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The most abstract formulation

We want to study spectral properties of elements of a non-commutative
algebra A with identity e and scalars in a field F.

We say that λ ∈ F does not lie in the spectrum of a ∈ A if the element
λe − a is invertible, i.e. there exists b ∈ A such that

(a− λe)b = b(a− λe) = e.

Clearly spec(a) ⊆ F.

We might even want the scalars to lie in a commutative ring.
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The most concrete example

We choose A to be the algebra of n × n matrices whose entries lie in the
ring F of all polynomials.

A matrix a is invertible in the algebra A if and only if its determinant is an
invertible element of F, i.e. a non-zero constant.

A point in the spectrum of an n× n matrix is a polynomial, not a complex
number.
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Another concrete example

We choose A to be the algebra of n × n matrices.

and choose F to be the ring of all polynomials with degree at most N.

F is not an integral domain, and an element of F is invertible iff its
constant coefficient is non-zero, e.g. 1 + 3x − 7x2.

A matrix a is invertible in the algebra A if and only if its determinant has
a non-zero constant coefficient.
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Problem 1. The spectrum of ab and ba

Theorem

If a, b ∈ A and F is a field then

spec(ab)\{0} = spec(ba)\{0}.

Proof.

If λ 6= 0 and λe − ab is invertible then a direct calculation shows that

c(λe − ba) = (λe − ba)c = e

where
c = λ−1(e + b(λe − ab)−1a).
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Extension

Theorem

If a, b ∈ A and A is finite-dimensional then

spec(ab) = spec(ba).

Proof.

In addition to the last theorem, we need to prove that ab is invertible if
and only if ba is invertible.
If A is a matrix algebra this reduces to proving that det(ab) is invertible if
and only if det(ba) is invertible. But each of these equals det(a) det(b)
because scalars commutate.
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Problem 2. Sylvester’s equation

The problem is to find conditions under which

ax − xb = c

has a solution x ∈ A, given that a, b, c ∈ A. Here we assume that A is a
non-commutative algebra and that F is an arbitrary field of scalars, not
necessarily algebraically closed.

As usual one could consider A to be the algebra of all n × n matrices with
entries in F.

The key condition for the existence of a solution is that a and b should be
spectrally disjoint, which means more than just

spec(a) ∩ spec(b) = ∅.
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Spectral disjointness

We say that a and b are spectrally disjoint if they have minimum
polynomials p and q that are relatively prime.

So we want

0 = p(a) =
m∑

r=0

αr ar

0 = q(b) =
n∑

r=0

βr br

1 = ph + qk

where αm = 1, βn = 1 and p, q, h, k are polynomials with entries in F.
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Algebraically closure

Lemma

If F∗ is the algebraic closure of F then a, b are spectrally disjoint in A if
and only if their spectra are disjoint when calculated in A∗ = A⊗ F∗.
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Sylvester’s Theorem

Theorem

If a, b ∈ A are spectrally disjoint then the equation

ax − xb = c

has a unique solution x ∈ A for all c ∈ A.

Proof.

We consider instead the problem La(x)− Rb(x) = c where x , c are
elements of A regarded as a vector space, and La, Rb are the linear
operators on A defined by

La(x) = ax , Rb(x) = xb.

Purely algebraic methods are now used to prove that La − Rb is an
invertible operator on A.
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Problem 3. The essential spectrum

If K is the set of all compact operators in A = L(H) then K is a two-sided
ideal.

One says that a ∈ A is a Fredholm operator if there exist b, c ∈ A such
that

ab = e + k1, ca = e + k2

and ki ∈ K.

The essential spectrum of a is the set of λ ∈ C for which a− λe is not
Fredholm. This is a subset of the spectrum.
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The algebraic version of essential spectrum

Let A be an algebra over a field F and let J be a two-sided ideal in A.
Let πJ : A → A/J be the quotient map.

Then the J -essential spectrum specJ (a) of a ∈ A is defined to be the set
of λ ∈ F for which πJ (λe − a) is not invertible in A/J .

This enables one to classify the ordinary essential spectrum into parts, if
H = L2(Rn) and there is a two-sided ideal corresponding to every direction
at infinity in Rn.
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Dealing with unbounded operators

If A is an algebra over the field F then one might associate an ‘operator
not in A’ with a resolvent family (r ,S). By this we mean a subset S of F
and a map r : S → A such that

rλ − rµ = (µ− λ)rλrµ

for all λ, µ ∈ S .

If a ∈ A one may put rλ = (λe − a)−1 where S is the set of all λ ∈ F for
which the inverse exists in A.

More general resolvent families exist. Every such (r ,S) has a unique
extension (r̃ , S̃) with S ⊆ S̃ which is maximal in the obvious sense. Then
F\S̃ is called the spectrum of the resolvent family.
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The essential spectrum of unbounded operators

Let (r , S) be a maximal resolvent family in A and let J be a two-sided
ideal in A and let πJ : A → A/J be the natural quotient map. Then one
can define the resolvent family (rJ , S) in A/J by rJ ,λ = πJ (rλ).

However (rJ , S) may not be maximal, so one should construct its maximal
extension (r̃J , S̃). This has S ⊆ S̃ . Therefore the J -spectrum of the
resolvent is contained within the ordinary spectrum of the resolvent.

This is exactly compatible with the definition of the spectrum and
essential spectrum of an unbounded operator a if A = L(H) and J is the
ideal of all compact operators.
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