Tropical eigenspaces and their reachability by matrix orbits

Peter Butkovic

Peter Butkovic MOPNET 27 April 2011

(Chronological order) R.A.Cuninghame-Green N.N.Vorobyev M.Gondran G.Cohen E.Wagneur S.Gaubert M.Joswig S.Sergeev

• • •

1. Introduction

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty\}$
- $a \oplus b = \max(a, b)$
- $a \otimes b = a + b$
- $\left(\overline{\mathbb{R}},\oplus,\otimes\right)~\dots$ idempotent, commutative semiring

Max-plus and variants

- $\mathcal{G} = (\mathit{G}, \otimes, \leq)$... linearly ordered commutative group
- $a \oplus b = \max(a, b)$
- $\varepsilon \leq a$ for all $a \in G$ (adjoined)
- $({\it G}\cup\{\epsilon\}\,,\oplus,\otimes)~\dots$ commutative idempotent semiring
- $\mathcal{G}_0 = (\mathbb{R}, +, \leq)$... max-plus
- $\mathcal{G}_1 = (\mathbb{R}, +, \geq) \dots$ min-plus $(x \longrightarrow -x)$
- $\mathcal{G}_2 = (\mathbb{R}^+, \cdot, \leq) \dots$ max-times $(x \longrightarrow e^x)$
- $\mathcal{G}_3 = (\mathbb{Z}, +, \leq)$
- ...
- In what follows: \mathcal{G}_0 , $\overline{\mathbb{R}}:=\mathbb{R}\cup\{\epsilon=-\infty\}$

• $A \oplus B = (a_{ij} \oplus b_{ij})$ • $A \otimes B = (\sum_{k}^{\oplus} a_{ik} \otimes b_{kj})$ • $\alpha \otimes A = (\alpha \otimes a_{ij})$ • A^{-1} exists $\iff A$ is a generalised permutation matrix

- $(a \oplus b)^k = a^k \oplus b^k$, if $a, b \ge 0$
- $(A \oplus B)^k \neq A^k \oplus B^k$
- $(I \oplus A)^k = I \oplus A \oplus A^2 \oplus ... \oplus A^k$

•
$$A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n} \longrightarrow D_A = (N, \{(i, j); a_{ij} > -\infty\}, (a_{ij}))$$

... associated digraph

• A is *irreducible* iff D_A strongly connected

< E

Tropical linear algebra: Non-linear problems treated as linear

Given $A \in \overline{\mathbb{R}}^{n imes n}$, find $\lambda \in \overline{\mathbb{R}}$ and $x \neq \varepsilon$ such that $A \otimes x = \lambda \otimes x$

▶ < ∃ ▶ <</p>

(R.A.Cuninghame-Green)

- Processors $P_1, ..., P_n$ work interactively and in stages
- x_i(r) ... starting time of the rth stage on processor P_i (i = 1,..., n; r = 0, 1, ...)
- a_{ij} ... time P_j needs to prepare the component for P_i
- $x_i(r+1) = max(x_1(r) + a_{i1}, ..., x_n(r) + a_{in})$ (i = 1,..., n; r = 0, 1, ...)
- $x_i(r+1) = \sum_k^{\oplus} a_{ik} \otimes x_k(r)$ (i = 1, ..., n; r = 0, 1, ...)
- $x(r+1) = A \otimes x(r)$ (r = 0, 1, ...)
- $A: x(0) \to x(1) \to x(2) \to \dots$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ● ● ● ●

MPIS: STEADY REGIME

- Given x(0), will the MPIS reach a *steady regime* (that is, will it move forward in regular steps)?
- Equivalently, is there a λ and an r_0 such that

$$x(r+1) = \lambda \otimes x(r) \quad (r \ge r_0)?$$

۲

$$x(r+1) = A \otimes x(r) \quad (r = 0, 1, \ldots)$$

• Steady regime is reached if and only if for some λ and r, x(r) is a solution to

$$A \otimes x = \lambda \otimes x$$

Since

$$x(r) = A \otimes x(r-1) = A^{(2)} \otimes x(r-2) = \dots = A^{(r)} \otimes x(0),$$

a steady regime is reached if and only if $A^{(r)} \otimes x(0)$ "hits" an eigenvector of A for some r.

- Problem 1 (Eigenproblem): Given $A \in \overline{\mathbb{R}}^{n \times n}$, find $\lambda \in \overline{\mathbb{R}}$ and $x \neq \varepsilon$ such that $A \otimes x = \lambda \otimes x$
- Problem 2 (Reachability of an eigenspace): Given $A \in \mathbb{R}^{n \times n}$ and an $x \in \mathbb{R}^n$, $x \neq \varepsilon$, is there a k such that $A^{(k)} \otimes x$ is an eigenvector of A?

2. TROPICAL EIGENPROBLEM

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Maximum cycle mean

• Given
$$A = (a_{ij}) \in \overline{\mathbb{R}}^{n \times n}$$
, the mean of a cycle $\sigma = (i_1, ..., i_k)$:

$$\mu(\sigma, A) = \frac{a_{i_1i_2} + a_{i_2i_3} + ... + a_{i_ki_1}}{k}$$

• Maximum cycle mean of
$$A \in \overline{\mathbb{R}}^{n \times n}$$
:
 $\lambda(A) = \max \{\mu(\sigma, A); \sigma \text{ cycle}\}$
• $\mu(\sigma, A) = \lambda(A) \dots \sigma \text{ is critical}$
• If
 $A = \begin{pmatrix} -2 & 1 & -3 \\ 3 & 0 & 3 \\ 5 & 2 & 1 \end{pmatrix}$

• then

$$\begin{array}{rcl} \lambda(A) & = & \max\left\{-2, 0, 1, 2, 1, 5/2, 3, 2/3\right\} = 3 \\ \sigma & = & (1, 2, 3) \mbox{ is critical} \end{array}$$

æ

@▶ < ≣

- For any A, $\lambda(A)$ is
 - an eigenvalue of A
 - the greatest (*principal*) eigenvalue of A
 - the only eigenvalue of A whose corresponding eigenvectors may be finite
 - the unique eigenvalue if A is irreducible
- Every eigenvalue of A is the maximum cycle mean of some principal submatrix

- A is definite if $\lambda(A) = 0$
- $\lambda (\alpha \otimes A) = \alpha \otimes \lambda (A)$
- In particular: $\lambda\left((\lambda\left(A
 ight))^{-1}\otimes A
 ight)=(\lambda\left(A
 ight))^{-1}\otimes\lambda\left(A
 ight)=0$
- $A \longrightarrow A_{\lambda} = (\lambda (A))^{-1} \otimes A$ (transition to a definite matrix)

- Many algorithms for the computation of λ (A) (Karp's is $O\left(n^{3}\right)$)
- $\lambda\left(A
 ight)=arepsilon$ if and only if D_{A} acyclic
- The eigenproblem for $\lambda \left(A
 ight) = \varepsilon$ treated separately

- For $A \in \overline{\mathbb{R}}^{n \times n}$ we define:
- $A^+ = A \oplus A^2 \oplus A^3 \oplus ...$ (metric matrix/weak transitive closure)
- A^{*} = I ⊕ A ⊕ A² ⊕ A³ ⊕ ... (Kleene star/strong transitive closure)
- If A is definite:
 - $A^+ = A \oplus A^2 \oplus ... \oplus A^{n-1} \oplus A^n$ • $A^* = I \oplus A \oplus A^2 \oplus ... \oplus A^{n-1}$

- $\mu(\sigma, A) = \lambda(A) \dots \sigma$ is critical
- Critical graph of A: $C_A = (N, E_c)$ where E_c is the set of arcs of all critical cycles
- N_c ... the set of nodes of critical cycles
- $i \sim j$ (equivalent nodes) ... i and j belong to the same critical cycle

Eigenproblem: The principal eigenvalue and eigenvectors

$$A = \begin{pmatrix} 7 & 9 & 5 & 5 & 3 & 7 \\ 7 & 5 & 2 & 7 & 0 & 4 \\ 8 & 0 & 3 & 3 & 8 & 0 \\ 7 & 2 & 5 & 7 & 9 & 5 \\ 4 & 2 & 6 & 6 & 8 & 8 \\ 3 & 0 & 5 & 7 & 1 & 2 \end{pmatrix}, \quad \lambda(A) = 8$$

Peter Butkovic MOPNET 27 April 2011

▶ ▲ 문 ▶ ▲ 문 ▶

Eigenproblem: The principal eigenvalue and eigenvectors

- Critical cycles: (1, 2, 1), (5, 5), (4, 5, 6, 4)
- Node sets of all strongly connected components: $\{1, 2\}, \{3\}, \{4, 5, 6\}$

•
$$N_c = \{1, 2, 4, 5, 6\}$$

- $V(A, \lambda) = \{x \in \overline{\mathbb{R}}^n; A \otimes x = \lambda \otimes x, x \neq \varepsilon\}, \lambda \in \overline{\mathbb{R}}$
- $V(A, \lambda) \cup \{\varepsilon\}$ is a tropical subspace: for $x, y \in V(A, \lambda)$ and $\alpha \in \mathbb{R}$:
 - $x \oplus y \in V(A, \lambda)$ and • $\alpha \otimes x \in V(A, \lambda)$
- $V(A) = \bigcup_{\lambda \in \Lambda(A)} V(A, \lambda)$
- $\Lambda(A) = \{\lambda \in \overline{\mathbb{R}}; V(A, \lambda) \neq \emptyset\} \dots$ spectrum of A

Principal eigenspace

- $\lambda(A)$ is an eigenvalue for any matrix $A \in \overline{\mathbb{R}}^{n \times n}$ (principal eigenvalue)
- $A \longrightarrow A_{\lambda} \longrightarrow (A_{\lambda})^+$ (briefly A_{λ}^+)
- If λ(A) > ε then every column of A⁺_λ with zero diagonal entry is an eigenvector of A with corresponding eigenvalue λ(A) (principal eigenvector)
- An essentially unique basis of V(A, λ(A)) (principal eigenspace) can be obtained by taking exactly one principal eigenvector of A for each equivalence class in (N_c, ~)
- If $A_{\lambda}^+ = (g_1, ..., g_n)$ then $i \sim j$ if and only if $g_i = \alpha \otimes g_j, \alpha \in \mathbb{R}$
- If A is irreducible then $V(A) = V(A, \lambda(A))$ and $V(A) \subseteq \mathbb{R}^n$

• • = • • = •

9 5 5 3 -1 1 -3 -3 -5 -1 5 7 -3 -6 2 0 -1 -1 -8 7 4 -4 8 0 3 3 8 0 -8 -5 -5 0 0 -8 -8 7 2 5 7 9 5 -6 -3 -1 -1 1 -3 -6 -2 8 8 4 2 6 6 -2 0 0 -4 3 2 -8 0 5 7 1 -5 -5 -1 -7 -6 Α A_{λ} 0 1 0 -1 0 0 2 -1 0 -1 0 0 -1 -1 0 -1 1 -1 0 0 1 1 0 -1 1 0 0 1 0 -1 -2 -2 -1 -2 0 -1 0 • -2 -2 -1 -2 -1 0 -1 0

Peter Butkovic MOPNET 27 April 2011

 A_{λ}^+

Eigenproblem: The principal eigenvalue and eigenvectors

•
$$A = \begin{pmatrix} 0 & 3 \\ 1 & -1 \\ & 2 \\ & & 1 \end{pmatrix}$$
, blank = ε
• $\lambda(A) = 2$
• $N_c = \{1, 2, 3\}$
• $1 \sim 2$
• dim $(A) = 2$
• $A_{\lambda}^+ = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ & & -1 \end{pmatrix}$
• A basis of the principal eigenspace is e.g.
 $\left\{g_2 = (1, 0, \varepsilon, \varepsilon)^T, g_3 = (\varepsilon, \varepsilon, 0, \varepsilon)^T\right\}$

Link to nonnegative matrices

"Passage Theorem" (Friedland 1986)

- A ... an irreducible nonnegative matrix
- $\rho(A)$... the Perron root of A• $\{A^k\}_{k=1}^{\infty}$... sequence of *Hadamard (Schur)* powers • Then $(\rho(A^k))^{1/k} \longrightarrow \lambda(A)$ (in max-times) and $\lambda(A) \le \rho(A) \le n\lambda(A)$
- This is based on $(a^k + b^k)^{1/k} \longrightarrow \max{(a, b)}$ for $k \longrightarrow \infty$
- Similarly we have

$$\left(\operatorname{per}(A^k)\right)^{1/k} \longrightarrow \sum_{\pi}^{\oplus} \prod_{i}^{\otimes} a_{i,\pi(i)} = \max_{\sigma} \sum_{i} a_{i,\sigma(i)}$$

Finding all eigenvalues: Reduced digraph

- $A \sim B$ for matrices A and B : A can be obtained from B by a simultaneous permutation of rows and columns
- If $A \sim B$ then $\Lambda(A) = \Lambda(B)$ and there is a bijection between V(A) and V(B)
- Frobenius Normal Form (FNF):

 $\begin{pmatrix} A_{11} & & & \\ A_{21} & A_{22} & \varepsilon \\ \vdots & & \ddots & \\ \vdots & & & \ddots \\ A_{r1} & A_{r2} & \cdots & \cdots & A_{rr} \end{pmatrix}, A_{11}, \dots, A_{rr} \text{ irreducible}$

- The corresponding partition of N : N₁, ..., N_r ... classes (of A)
- Reduced digraph (partially ordered set):

 $R_{A} = (\{N_{1}, ..., N_{r}\}, \{(N_{i}, N_{i}); (\exists k \in N_{i}) (\exists \ell \in N_{i}) a_{k\ell} > \varepsilon\})$

• $N_i \longrightarrow N_i$ means: there is a directed path from N_i to N_i in R_A

Finding all eigenvalues: Reduced digraph

MOPNET 27 April 2011

Finding all eigenvalues: Spectral Theorem

• A in an FNF:

 $\begin{pmatrix} A_{11} & & & \\ A_{21} & A_{22} & \varepsilon & \\ \vdots & & \ddots & \\ \vdots & & & \ddots & \\ A_{r1} & A_{r2} & \cdots & \cdots & A_{rr} \end{pmatrix}, A_{11}, \dots, A_{rr} \text{ irreducible}$

• Spectral Theorem (Gaubert, Bapat, 1992):

$$\Lambda(A) = \{\lambda(A_{ii}); \lambda(A_{ii}) \ge \lambda(A_{jj}) \text{ if } j \longrightarrow i\}$$

• *i* is called *spectral* if $\lambda(A_{ii}) \ge \lambda(A_{jj})$ whenever $j \longrightarrow i$

Finding all eigenvalues

•
$$\lambda(A_{11}) = 4$$
, $\lambda(A_{22}) = 4$, $\lambda(A_{33}) = 3$, $\lambda(A_{44}) = 5$, $r = 4$

- $\lambda(A) = 5$
- $\Lambda(A) = \{4, 5\}$
- N_1 , N_4 are spectral (N_2 is not)

• Let $A \in \overline{\mathbb{R}}^{n \times n}$ be in an FNF, $N_1, ..., N_r$ be the classes of A and $R = \{1, ..., r\}$

• Let
$$\lambda \in \Lambda(A)$$
, $\lambda > \varepsilon$ and

$$I(\lambda) = \{i \in R; \lambda(N_i) = \lambda, N_i \text{ spectral}\}$$

•
$$A \longrightarrow \lambda^{-1} \otimes A \longrightarrow (\lambda^{-1} \otimes A)^+ = (g_{ij}) = (g_1, ..., g_n)$$

•
$$N_c(\lambda) = \bigcup_{i \in I(\lambda)} N_c(A_{ii}) = \{j \in N; g_{jj} = 0, j \in \bigcup_{i \in I(\lambda)} N_i\}$$

i, *j* ∈ N_c(λ) are called λ − equivalent (notation *i* ∼_λ *j*) if *i* and *j* belong to the same cycle of cycle mean λ

Finding all eigenvectors

Theorem

Let
$$A \in \overline{\mathbb{R}}^{n \times n}$$
 and $\lambda \in \Lambda(A)$, $\lambda > \varepsilon$.

• For each
$$\lambda \in \Lambda \left(A
ight)$$
 we have

$$V(A,\lambda) = \{(\lambda^{-1} \otimes A)^+ \otimes z; z \in \overline{\mathbb{R}}^n, z_j = \varepsilon \text{ for all } j \notin N_c(\lambda)\}$$

 A basis of V(A, λ) can be obtained by taking one g_j for each λ- equivalence class

• The spectrum and bases of all eigenspaces for $A \in \overline{\mathbb{R}}^{n \times n}$... $O\left(n^3\right)$

/⊒ ► < ∃ ►

3. Reachability of eigenspaces by matrix orbits

Problem 2 (Reachability of an eigenspace): Given A and an

 $x \neq \varepsilon$, is there a k such that $A^k \otimes x$ is an eigenvector of A?

- *Matrix orbit* with starting vector x: $A \otimes x, A^2 \otimes x, ..., A^k \otimes x, ...$
- Attraction set:

$$Attr(A) = \left\{x; (\exists k) A^k \otimes x \in V(A)\right\}$$

$$V(A) \subseteq attr(A) \subseteq \overline{\mathbb{R}}^n - \{\varepsilon\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ● ● ● ● ● ● ●

- *Cyclicity* of a strongly connected digraph = g.c.d. of the lengths of its cycles
- Cyclicity of a digraph = l.c.m. of cyclicities of its SCC
 Let A ∈ ℝ^{n×n}
 - C_A... critical digraph of A
 - Cyclicity of a matrix A: $\sigma(A) =$ cyclicity of C_A
 - A is primitive if $\sigma(A) = 1$

Cyclicity Theorem

• Cyclicity Theorem (Cohen et al 1985) Every irreducible matrix A is ultimately periodic with period $\sigma = \sigma(A)$:

$$\mathcal{A}^{k+\sigma} = (\lambda(\mathcal{A}))^{\sigma} \otimes \mathcal{A}^k$$
 for all $k \geq k_0$

Corollary

If *A* is irreducible:

 $(\forall x \neq \varepsilon) A^k \otimes x \in V(A^s)$ for some k and $s \leq \sigma(A)$

- Given A irreducible and x, find the smallest s for which $(\exists k) A^k \otimes x \in V(A^s)$
- $O(n^3 \log n)$ algorithm (Sergeev 2009)

•
$$V(A) \subseteq \operatorname{attr}(A) \subseteq \overline{\mathbb{R}}^n - \{\varepsilon\}$$

Two extremes:

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶ …

æ

Strong stability (robustness)

- If A is irreducible and primitive then by the Cyclicity Theorem:
 - $A^{k+1} = \lambda(A) \otimes A^k$ for k large
 - $A^{k+1} \otimes x = \lambda(A) \otimes A^k \otimes x$ for k large and any $x \in \overline{\mathbb{R}}^n$
- A irreducible: A is robust \iff A is primitive
- Robustness criterion for reducible matrices (PB & Gaubert & RACG 2009):

A with FNF classes $N_1, ... N_r$ and no ε column is robust if and only if

- All nontrivial classes are primitive and spectral
- $(\forall i, j)$ If N_i, N_j are non-trivial, $N_i \nrightarrow N_j$ and $N_j \nrightarrow N_i$ then

$$\lambda(A_{ii}) = \lambda(A_{jj})$$

Strongly stable (robust) matrices

Reduced digraph of a robust matrix with $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$:

- A weakly stable: attr(A) = V(A)
- Let A be irreducible
- $V(A) = \{x \in \overline{\mathbb{R}}^n; A \otimes x = \lambda(A) \otimes x, x \neq \varepsilon\} \dots$ eigenvectors
- V_{*} (A) = {x ∈ ℝⁿ; A ⊗ x ≤ λ (A) ⊗ x, x ≠ ε} ... subeigenvectors
- V* (A) = {x ∈ ℝⁿ; A ⊗ x ≥ λ (A) ⊗ x, x ≠ ε} ... supereigenvectors

Weakly stable matrices

- $V(A) \subseteq V_*(A) \subseteq Attr(A)$
- $V(A) \subseteq V^*(A) \subseteq Attr(A)$
- A weakly stable \implies $V(A) = V^*(A) = V_*(A) = Attr(A)$

□ > < = > <

Theorem (PB+Sergeev, 2011)

Let A be irreducible.

A is weakly stable $\iff C_A$ is a Hamilton cycle in D_A .

Theorem (PB+Sergeev, 2011)

A (reducible) is weakly stable if and only if every spectral class is initial and weakly stable

Peter Butkovic MOPNET 27 April 2011

THANK YOU

Peter Butkovic MOPNET 27 April 2011

*ロ * * @ * * 注 * * 注 *

æ

P. Butkovic: Max-linear Systems: Theory and Algorithms (Springer Monographs in Mathematics, Springer-Verlag 2010)