Palindromic pencils, orbits, and the solution of the equation $X A+A X^{T}=0$

Fernando de Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

Outline

(9) Motivation

- Palindromic pencils
- Orbits and the computation of canonical forms
- Congruence orbits
(2) Solution of $X A+A X^{T}=0$
- Dimension of the congruence orbits
- Generic canonical structure
(3) Orbits of palindromic pencils

Congruence and palindromic pencils

Given $A, B \in \mathbb{C}^{n \times n}$
$A+\lambda B$: matrix pencil
Eigenstructure: Invariants under strict equivalence.
$A^{\prime}+\lambda B^{\prime}=P(A+\lambda B) Q, \quad P, Q$ nonsingular \quad (strict equivalence)
Canonical Form: Kronecker Canonical Form
Particular cases:

- Generalized Eigenvalue Problem (eigenvalues and eigenvectors)
$\Delta B=-I \longrightarrow A-\lambda I \Longrightarrow Q=P^{-1}$ (similarity, Jordan Canonical Form) Standard Eigenvalue Problem
$A+\lambda A^{T}$: palindromic pencil
To preserve the structure: $P\left(A+\lambda A^{T}\right) P^{T}=(P A)+\lambda(P A)^{T}$ (congruence)

Palindromic pencils

Applications:

- Quadratic palindromic polynomials $\lambda^{2} A+\lambda B+A^{T}$ (with $B^{T}=B$)
- Rail traffic noise of high speed trains.
- Surface Acoustic Waves (SAW) filters.
- Discrete Optimal Control of higher order difference equations.
- Eigenstructure: comprises relevant (physical) information of the system.
- Palindromic pencils: useful in the numerical solution of eigenvalue problems of quadratic matrix polynomials (through linearizations).

Some interesting questions

Due to roundoff errors, uncertainty in the data, etc., usually we do not compute the exact canonical form.

- Which are the nearby canonical structures (JCF, KCF) to a given one?
- Which is the generic canonical structure?

Same question for matrices/matrix pencils in a particular subset (low-rank, palindromic, symmetric,...)

- The theory of orbits provides a theoretical framework.

An illustrative example

$A=J_{3}(0) \oplus J_{2}(0)$
10000 random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

An illustrative example

$$
\begin{aligned}
& A=J_{3}(0) \oplus J_{2}(0) \\
& 50000 \text { (filtered) random perturbations with norm } \sim \sqrt{2^{-52}} \text { (positive entries) }
\end{aligned}
$$

An illustrative example

$A=J_{3}(0) \oplus J_{2}(0)$
50000 (filtered) random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

$J_{5}(0)$ is "close" to $J_{3}(0) \oplus J_{2}(0)$

An illustrative example

$A=J_{3}(0) \oplus J_{2}(0)$
50000 (filtered) random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

$J_{3}(0) \oplus J_{2}(0)$ is in the closure of the orbit of $J_{5}(0)$

Congruence, equivalence and similarity. Orbits

Given $A, B \in \mathbb{C}^{n \times n}$

$$
\begin{array}{cll}
\mathscr{O}(A)=\left\{P A P^{\top}: P \text { nonsingular }\right\} & & \text { Congruence orbit of } A \\
\mathscr{O}_{s}(A)=\left\{P A P^{-1}: P \text { nonsingular }\right\} & \text { Similarity orbit of } A \\
\mathscr{O}_{e}(A+\lambda B)=\{P(A+\lambda B) Q: P, Q \text { nonsingular }\} & \text { Equivalency orbit of } A+\lambda B
\end{array}
$$

Similarity/equivalency orbits:

- Have been widely studied: Arnold (1971), Demmel-Edelman (1995), Edelman-Elmroth-Kågström (1997, 1999), Johansson (2006), ...
- Correspond to matrices with the same Jordan Canonical Form (JCF) / Pencils with the same Kronecker Canonical Form (KCF).
- The dimension of these manifolds gives us an idea of their "size".
- The description of the hierarchy between closures of different orbits allows to identify nearby Jordan/Kronecker structures and may be useful in the design and analysis of algorithms to compute the JCF/KCF.

Congruence orbits?

Codimension of the tangent space

$$
\begin{array}{cl}
T_{\mathscr{O}(A)}(A)=\left\{X A+A X^{T}: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}(A) \text { at } A \\
T_{\mathscr{O}_{s}(A)}(A)=\left\{X A-A X: X \in \mathbb{C}^{n \times n}\right\} & \text { Tangent space of } \mathscr{O}_{s}(A) \text { at } A
\end{array}
$$

Then:
(a) $\operatorname{codim} \mathscr{O}(A)=\operatorname{codim} T_{\mathscr{O}(A)}(A)=\operatorname{dim}$ (solution space of $X A+A X^{\top}=0$)
(b) $\operatorname{codim} \mathscr{O}_{s}(A)=\operatorname{codim} T_{\mathscr{O}_{s}(A)}(A)=\operatorname{dim}($ solution space of $X A-A X=0)$

Solution of $X A-A X=0$: known since the 1950's (Gantmacher). Depends on the JCF of A.

Goal: Solve $X A+A X^{T}=0$
(We are mainly interested in the dimension of the solution space, but we are able also to give the solution!)

Change of basis

Notation: $\mathscr{S}_{A}=\left\{X \in \mathbb{C}^{n \times n}: X A+A X^{T}=0\right\}$ (solution space)
Set $B=P A P^{T}$ (P nonsingular) then $\mathscr{S}_{A}=P^{-1} \mathscr{S}_{B} P$
In particular: $\operatorname{dim} \mathscr{S}_{A}=\operatorname{dim} \mathscr{S}_{B}$
Procedure to solve $X A+A X^{T}=0$:
(1) Set $C_{A}=P A P^{T}$, the canonical form of A (for congruence)
(2) Solve $Y C_{A}+C_{A} Y^{T}=0$
(3) Undo the change: $X=P^{-1} Y P$

The canonical form for congruence

Theorem (Canonical form for congruence [Horn \& Sergeichuk, 2006])

Each matrix $A \in \mathbb{C}^{n \times n}$ is congruent to a direct sum (uniquely determined up to permutation) of blocks of types $0, I$ and II.

- Another canonical form for congruence: [Turnbull \& Aitken, 1932], Six types of blocks

Partition on canonical blocks

Set $C_{A}=D_{1} \oplus \cdots \oplus D_{s}, \quad D_{i}=J_{k}(0), \Gamma_{k}$, or $H_{2 k}(\mu) \quad$ (Canonical form of A)
Partition $X=\left[\begin{array}{ccc}X_{11} & \ldots & X_{1 s} \\ \vdots & & \vdots \\ X_{s 1} & \ldots & X_{s s}\end{array}\right]$ conformally with C_{A}.
Equating the (i, j) and (j, i) blocks of $X C_{A}+C_{A} X^{T}=0$, we get:

- $i=j: X_{i i} D_{i}+D_{i} X_{i j}^{T}=0 \quad \rightarrow \operatorname{codim} D_{i}$ (codimension)
- $i \neq j: \begin{array}{ll}(i, j) & X_{i j} D_{j}+D_{i}^{T} X_{j i}^{T}=0 \\ (j, i) & X_{j i} D_{i}+D_{j}^{T} X_{i j}^{T}=0\end{array} \rightarrow \operatorname{inter}\left(D_{i}, D_{j}\right)$ (interaction)

Then:

$$
\operatorname{dim} \mathscr{S}_{A}=\operatorname{codim} \mathscr{O}(A)=\sum_{i} \operatorname{codim} D_{i}+\sum_{i, j} \operatorname{inter}\left(D_{i}, D_{j}\right)
$$

Partition on canonical blocks (ctd)

The problem reduces to solve:
(a) $X D+D X^{T}=0$
(b) $\begin{aligned} X D_{1}+D_{2} Y^{T} & =0 \\ Y D_{1}+D_{2} X^{T} & =0\end{aligned}$

With $D, D_{1}, D_{2}=J_{k}(0)$ (type 0$), \Gamma_{k}$ (type I), or $H_{2 k}(\mu)$ (type II)

Codimension of individual blocks

Type	Equation	Codimension
0	$X J_{k}(0)+J_{k}(0) X^{T}=0$	$c_{0}=\left\lceil\frac{k}{2}\right\rceil$
I	$X \Gamma_{k}+\Gamma_{k} X^{T}=0$	$c_{1}=\left\lfloor\frac{k}{2}\right\rfloor$
II	$X H_{2 k}(\mu)+H_{2 k}(\mu) X^{T}=0$	$c_{2}=\left\{\begin{array}{cc\|}k, & \text { if } \mu \neq(-1)^{k} \\ k+2\left\lceil\frac{k}{2}\right\rceil, & \text { if } \mu=(-1)^{k}\end{array}\right.$

- Explicit solution for types 0, I available.
- Algorithm for computing solution for type II.
- Solution of $X \Gamma_{k}+\Gamma_{k} X^{T}=0$ (type I):

$$
X=\left[\begin{array}{cccccccc}
0 & & & & & & 0 \\
x_{1} & 0 & & & & & \\
0 & x_{1} & 0 & & & & \\
x_{2} & 0 & x_{1} & 0 & & & \\
0 & x_{2} & 0 & x_{1} & 0 & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
x_{\frac{k}{2}} & \cdots & 0 & x_{2} & 0 & x_{1} & 0
\end{array}\right], \quad X=\left[\begin{array}{cccccccc}
0 & & & & & & 0 \\
x_{1} & 0 & & & & & \\
0 & x_{1} & 0 & & & & \\
x_{2} & 0 & x_{1} & 0 & & & \\
0 & x_{2} & 0 & x_{1} & 0 & & & \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & & \\
& (\mathrm{k} \text { even) } & &
\end{array}\right.
$$

Interaction between canonical blocks

Blocks of the same type:

Type	Equation	Interaction
0-0	$\begin{aligned} & X J_{k}(0)+J_{\ell}(0) Y^{\top}=0 \\ & Y J_{\ell}(0)+J_{k}(0) X^{T}=0 \quad(k \geq \ell), \end{aligned}$	$i_{00}=\left\{\begin{array}{c}\ell, \quad \ell \text { even } \\ k, \quad \ell \text { odd and } k \neq \ell \\ k+1, \ell \text { odd and } k=\ell\end{array}\right.$
I-I	$\begin{aligned} & X \Gamma_{k}+\Gamma_{\ell} Y^{T}=0 \\ & Y \Gamma_{\ell}+\Gamma_{k} X^{T}=0 \end{aligned}$	$i_{11}=\left\{\begin{array}{cl} 0, & k, \ell \text { different parity } \\ \min \{k, \ell\}, & k, \ell \text { same parity } \end{array}\right.$
II-II	$\begin{aligned} X H_{2 k}(\mu)+H_{2 \ell}(\widetilde{\mu}) Y^{\top} & =0 \\ Y H_{2 \ell}(\widetilde{\mu})+H_{2 k}(\mu) X^{T} & =0 \end{aligned}$	$i_{22}=\left\{\begin{array}{cl} 4 \min \{k, \ell\}, & \mu=\widetilde{\mu}= \pm 1 \\ 2 \min \{k, \ell\}, & \mu=\widetilde{\mu} \neq \pm 1 \\ 2 \min \{k, \ell\}, & \mu \neq \widetilde{\mu}, \mu \widetilde{\mu}=1 \\ 0, & \mu \neq \widetilde{\mu}, \mu \widetilde{\mu} \neq 1 \end{array}\right.$

Interaction between canonical blocks (ctd)

Blocks of different type:

Type	Equation	Interaction
$0-I$	$X J_{k}(0)+\Gamma_{\ell} Y^{T}=0$ $Y \Gamma_{\ell}+J_{k}(0) X^{T}=0$	$i_{01}=\left\{\begin{array}{cc\|}0, & k \text { even } \\ \ell, & k \text { odd }\end{array}\right.$
$0-I I$	$X J_{k}(0)+H_{2 \ell}(\mu) Y^{T}=0$ $Y H_{2 \ell}(\mu)+J_{k}(0) X^{T}=0$	$i_{02}=\left\{\begin{array}{cc\|}0, & k \text { even } \\ 2 \ell, & k \text { odd }\end{array}\right.$
I-II	$X \Gamma_{k}+H_{2 \ell}(\mu) Y^{T}=0$ $Y H_{2 \ell}(\mu)+\Gamma_{k} X^{T}=0$	$i_{12}=\left\{\begin{array}{cc}2 \min \{k, \ell\}, & \mu=(-1)^{k+1} \\ 0, & \mu \neq(-1)^{k+1} \\ \hline\end{array}\right.$

- Explicit solution available (for all cases).

The codimension formula

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix with canonical form for congruence

$$
\begin{aligned}
C_{A}= & J_{p_{1}}(0) \oplus J_{p_{2}}(0) \oplus \cdots \oplus J_{p_{a}}(0) \\
& \oplus \Gamma_{q_{1}} \oplus \Gamma_{q_{2}} \oplus \cdots \oplus \Gamma_{q_{b}} \\
& \oplus H_{2 r_{1}}\left(\mu_{1}\right) \oplus H_{2 r_{2}}\left(\mu_{2}\right) \oplus \cdots \oplus H_{2 r_{c}}\left(\mu_{c}\right) .
\end{aligned}
$$

Then the codimension of the orbit of A for the action of congruence, i.e., the dimension of the solution space of $X A+A X^{T}=0$, depends only on C_{A}. It can be computed as the sum

$$
c_{\text {Total }}=c_{0}+c_{1}+c_{2}+i_{00}+i_{11}+i_{22}+i_{01}+i_{02}+i_{12}
$$

Application: Generic canonical form for congruence

Generic = codimension zero

Theorem

The minimal codimension for a congruence orbit in $\mathbb{C}^{n \times n}$ is $\lfloor n / 2\rfloor$.

No generic canonical form for congruence!!
Similarity orbits (JCF): There is no generic JCF (with fixed eigenvalues)

- The generic Jordan structure is $J_{1}\left(\lambda_{1}\right) \oplus \cdots \oplus J_{1}\left(\lambda_{n}\right)$, with $\lambda_{1}, \ldots, \lambda_{n}$ different (not fixed)

Bundles

For similarity (Arnold, 1971):
Given $A \in \mathbb{C}^{n \times n}$, with

$$
J_{A}=J_{\lambda_{1}} \oplus \cdots \oplus J_{\lambda_{d}}
$$

where

$$
J_{\lambda_{i}}=J_{n_{i, 1}}\left(\lambda_{i}\right) \oplus \cdots \oplus J_{n_{i, q_{i}}}\left(\lambda_{i}\right), \quad \text { for } i=1, \ldots, d
$$

the similarity bundle of A is

$$
\mathscr{B}_{s}(A)=\bigcup_{\substack{\lambda_{i}^{\prime} \in \mathbb{C}, i=1, \ldots, d \\ \lambda_{i}^{\prime} \neq \lambda_{j}^{\prime}}} J_{\lambda_{1}^{\prime}} \oplus \cdots \oplus J_{\lambda_{d}^{\prime}}
$$

Given A with $C_{A}=\bigoplus_{i=1}^{a} J_{p_{i}}(0) \oplus \oplus_{i=1}^{b} \Gamma_{q_{i}} \oplus \oplus_{i=1}^{t} \mathscr{H}\left(\mu_{i}\right), \mu_{i} \neq \mu_{j}, \mu_{i} \neq 1 / \mu_{j}$ if $i \neq j$, Definition: Congruence bundle of A :

$$
\mathscr{B}(A)=\bigcup_{\substack{\mu_{i}^{\prime} \in \mathbb{C}, i=1, \ldots, t \\ \mu_{i}^{\prime} \neq \mu_{j}^{\prime}, \mu_{i}^{\prime} \mu_{j}^{\prime} \neq 1, i \neq j}} \mathscr{O}\left(\bigoplus_{i=1}^{a} J_{p_{i}}(0) \oplus \bigoplus_{i=1}^{b} \Gamma_{i} \oplus \bigoplus_{i=1}^{t} \mathscr{H}\left(\mu_{i}^{\prime}\right)\right)
$$

(same structure as C_{A} but unfixed complex values μ in type II blocks)

The generic structure

$\operatorname{codim}(\mathscr{B}(A))=\operatorname{codim}(\mathscr{O}(A))-t$.
($t=$ number of different μ^{\prime} s appearing in type II blocks of C_{A})

Theorem

The following bundles in $\mathbb{C}^{n \times n}$ have codimension zero
(0) neven

$$
G_{n}=H_{2}\left(\mu_{1}\right) \oplus H_{2}\left(\mu_{2}\right) \oplus \cdots \oplus H_{2}\left(\mu_{n / 2}\right),
$$

with $\mu_{i} \neq \pm 1, i=1, \ldots, n / 2, \mu_{i} \neq \mu_{j}$ and $\mu_{i} \neq 1 / \mu_{j}$ if $i \neq j$.
(2) nodd

$$
G_{n}=H_{2}\left(\mu_{1}\right) \oplus H_{2}\left(\mu_{2}\right) \oplus \cdots \oplus H_{2}\left(\mu_{(n-1) / 2}\right) \oplus \Gamma_{1},
$$

with $\mu_{i} \neq \pm 1, i=1, \ldots,(n-1) / 2, \mu_{i} \neq \mu_{j}$ and $\mu_{i} \neq 1 / \mu_{j}$ if $i \neq j$.
Then G_{n} is the generic canonical structure for congruence in $\mathbb{C}^{n \times n}$ (with unspecified values $\left.\mu_{1}, \mu_{2}, \ldots, \mu_{\lfloor n / 2\rfloor}\right)$.

Congruence vs equivalence

Congruence orbit of $A+\lambda A^{T}: \mathscr{O}\left(A+\lambda A^{T}\right)=\left\{P\left(A+\lambda A^{T}\right) P^{T}: \operatorname{det} P \neq 0\right\}$
A, B are congruent iff $A+\lambda A^{T}, B+\lambda B^{T}$ are congruent.
There is a bijection $\mathscr{O}(A) \longrightarrow \mathscr{O}\left(A+\lambda A^{T}\right)$
The generic canonical form for congruence of $A+\lambda A^{T}$ is $G_{n}+\lambda G_{n}^{T}$
The KCF of $A+\lambda A^{T}$ is congruent to $A+\lambda A^{T}$
Canonical form for congruence of palindromics: KCF !!!
We can determine:

- dimension of $\mathscr{O}\left(A+\lambda A^{T}\right)$
- generic KCF of palindromic pencils

Generic KCF of palindromic pencils

Theorem

The generic KCF of palindromic pencils in $\mathbb{C}^{n \times n}$ is
(1) If n is even:
$\left(\lambda+\mu_{1}\right) \oplus\left(\lambda+1 / \mu_{1}\right) \oplus\left(\lambda+\mu_{2}\right) \oplus\left(\lambda+1 / \mu_{2}\right) \oplus \cdots \oplus\left(\lambda+\mu_{n / 2}\right) \oplus\left(\lambda+1 / \mu_{n / 2}\right)$,
where $\mu_{1}, \ldots, \mu_{n / 2}$ are unspecified complex numbers such that $0 \neq \mu_{i} \neq \pm 1, i=1, \ldots, n / 2, \mu_{i} \neq \mu_{j}$ and $\mu_{i} \neq 1 / \mu_{j}$ if $i \neq j$.
(2) If n is odd:

$$
\begin{gathered}
\left(\lambda+\mu_{1}\right) \oplus\left(\lambda+1 / \mu_{1}\right) \oplus\left(\lambda+\mu_{2}\right) \oplus\left(\lambda+1 / \mu_{2}\right) \oplus \cdots \oplus \\
\left(\lambda+\mu_{(n-1) / 2}\right) \oplus\left(\lambda+1 / \mu_{(n-1) / 2}\right) \oplus(\lambda+1)
\end{gathered}
$$

where $\mu_{1}, \ldots, \mu_{(n-1) / 2}$ are unspecified complex numbers such that $0 \neq \mu_{i} \neq \pm 1, i=1, \ldots,(n-1) / 2, \mu_{i} \neq \mu_{j}$ and $\mu_{i} \neq 1 / \mu_{j}$ if $i \neq j$.

Conclusions

- We have solved the matrix equation $X A+A X^{T}=0$, for $A \in \mathbb{C}^{n \times n}$.
- As a consequence, we have computed the dimension of the congruence orbit of A in terms of the canonical form by congruence of A.
- We have determined the generic canonical structure for congruence in $\mathbb{C}^{n \times n}$ and also the generic KCF of palindromic pencils.

Related and future work

- Solve the matrix equation $X A+A X^{*}=0$ (done, to appear in ELA).
- Other related equations: $X A+A X^{T}=C, X A+B X^{T}=C, A, B, C \in \mathbb{C}^{n \times n}$.
- Describe the hierarchy between closures of congruence orbits.

V．I．Arnold，On matrices depending on parameters，Russian Math． Surveys， 26 （1971）29－43．
囯 J．W．Demmel，A．Edelman，The dimension of matrices（matrix pencils） with given Jordan（Kronecker）canonical forms，Linear Algebra Appl．， 230 （1995）61－87．
葍 F．De Terán，F．M．Dopico，The solution of the equation $X A+A X^{T}=0$ and ts application to the theory of orbits，Linear Algebra Appl．， 434 （2011） 44－67．
䡒 A．Edelman，E．Elmroth，B．KÅgström，A geometric approach to perturbation theory of matrices and matrix pencils．Part I：Versal deformations，SIAM J．Matrix Anal．Appl．， 18 （1997）653－692．
睩 A．Edelman，E．Elmroth，B．KÅgström，A geometric approach to perturbation theory of matrices and matrix pencils．Part II：A stratification－enhanced staircase algorithm，SIAM J．Matrix Anal．Appl．， 20 （1999）667－699．
R．A．Horn，V．V．Sergeichuk，Canonical forms for complex matrix congruence and＊congruence，Linear Algebra Appl．， 416 （2006） 1010－1032．

