Purely Algebraic Results in Spectral Theory

E. Brian Davies

King's College London

MOPNET4, April 2011

We want to study spectral properties of elements of a non-commutative algebra \mathcal{A} with identity e and scalars in a field **F**.

We say that $\lambda \in \mathbf{F}$ does not lie in the spectrum of $a \in \mathcal{A}$ if the element $\lambda e - a$ is invertible, i.e. there exists $b \in \mathcal{A}$ such that

$$(a - \lambda e)b = b(a - \lambda e) = e.$$

Clearly spec(a) \subseteq **F**.

We might even want the scalars to lie in a commutative ring.

- We choose A to be the algebra of $n \times n$ matrices whose entries lie in the ring **F** of all polynomials.
- A matrix *a* is invertible in the algebra \mathcal{A} if and only if its determinant is an invertible element of **F**, i.e. a non-zero constant.

A point in the spectrum of an $n \times n$ matrix is a polynomial, not a complex number.

We choose \mathcal{A} to be the algebra of $n \times n$ matrices.

and choose F to be the ring of all polynomials with degree at most N.

F is not an integral domain, and an element of **F** is invertible iff its constant coefficient is non-zero, e.g. $1 + 3x - 7x^2$.

A matrix a is invertible in the algebra \mathcal{A} if and only if its determinant has a non-zero constant coefficient.

Problem 1. The spectrum of ab and ba

Theorem

If $a, b \in \mathcal{A}$ and \mathbf{F} is a field then

```
\operatorname{spec}(ab) \setminus \{0\} = \operatorname{spec}(ba) \setminus \{0\}.
```

Proof.

If $\lambda \neq 0$ and $\lambda e - ab$ is invertible then a direct calculation shows that

$$c(\lambda e - ba) = (\lambda e - ba)c = e$$

where

$$c = \lambda^{-1}(e + b(\lambda e - ab)^{-1}a).$$

Extension

Theorem

If a, $b \in \mathcal{A}$ and \mathcal{A} is finite-dimensional then

 $\operatorname{spec}(ab) = \operatorname{spec}(ba).$

Proof.

In addition to the last theorem, we need to prove that ab is invertible if and only if ba is invertible.

If \mathcal{A} is a matrix algebra this reduces to proving that $\det(ab)$ is invertible if and only if $\det(ba)$ is invertible. But each of these equals $\det(a) \det(b)$ because scalars commutate.

Problem 2. Sylvester's equation

The problem is to find conditions under which

ax - xb = c

has a solution $x \in A$, given that $a, b, c \in A$. Here we assume that A is a non-commutative algebra and that **F** is an arbitrary field of scalars, not necessarily algebraically closed.

As usual one could consider A to be the algebra of all $n \times n$ matrices with entries in **F**.

The key condition for the existence of a solution is that a and b should be spectrally disjoint, which means more than just

 $\operatorname{spec}(a) \cap \operatorname{spec}(b) = \emptyset.$

We say that a and b are spectrally disjoint if they have minimum polynomials p and q that are relatively prime.

So we want

$$0 = p(a) = \sum_{r=0}^{m} \alpha_r a^r$$
$$0 = q(b) = \sum_{r=0}^{n} \beta_r b^r$$
$$1 = ph + qk$$

where $\alpha_m = 1$, $\beta_n = 1$ and p, q, h, k are polynomials with entries in **F**.

Lemma

If \mathbf{F}^* is the algebraic closure of \mathbf{F} then a, b are spectrally disjoint in \mathcal{A} if and only if their spectra are disjoint when calculated in $\mathcal{A}^* = \mathcal{A} \otimes \mathbf{F}^*$.

Sylvester's Theorem

Theorem

If $a, b \in \mathcal{A}$ are spectrally disjoint then the equation

ax - xb = c

has a unique solution $x \in \mathcal{A}$ for all $c \in \mathcal{A}$.

Proof.

We consider instead the problem $L_a(x) - R_b(x) = c$ where x, c are elements of A regarded as a vector space, and L_a, R_b are the linear operators on A defined by

$$L_a(x) = ax,$$
 $R_b(x) = xb.$

Purely algebraic methods are now used to prove that $L_a - R_b$ is an invertible operator on A.

If \mathcal{K} is the set of all compact operators in $\mathcal{A} = \mathcal{L}(\mathcal{H})$ then \mathcal{K} is a two-sided ideal.

One says that $a \in A$ is a Fredholm operator if there exist $b, c \in A$ such that

$$ab = e + k_1, \qquad \qquad ca = e + k_2$$

and $k_i \in \mathcal{K}$.

The essential spectrum of *a* is the set of $\lambda \in \mathbf{C}$ for which $a - \lambda e$ is not Fredholm. This is a subset of the spectrum.

Let \mathcal{A} be an algebra over a field **F** and let \mathcal{J} be a two-sided ideal in \mathcal{A} . Let $\pi_{\mathcal{J}} : \mathcal{A} \to \mathcal{A}/\mathcal{J}$ be the quotient map.

Then the \mathcal{J} -essential spectrum $\operatorname{spec}_{\mathcal{J}}(a)$ of $a \in \mathcal{A}$ is defined to be the set of $\lambda \in \mathbf{F}$ for which $\pi_{\mathcal{J}}(\lambda e - a)$ is not invertible in \mathcal{A}/\mathcal{J} .

This enables one to classify the ordinary essential spectrum into parts, if $\mathcal{H} = L^2(\mathbb{R}^n)$ and there is a two-sided ideal corresponding to every direction at infinity in \mathbb{R}^n .

If \mathcal{A} is an algebra over the field **F** then one might associate an 'operator not in \mathcal{A} ' with a resolvent family (r, S). By this we mean a subset S of **F** and a map $r: S \to \mathcal{A}$ such that

$$r_{\lambda} - r_{\mu} = (\mu - \lambda) r_{\lambda} r_{\mu}$$

for all $\lambda, \mu \in S$.

If $a \in A$ one may put $r_{\lambda} = (\lambda e - a)^{-1}$ where S is the set of all $\lambda \in \mathbf{F}$ for which the inverse exists in A.

More general resolvent families exist. Every such (r, S) has a unique extension (\tilde{r}, \tilde{S}) with $S \subseteq \tilde{S}$ which is maximal in the obvious sense. Then $\mathbf{F} \setminus \tilde{S}$ is called the spectrum of the resolvent family.

Let (r, S) be a maximal resolvent family in \mathcal{A} and let \mathcal{J} be a two-sided ideal in \mathcal{A} and let $\pi_{\mathcal{J}} : \mathcal{A} \to \mathcal{A}/\mathcal{J}$ be the natural quotient map. Then one can define the resolvent family $(r_{\mathcal{J}}, S)$ in \mathcal{A}/\mathcal{J} by $r_{\mathcal{J},\lambda} = \pi_{\mathcal{J}}(r_{\lambda})$.

However $(r_{\mathcal{J}}, S)$ may not be maximal, so one should construct its maximal extension $(\tilde{r}_{\mathcal{J}}, \tilde{S})$. This has $S \subseteq \tilde{S}$. Therefore the \mathcal{J} -spectrum of the resolvent is contained within the ordinary spectrum of the resolvent.

This is exactly compatible with the definition of the spectrum and essential spectrum of an unbounded operator a if $\mathcal{A} = \mathcal{L}(\mathcal{H})$ and \mathcal{J} is the ideal of all compact operators.