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The most abstract formulation

We want to study spectral properties of elements of a non-commutative
algebra A with identity e and scalars in a field F.

We say that A € F does not lie in the spectrum of a € A if the element
e — ais invertible, i.e. there exists b € A such that

(a— Xe)b=b(a— Xe) =e.

Clearly spec(a) C F.

We might even want the scalars to lie in a commutative ring.
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The most concrete example

We choose A to be the algebra of n x n matrices whose entries lie in the
ring F of all polynomials.

A matrix a is invertible in the algebra A if and only if its determinant is an
invertible element of F, i.e. a non-zero constant.

A point in the spectrum of an n x n matrix is a polynomial, not a complex
number.
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Another concrete example

We choose A to be the algebra of n x n matrices.
and choose F to be the ring of all polynomials with degree at most N.

F is not an integral domain, and an element of F is invertible iff its
constant coefficient is non-zero, e.g. 1+ 3x — 7x°.

A matrix a is invertible in the algebra A if and only if its determinant has
a non-zero constant coefficient.
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Problem 1. The spectrum of ab and ba

Ifa, b€ A and F is a field then

spec(ab)\{0} = spec(ba)\{0}.

Proof.
If A # 0 and Ae — ab is invertible then a direct calculation shows that

c(Ae — ba) = (e — ba)c =e

where
c=X"1(e+ b(\e —ab)1a).

E.B. Davies (KCL) Algebraic Spectral Theory MOPNET4, April 2011 5/ 14



Extension

If a, b € A and A is finite-dimensional then

spec(ab) = spec(ba).

Proof.

In addition to the last theorem, we need to prove that ab is invertible if

and only if ba is invertible.
If A is a matrix algebra this reduces to proving that det(ab) is invertible if
and only if det(ba) is invertible. But each of these equals det(a) det(b)

because scalars commutate.

6/ 14

E.B. Davies (KCL) Algebraic Spectral Theory MOPNET4, April 2011



Problem 2. Sylvester's equation

The problem is to find conditions under which
ax —xb=c

has a solution x € A, given that a, b, ¢ € A. Here we assume that A is a
non-commutative algebra and that F is an arbitrary field of scalars, not
necessarily algebraically closed.

As usual one could consider A to be the algebra of all n x n matrices with
entries in F.

The key condition for the existence of a solution is that a and b should be
spectrally disjoint, which means more than just

spec(a) N spec(b) = 0.
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Spectral disjointness

We say that a and b are spectrally disjoint if they have minimum
polynomials p and g that are relatively prime.

So we want
0 = p(a)zza,ar
r=0
0 = q(b)=) B b
r=0
1 = ph+ gk

where a, =1, 6, =1 and p, q, h, k are polynomials with entries in F.
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Algebraically closure

If F* is the algebraic closure of F then a, b are spectrally disjoint in A if
and only if their spectra are disjoint when calculated in A* = A ® F*.
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Sylvester's Theorem

If a, b € A are spectrally disjoint then the equation
ax —xb=c

has a unique solution x € A for all c € A.

Proof.

We consider instead the problem L,(x) — Rp(x) = ¢ where x, ¢ are
elements of A regarded as a vector space, and L,, R}, are the linear
operators on A defined by

Lo(x) = ax, Rp(x) = xb.

Purely algebraic methods are now used to prove that L, — Ry, is an
invertible operator on A. O

v
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Problem 3. The essential spectrum

If IC is the set of all compact operators in A = L(H) then K is a two-sided
ideal.

One says that a € A is a Fredholm operator if there exist b, ¢ € A such
that
ab=e+ ky, ca=e+ ko

and k; € K.

The essential spectrum of a is the set of A € C for which a — \e is not
Fredholm. This is a subset of the spectrum.
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The algebraic version of essential spectrum

Let A be an algebra over a field F and let 7 be a two-sided ideal in A.
Let 77 : A — A/J be the quotient map.

Then the J-essential spectrum spec;(a) of a € A is defined to be the set
of A € F for which 77(\e — a) is not invertible in A/7.

This enables one to classify the ordinary essential spectrum into parts, if

H = L?(R") and there is a two-sided ideal corresponding to every direction
at infinity in R".
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Dealing with unbounded operators

If A is an algebra over the field F then one might associate an ‘operator
not in A" with a resolvent family (r, S). By this we mean a subset S of F
and a map r: S — A such that

=, = (= A)nr
forall A, p € S.

If a € A one may put ry, = (Ae — a)~! where S is the set of all A\ € F for
which the inverse exists in A.

More general resolvent families exist. Every such (r,S) has a unique

extension (F, 3) with S C S which is maximal in the obvious sense. Then
F\S is called the spectrum of the resolvent family.
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The essential spectrum of unbounded operators

Let (r,S) be a maximal resolvent family in A and let 7 be a two-sided
ideal in A and let 77 : A — A/J be the natural quotient map. Then one
can define the resolvent family (r7, S) in A/J by rz = mz(ry).

However (r7,S) may not be maximal, so one should construct its maximal
extension (F7,S). This has S C S. Therefore the J-spectrum of the
resolvent is contained within the ordinary spectrum of the resolvent.

This is exactly compatible with the definition of the spectrum and

essential spectrum of an unbounded operator a if A= L(H) and J is the
ideal of all compact operators.
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