α
 x 2 V (A,λ)

V (A) =
S

λ2Λ(A)
V (A,λ)

Λ(A) = fλ 2 R;V (A,λ) 6= ∅g ... spectrum of A
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Principal eigenspace

λ(A) is an eigenvalue for any matrix A 2 R
n�n

(principal
eigenvalue)

A �! Aλ �! (Aλ)
+ (brie�y A+λ )

If λ(A) > ε then every column of A+λ with zero diagonal entry
is an eigenvector of A with corresponding eigenvalue λ(A)
(principal eigenvector)

An essentially unique basis of V (A,λ(A)) (principal
eigenspace) can be obtained by taking exactly one principal
eigenvector of A for each equivalence class in (Nc ,�)
If A+λ = (g1, ..., gn) then i � j if and only if
gi = α
 gj , α 2 R

If A is irreducible then V (A) = V (A,λ(A)) and V (A) � Rn
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0BBBBBB@

7 9 5 5 3 7
7 5 2 7 0 4
8 0 3 3 8 0
7 2 5 7 9 5
4 2 6 6 8 8
3 0 5 7 1 2

1CCCCCCA
| {z }

A

�8�!

0BBBBBB@

-1 1 -3 -3 -5 -1
-1 -3 -6 -1 -8 -4
0 -8 -5 -5 0 -8
-1 -6 -3 -1 1 -3
-4 -6 -2 -2 0 0
-5 -8 -5 -1 -7 -6

1CCCCCCA
| {z }

Aλ0BBBBBB@

0 1 -1 0 1 1
-1 0 2 -1 0 0
0 1 -1 0 1 1
-1 0 -1 0 1 1
-2 -1 -2 -1 0 0
-2 -1 -2 -1 0 0

1CCCCCCA
| {z }

A+λ

�!

0BBBBBB@

0 . . 0 . .
-1 . . -1 . .
0 . . 0 . .
-1 . . 0 . .
-2 . . -1 . .
-2 . . -1 . .

1CCCCCCA
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Eigenproblem: The principal eigenvalue and eigenvectors

A =

0BB@
0 3
1 �1

2
1

1CCA , blank = ε

λ(A) = 2

Nc = f1, 2, 3g
1 s 2
dim (A) = 2

A+λ =

0BB@
0 1

�1 0
0
�1

1CCA
A basis of the principal eigenspace is e.g.n
g2 = (1, 0, ε, ε)

T , g3 = (ε, ε, 0, ε)
T
o
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Link to nonnegative matrices

"Passage Theorem" (Friedland 1986)

A ... an irreducible nonnegative matrix

ρ (A) ... the Perron root of A�
Ak
	∞
k=1 ... sequence of Hadamard (Schur) powers

Then
�
ρ
�
Ak
��1/k �! λ(A) (in max-times) and

λ (A) � ρ (A) � nλ (A)

This is based on
�
ak + bk

�1/k �! max (a, b) for k �! ∞
Similarly we have�

per(Ak )
�1/k

�! ∑
π

�∏
i



ai ,π(i ) = max

σ
∑
i
ai ,σ(i )
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Finding all eigenvalues: Reduced digraph

A � B for matrices A and B : A can be obtained from B by a
simultaneous permutation of rows and columns
If A � B then Λ(A) = Λ(B) and there is a bijection between
V (A) and V (B)
Frobenius Normal Form (FNF):0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA , A11, ...,Arr irreducible
The corresponding partition of N : N1, ...,Nr ... classes (of A)
Reduced digraph (partially ordered set):

RA = (fN1, ...,Nrg, f(Ni ,Nj ); (9k 2 Ni )(9` 2 Nj )ak` > εg)

Ni �! Nj means: there is a directed path from Ni to Nj in RA
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Finding all eigenvalues: Reduced digraph0BBBBBB@

A11 ε ε ε ε ε
� A22 ε ε ε ε
� � A33 ε ε ε
� ε ε A44 ε ε
ε ε ε ε A55 ε
ε ε ε ε � A66

1CCCCCCA (� = �nite)

A33 A44 A66

A22

A11 A55

Initial classes: no incoming arcs
Final classes: no outgoing arcs
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Finding all eigenvalues: Spectral Theorem

A in an FNF:0BBBBBB@
A11
A21 A22 ε
...

. . .
...

. . .
Ar1 Ar2 � � � � � � Arr

1CCCCCCA , A11, ...,Arr irreducible
Spectral Theorem (Gaubert, Bapat, 1992):

Λ(A) = fλ(Aii );λ(Aii ) � λ(Ajj ) if j �! ig

i is called spectral if λ(Aii ) � λ(Ajj ) whenever j �! i
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Finding all eigenvalues

A =

0BBBBBB@

0 3
5 1

4
0 3 1

-1 2
1 5

1CCCCCCA (blank = ε)

λ(A11) = 4,λ(A22) = 4,λ(A33) = 3,λ(A44) = 5, r = 4

λ(A) = 5

Λ(A) = f4, 5g
N1,N4 are spectral (N2 is not)
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Finding all eigenvectors

Let A 2 R
n�n

be in an FNF, N1, ...,Nr be the classes of A
and R = f1, ..., rg
Let λ 2 Λ(A),λ > ε and

I (λ) = fi 2 R;λ(Ni ) = λ,Ni spectralg

A �! λ�1 
 A �! (λ�1 
 A)+ = (gij ) = (g1, ..., gn)
Nc (λ) =

S
i2I (λ)

Nc (Aii ) = fj 2 N; gjj = 0, j 2
S

i2I (λ)
Nig

i , j 2 Nc (λ) are called λ� equivalent (notation i �λ j) if i
and j belong to the same cycle of cycle mean λ
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Finding all eigenvectors

Theorem

Let A 2 R
n�n

and λ 2 Λ(A),λ > ε.

For each λ 2 Λ (A) we have

V (A,λ) = f(λ�1
A)+
 z ; z 2 R
n
, zj = ε for all j /2 Nc (λ)g

A basis of V (A,λ) can be obtained by taking one gj for each
λ� equivalence class

The spectrum and bases of all eigenspaces for A 2 R
n�n

...
O
�
n3
�
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3. Reachability of eigenspaces by matrix orbits
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Attraction set

Problem 2 (Reachability of an eigenspace): Given A and an

x 6= ε, is there a k such that Ak 
 x is an eigenvector of A?

Matrix orbit with starting vector x :
A
 x ,A2 
 x , ...,Ak 
 x , ...
Attraction set:

Attr (A) =
n
x ; (9k)Ak 
 x 2 V (A)

o
V (A) � attr (A) � R

n � fεg
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Eig

Attr

nR
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Cyclicity of a matrix

Cyclicity of a strongly connected digraph = g.c.d. of the
lengths of its cycles

Cyclicity of a digraph = l.c.m. of cyclicities of its SCC

Let A 2 R
n�n

CA... critical digraph of A
Cyclicity of a matrix A : σ (A) = cyclicity of CA
A is primitive if σ (A) = 1
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Cyclicity Theorem

Cyclicity Theorem (Cohen et al 1985)
Every irreducible matrix A is ultimately periodic with period
σ = σ (A):

Ak+σ = (λ(A))σ 
 Ak for all k � k0

Corollary
If A is irreducible:
(8x 6= ε)Ak 
 x 2 V (As ) for some k and s � σ (A)
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Given A irreducible and x , �nd the smallest s for which
(9k)Ak 
 x 2 V (As )
O
�
n3 log n

�
algorithm (Sergeev 2009)

Attr(A2)

Attr(A)

Attr(Aσ) = Rn

V(A)

…
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Strongly and weakly stable matrices

V (A) � attr (A) � R
n � fεg

Two extremes:

attr (A) = R
n � fεg ... A strongly stable (robust)

attr (A) = V (A) ... A weakly stable
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Strong stability (robustness)

If A is irreducible and primitive then by the Cyclicity Theorem:

Ak+1 = λ(A)
 Ak for k large
Ak+1 
 x = λ(A)
 Ak 
 x for k large and any x 2 R

n

A irreducible: A is robust () A is primitive

Robustness criterion for reducible matrices (PB &
Gaubert & RACG 2009):
A with FNF classes N1, ...Nr and no ε column is robust if and
only if

All nontrivial classes are primitive and spectral
(8i , j) If Ni ,Nj are non-trivial, Ni 9 Nj and Nj 9 Ni then

λ(Aii ) = λ(Ajj )
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Strongly stable (robust) matrices

Reduced digraph of a robust matrix with λ1 < λ2 < λ3 < λ4 :

λ4 λ4

λ3

λ2 λ2λ2

λ1 λ1
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Weakly stable matrices

A weakly stable: attr (A) = V (A)

Let A be irreducible

V (A) = fx 2 R
n
;A
 x = λ (A)
 x , x 6= εg ...

eigenvectors

V� (A) = fx 2 R
n
;A
 x � λ (A)
 x , x 6= εg ...

subeigenvectors

V � (A) = fx 2 R
n
;A
 x � λ (A)
 x , x 6= εg ...

supereigenvectors
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Weakly stable matrices

V (A) � V�(A) � Attr (A)
V (A) � V �(A) � Attr (A)
A weakly stable =) V (A) = V �(A) = V�(A) = Attr (A)

Attr

V*(A)

V(A)

V*(A)
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Weakly stable matrices

Theorem (PB+Sergeev, 2011)

Let A be irreducible.
A is weakly stable () CA is a Hamilton cycle in DA.

0BBBB@
�
�
�
�

�

1CCCCA
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Weakly stable matrices

Theorem (PB+Sergeev, 2011)

A (reducible) is weakly stable if and only if every spectral class is
initial and weakly stable

…

λ1 λ2 λs

< λ1  < λ1  < λ2  < λs  < λs
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THANK YOU
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P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer
Monographs in Mathematics, Springer-Verlag 2010)
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