

Palindromic pencils, orbits, and the solution of the equation $XA + AX^T = 0$

Fernando de Terán

Departamento de Matemáticas Universidad Carlos III de Madrid (Spain)

MOPNET4, Manchester 28 April 2011

Joint work with F. M. Dopico (UC3M-ICMAT)

Fernando de Terán (UC3M)

Palindromic pencils, orbits, and $XA + AX^T = 0$

MOPNET4 1 / 30

Outline

Motivation

- Palindromic pencils
- Orbits and the computation of canonical forms
- Congruence orbits

Solution of $XA + AX^T = 0$

- Dimension of the congruence orbits
- Generic canonical structure

Congruence and palindromic pencils

Given $A, B \in \mathbb{C}^{n \times n}$

 $A + \lambda B$: matrix pencil

Eigenstructure: Invariants under strict equivalence.

 $A' + \lambda B' = P(A + \lambda B)Q,$ P, Q nonsingular (strict equivalence) Canonical Form: **Kronecker Canonical Form**

Particular cases:

Generalized Eigenvalue Problem (eigenvalues and eigenvectors)

► $B = -I \longrightarrow A - \lambda I \Longrightarrow Q = P^{-1}$ (similarity, Jordan Canonical Form) Standard Eigenvalue Problem

 $A + \lambda A^T$: palindromic pencil

To preserve the structure: $P(A + \lambda A^T)P^T = (PA) + \lambda (PA)^T$ (congruence)

Palindromic pencils

Applications:

- Quadratic palindromic polynomials $\lambda^2 A + \lambda B + A^T$ (with $B^T = B$)
 - Rail traffic noise of high speed trains.
 - Surface Acoustic Waves (SAW) filters.
 - Discrete Optimal Control of higher order difference equations.
- Eigenstructure: comprises relevant (physical) information of the system.
- Palindromic **pencils**: useful in the numerical solution of eigenvalue problems of quadratic matrix polynomials (through linearizations).

Some interesting questions

Due to roundoff errors, uncertainty in the data, etc., usually we **do not** compute the **exact** canonical form.

- Which are the nearby canonical structures (JCF, KCF) to a given one?
- Which is the generic canonical structure?

Same question for matrices/matrix pencils in a particular subset (low-rank, palindromic, symmetric,...)

► The **theory of orbits** provides a theoretical framework.

 $A=J_3(0)\oplus J_2(0)$

10000 random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

 $A = J_3(0) \oplus J_2(0)$ 50000 (filtered) random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

 $A = J_3(0) \oplus J_2(0)$ 50000 (filtered) random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

 $A = J_3(0) \oplus J_2(0)$ 50000 (filtered) random perturbations with norm $\sim \sqrt{2^{-52}}$ (positive entries)

 $J_3(0) \oplus J_2(0)$ is in the **closure** of the **orbit** of $J_5(0)$

Congruence, equivalence and similarity. Orbits

Given $A, B \in \mathbb{C}^{n \times n}$ $\mathscr{O}(A) = \{PAP^T : P \text{ nonsingular}\}$ $\mathscr{O}_s(A) = \{PAP^{-1} : P \text{ nonsingular}\}$ $\mathscr{O}_e(A + \lambda B) = \{P(A + \lambda B)Q : P, Q \text{ nonsingular}\}$

Congruence orbit of *A* Similarity orbit of *A* Equivalency orbit of $A + \lambda B$

Similarity/equivalency orbits:

- Have been widely studied: Arnold (1971), Demmel-Edelman (1995), Edelman-Elmroth-Kågström (1997, 1999), Johansson (2006), ...
- Correspond to matrices with the same Jordan Canonical Form (JCF) / Pencils with the same Kronecker Canonical Form (KCF).
- The dimension of these manifolds gives us an idea of their "size".
- The description of the hierarchy between closures of different orbits allows to identify nearby Jordan/Kronecker structures and may be useful in the design and analysis of algorithms to compute the JCF/KCF.

Congruence orbits?

Codimension of the tangent space

$$\begin{array}{l} T_{\mathscr{O}(A)}(A) = \left\{ XA + AX^T : \ X \in \mathbb{C}^{n \times n} \right\} & \text{Tangent space of } \mathscr{O}(A) \text{ at } A \\ T_{\mathscr{O}_{\mathcal{S}}(A)}(A) = \left\{ XA - AX : \ X \in \mathbb{C}^{n \times n} \right\} & \text{Tangent space of } \mathscr{O}_{\mathcal{S}}(A) \text{ at } A \end{array}$$

Then:

(a) codim $\mathcal{O}(A) = \text{codim } T_{\mathcal{O}(A)}(A) = \text{dim}(\text{solution space of } XA + AX^T = 0)$

(b) codim $\mathcal{O}_{s}(A) = \text{codim } T_{\mathcal{O}_{s}(A)}(A) = \text{dim}(\text{solution space of } XA - AX = 0)$

Solution of XA - AX = 0: known since the 1950's (Gantmacher). Depends on the JCF of A.

Goal: Solve $XA + AX^T = 0$

(We are mainly interested in the **dimension** of the solution space, but we are able also to give the solution!)

Change of basis

Notation:
$$\mathscr{S}_{A} = \left\{ X \in \mathbb{C}^{n \times n} : XA + AX^{T} = 0 \right\}$$
 (solution space)

Set $B = PAP^T$ (*P* nonsingular) then $\mathscr{S}_A = P^{-1} \mathscr{S}_B P$

In particular: dim $\mathscr{S}_A = \dim \mathscr{S}_B$

Procedure to solve $XA + AX^T = 0$:

Set $C_A = PAP^T$, the canonical form of A (for congruence)

Solve
$$YC_A + C_A Y^T = 0$$

• Undo the change:
$$X = P^{-1}YP$$

The canonical form for congruence

Theorem (Canonical form for congruence [Horn & Sergeichuk, 2006])

Each matrix $A \in \mathbb{C}^{n \times n}$ is **congruent** to a direct sum (uniquely determined up to permutation) of blocks of types 0, I and II.

$$(Type \ 0) \quad J_{k}(0) = \begin{bmatrix} 0 & 1 & & \\ & \ddots & \ddots & \\ & & 0 & 1 \\ & & 0 & \end{bmatrix}_{k \times k}$$

$$(Type \ l) \quad \Gamma_{k} = \begin{bmatrix} 0 & & & & & \\ & & \ddots & & & \\ & & & & (-1)^{k} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ (Type \ ll) \quad H_{2k}(\mu) = \begin{bmatrix} 0 & l_{k} \\ J_{k}(\mu) & 0 \end{bmatrix}_{2k \times 2k}, \quad H_{2}(\mu) = \begin{bmatrix} 0 & 1 \\ \mu & 0 \end{bmatrix} \quad (0 \neq \mu \neq (-1)^{k+1})$$

Another canonical form for congruence: [Turnbull & Aitken, 1932], Six types of blocks

Fernando de Terán (UC3M)

Partition on canonical blocks

Set $C_A = D_1 \oplus \cdots \oplus D_s$, $D_i = J_k(0)$, Γ_k , or $H_{2k}(\mu)$ (Canonical form of A)

Partition
$$X = \begin{bmatrix} X_{11} & \dots & X_{1s} \\ \vdots & & \vdots \\ X_{s1} & \dots & X_{ss} \end{bmatrix}$$
 conformally with C_A .

Equating the (i,j) and (j,i) blocks of $XC_A + C_A X^T = 0$, we get:

•
$$i = j$$
: $X_{ii}D_i + D_iX_{ii}^T = 0$ \rightarrow codim D_i (codimension)
• $i \neq j$: $\begin{array}{c} (i,j) \quad X_{ij}D_j + D_i^TX_{ji}^T = 0\\ (j,i) \quad X_{ji}D_i + D_j^TX_{ij}^T = 0 \end{array}$ \rightarrow inter (D_i, D_j) (interaction)

Then:

dim
$$\mathscr{S}_A$$
 = codim $\mathscr{O}(A) = \sum_i \operatorname{codim} D_i + \sum_{i,j} \operatorname{inter} (D_i, D_j)$

Partition on canonical blocks (ctd)

The problem reduces to solve:

(a) $XD + DX^T = 0$

(b)
$$\begin{array}{c} XD_1 + D_2 Y^T = 0 \\ YD_1 + D_2 X^T = 0 \end{array}$$

With $D, D_1, D_2 = J_k(0)$ (type 0), Γ_k (type I), or $H_{2k}(\mu)$ (type II)

Codimension of individual blocks

Туре	Equation	Codimension
0	$XJ_k(0)+J_k(0)X^T=0$	$c_0 = \lceil \frac{k}{2} \rceil$
I	$X\Gamma_k + \Gamma_k X^T = 0$	$c_1 = \lfloor \frac{k}{2} \rfloor$
II	$XH_{2k}(\mu)+H_{2k}(\mu)X^{T}=0$	$c_2 = \begin{cases} k, & \text{if } \mu \neq (-1)^k \\ k + 2\lceil \frac{k}{2} \rceil, & \text{if } \mu = (-1)^k \end{cases}$

- Explicit solution for types 0, I available.
- ► Algorithm for computing solution for type II.
- Solution of $X\Gamma_k + \Gamma_k X^T = 0$ (type I):

$$X = \begin{bmatrix} 0 & & 0 \\ x_1 & 0 & & \\ 0 & x_1 & 0 & & \\ x_2 & 0 & x_1 & 0 & & \\ 0 & x_2 & 0 & x_1 & 0 & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ x_{\frac{k}{2}} & \dots & 0 & x_{2} & 0 & x_{1} & 0 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & & 0 & & 0 \\ x_1 & 0 & & & \\ 0 & x_1 & 0 & & \\ x_2 & 0 & x_1 & 0 & & \\ 0 & x_2 & 0 & x_1 & 0 & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \\ x_{\frac{k-1}{2}} & \dots & 0 & x_{2} & 0 & x_{1} & 0 \\ 0 & x_{\frac{k-1}{2}} & \dots & 0 & x_{2} & 0 & x_{1} & 0 \\ \end{bmatrix}$$
(k even)

Interaction between canonical blocks

Blocks of the same type:

Туре	Equation	Interaction	
0-0	$\begin{array}{c} XJ_k(0) + J_\ell(0) Y^T = 0 \\ YJ_\ell(0) + J_k(0) X^T = 0 \end{array} (k \ge \ell) \end{array}$	<i>i</i> ₀₀ = {	$ \begin{cases} \ell, & \ell \text{ even} \\ k, & \ell \text{ odd and } k \neq \ell \\ k+1, \ell \text{ odd and } k = \ell \end{cases} $
1-1	$X\Gamma_k + \Gamma_\ell Y^T = 0 Y\Gamma_\ell + \Gamma_k X^T = 0$	$i_{11} = \left\{$	0, k, ℓ different parity min $\{k, \ell\}$, k, ℓ same parity
-	$egin{aligned} &XH_{2k}(\mu)+H_{2\ell}(\widetilde{\mu})Y^{T}=0\ &YH_{2\ell}(\widetilde{\mu})+H_{2k}(\mu)X^{T}=0 \end{aligned}$	i ₂₂ = {	$ \begin{array}{l} 4\min\{k,\ell\}, \ \mu = \widetilde{\mu} = \pm 1 \\ 2\min\{k,\ell\}, \ \mu = \widetilde{\mu} \neq \pm 1 \\ 2\min\{k,\ell\}, \ \mu \neq \widetilde{\mu}, \ \mu \widetilde{\mu} = 1 \\ 0, \qquad \mu \neq \widetilde{\mu}, \ \mu \widetilde{\mu} \neq 1 \end{array} $

M∷ CIII

Interaction between canonical blocks (ctd)

Blocks of different type:

Туре	Equation	Interaction
0-1	$XJ_k(0) + \Gamma_\ell Y^T = 0$ $Y\Gamma_\ell + J_k(0)X^T = 0$	$i_{01} = \begin{cases} 0, & k \text{ even} \\ \ell, & k \text{ odd} \end{cases}$
0-11	$XJ_k(0) + H_{2\ell}(\mu)Y^T = 0$ $YH_{2\ell}(\mu) + J_k(0)X^T = 0$	$i_{02} = \left\{ egin{array}{cc} 0, & k ext{ even} \ 2\ell, & k ext{ odd} \end{array} ight.$
1-11	$X\Gamma_k + H_{2\ell}(\mu)Y^T = 0$ $YH_{2\ell}(\mu) + \Gamma_k X^T = 0$	$i_{12} = \begin{cases} 2\min\{k,\ell\}, & \mu = (-1)^{k+1} \\ 0, & \mu \neq (-1)^{k+1} \end{cases}$

Explicit solution available (for all cases).

The codimension formula

Theorem

Let $A \in \mathbb{C}^{n \times n}$ be a matrix with canonical form for congruence

$$C_{A} = J_{p_{1}}(0) \oplus J_{p_{2}}(0) \oplus \cdots \oplus J_{p_{a}}(0)$$

$$\oplus \Gamma_{q_{1}} \oplus \Gamma_{q_{2}} \oplus \cdots \oplus \Gamma_{q_{b}}$$

$$\oplus H_{2r_{1}}(\mu_{1}) \oplus H_{2r_{2}}(\mu_{2}) \oplus \cdots \oplus H_{2r_{c}}(\mu_{c})$$

Then the codimension of the orbit of *A* for the action of congruence, i.e., the dimension of the solution space of $XA + AX^T = 0$, depends only on C_A . It can be computed as the sum

$$c_{\text{Total}} = c_0 + c_1 + c_2 + i_{00} + i_{11} + i_{22} + i_{01} + i_{02} + i_{12}$$
.

Application: Generic canonical form for congruence

Generic = codimension zero

Theorem

The minimal codimension for a congruence orbit in $\mathbb{C}^{n \times n}$ is $\lfloor n/2 \rfloor$.

No generic canonical form for congruence!!

Similarity orbits (JCF): There is no generic JCF (with fixed eigenvalues)

► The **generic** Jordan structure is $J_1(\lambda_1) \oplus \cdots \oplus J_1(\lambda_n)$, with $\lambda_1, \ldots, \lambda_n$ different (not fixed)

Bundles

For similarity (Arnold, 1971):

Given $A \in \mathbb{C}^{n \times n}$, with

$$J_{\mathcal{A}}=J_{\lambda_1}\oplus\cdots\oplus J_{\lambda_d},$$

where

$$J_{\lambda_i} = J_{n_{i,1}}(\lambda_i) \oplus \cdots \oplus J_{n_{i,q_i}}(\lambda_i), \quad \text{for } i = 1, \dots, d,$$

the similarity bundle of A is

$$\mathscr{B}_{\mathcal{S}}(\mathcal{A}) = \bigcup_{\substack{\lambda_i' \in \mathbb{C}, i=1,...,d \\ \lambda_i'
eq \lambda_i'}} J_{\lambda_1'} \oplus \cdots \oplus J_{\lambda_d'}$$

Given *A* with $C_A = \bigoplus_{i=1}^{a} J_{p_i}(0) \oplus \bigoplus_{i=1}^{b} \Gamma_{q_i} \oplus \bigoplus_{i=1}^{t} \mathscr{H}(\mu_i), \ \mu_i \neq \mu_j, \ \mu_i \neq 1/\mu_j \text{ if } i \neq j,$ **Definition:** Congruence bundle of *A*:

$$\mathscr{B}(A) = \bigcup_{\substack{\mu_i' \in \mathbb{C}, i=1,...,t\\ \mu_i' \neq \mu_i', \mu_i' \neq j, i \neq j}} \mathscr{O}\left(\bigoplus_{i=1}^a J_{p_i}(0) \oplus \bigoplus_{i=1}^b \Gamma_{q_i} \oplus \bigoplus_{i=1}^t \mathscr{H}(\mu_i')\right).$$

(same structure as C_A but unfixed complex values μ in type II blocks)

The generic structure

 $\operatorname{codim}(\mathscr{B}(A)) = \operatorname{codim}(\mathscr{O}(A)) - t$. (*t*=number of different $\mu's$ appearing in type II blocks of C_A)

Theorem

The following bundles in $\mathbb{C}^{n \times n}$ have codimension zero

• *n* even $G_n = H_2(\mu_1) \oplus H_2(\mu_2) \oplus \dots \oplus H_2(\mu_{n/2}),$ with $\mu_i \neq \pm 1$, i = 1, ..., n/2, $\mu_i \neq \mu_j$ and $\mu_i \neq 1/\mu_j$ if $i \neq j$. • *n* odd $G_n = H_2(\mu_1) \oplus H_2(\mu_2) \oplus \dots \oplus H_2(\mu_{(n-1)/2}) \oplus \Gamma_1,$ with $\mu_i \neq \pm 1$, i = 1, ..., (n-1)/2, $\mu_i \neq \mu_i$ and $\mu_i \neq 1/\mu_i$ if $i \neq j$.

Then G_n is the **generic** canonical structure for congruence in $\mathbb{C}^{n \times n}$ (with unspecified values $\mu_1, \mu_2, \ldots, \mu_{\lfloor n/2 \rfloor}$).

Congruence vs equivalence

Congruence orbit of $A + \lambda A^T$: $\mathscr{O}(A + \lambda A^T) = \{P(A + \lambda A^T)P^T : \det P \neq 0\}$

A, B are congruent iff $A + \lambda A^T$, $B + \lambda B^T$ are congruent.

There is a bijection $\mathscr{O}(A) \longrightarrow \mathscr{O}(A + \lambda A^{T})$

The generic canonical form for congruence of $A + \lambda A^T$ is $G_n + \lambda G_n^T$

The KCF of $A + \lambda A^T$ is congruent to $A + \lambda A^T$

Canonical form for congruence of palindromics: KCF !!!

We can determine:

- dimension of $\mathcal{O}(A + \lambda A^T)$
- generic KCF of palindromic pencils

Generic KCF of palindromic pencils

Theorem

The generic **KCF** of palindromic pencils in $\mathbb{C}^{n \times n}$ is

If n is even:

 $(\lambda + \mu_1) \oplus (\lambda + 1/\mu_1) \oplus (\lambda + \mu_2) \oplus (\lambda + 1/\mu_2) \oplus \cdots \oplus (\lambda + \mu_{n/2}) \oplus (\lambda + 1/\mu_{n/2}),$

where $\mu_1, \ldots, \mu_{n/2}$ are unspecified complex numbers such that $0 \neq \mu_i \neq \pm 1, i = 1, \ldots, n/2, \mu_i \neq \mu_j$ and $\mu_i \neq 1/\mu_j$ if $i \neq j$.

If *n* is odd:

 $(\lambda + \mu_1) \oplus (\lambda + 1/\mu_1) \oplus (\lambda + \mu_2) \oplus (\lambda + 1/\mu_2) \oplus \cdots \oplus (\lambda + \mu_{(n-1)/2}) \oplus (\lambda + 1/\mu_{(n-1)/2}) \oplus (\lambda + 1)$

where $\mu_1, \ldots, \mu_{(n-1)/2}$ are unspecified complex numbers such that $0 \neq \mu_i \neq \pm 1, i = 1, \ldots, (n-1)/2, \mu_i \neq \mu_j$ and $\mu_i \neq 1/\mu_j$ if $i \neq j$.

Conclusions

- We have solved the matrix equation $XA + AX^T = 0$, for $A \in \mathbb{C}^{n \times n}$.
- As a consequence, we have computed the dimension of the congruence orbit of *A* in terms of the canonical form by congruence of *A*.
- We have determined the generic canonical structure for congruence in $\mathbb{C}^{n \times n}$ and also the generic KCF of palindromic pencils.

Related and future work

- Solve the matrix equation $XA + AX^* = 0$ (done, to appear in ELA).
- Other related equations: $XA + AX^T = C$, $XA + BX^T = C$, $A, B, C \in \mathbb{C}^{n \times n}$.
- Describe the hierarchy between closures of congruence orbits.

- V. I. ARNOLD, *On matrices depending on parameters*, Russian Math. Surveys, 26 (1971) 29–43.
- J. W. DEMMEL, A. EDELMAN, *The dimension of matrices (matrix pencils)* with given Jordan (Kronecker) canonical forms, Linear Algebra Appl., 230 (1995) 61–87.
- F. DE TERÁN, F. M. DOPICO, *The solution of the equation* $XA + AX^T = 0$ *and ts application to the theory of orbits*, Linear Algebra Appl., 434 (2011) 44–67.
- A. EDELMAN, E. ELMROTH, B. KÅGSTRÖM, A geometric approach to perturbation theory of matrices and matrix pencils. Part I: Versal deformations, SIAM J. Matrix Anal. Appl., 18 (1997) 653–692.
- A. EDELMAN, E. ELMROTH, B. KÅGSTRÖM, A geometric approach to perturbation theory of matrices and matrix pencils. Part II: A stratification-enhanced staircase algorithm, SIAM J. Matrix Anal. Appl., 20 (1999) 667–699.

R. A. HORN, V. V. SERGEICHUK, *Canonical forms for complex matrix congruence and * congruence*, Linear Algebra Appl., 416 (2006) 1010–1032.