Computation and Continuation of Eigenvalues for Parameterized Nonlinear Eigenvalue Problems

Daniel Kressner Seminar for applied mathematics ETH Zürich
kressner@math.ethz.ch
http://www.math.ethz.ch/~kressner

28.04.2011, MOPNET 4, Manchester

Based on joint work with
W.-J. Beyn (U Bielefeld), C. Effenberger, C. Engström (ETH Zurich)

Outline

- Motivating application:

Band structure calculation for photonic crystals

- Solution of rational eigenvalue problems by linearization
- Invariant pairs for nonlinear eigenvalue problems
- Detecting and augmenting non-simple invariant pairs

Motivating Application

Photonic crystals

- photonic crystal = lattice of mixed dielectric media
- control light by designing media that prohibits propagation of electromagnetic waves in certain frequency range
- complete photonic band gap = frequency range with no propagation of electromagnetic waves of any polarization travelling in any direction.
- Freely available online: Photonic Crystals: Molding the Flow of Light, 2nd ed., J. D. Joannopoulos et al., Princeton University Press, 2008.

2D periodic crystal

- material periodic along x - and y-direction; homogeneous along z-direction
- consider only electromagnetic waves with propagation in $x y$-plane

Mathematical model

Time-harmonic modes of electromagnetic wave (E, H) (E electric field, H magnetic field) decompose:

- transverse electric (TE) polarized modes ($E_{x}, E_{y}, 0,0,0, H_{z}$)
- transverse magnetic (TM) polarized modes ($0,0, E_{z}, H_{x}, H_{y}, 0$)

Macroscopic Maxwell equations \rightsquigarrow scalar equation for E_{z} of TM-mode at frequency ω :

$$
-\Delta E_{z}=\omega^{2} \epsilon(r, \omega) E_{z},
$$

where $r=(x, y)$ and ϵ denotes relative permittivity.
Material parameter $\epsilon(r, \omega)$ usually depends on the frequency of the time-harmonic wave!

Bloch solutions

By Bloch's theorem, E_{z} takes the form

$$
E_{z}(r)=e^{\mathrm{i} k \cdot r} u(r),
$$

where k is a wave vector \in Brillouin zone, $u(r)$ periodic on lattice

$$
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \epsilon(r, \omega) u(r)
$$

Finding band gaps

Goal: Find frequency ranges $\left[\omega_{\text {low }}, \omega_{\text {high }}\right]$ for which

$$
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \epsilon(r, \omega) u(r)
$$

has no solution.
Band structure diagram:

Finding band gaps

Goal: Find frequency ranges $\left[\omega_{\text {low }}, \omega_{\text {high }}\right]$ for which

$$
-(\nabla+\mathrm{i} k) \cdot(\nabla+\mathrm{i} k) u(r)=\omega^{2} \epsilon(r, \omega) u(r)
$$

has no solution.
Assuming two different materials, finite element discretization \rightsquigarrow

$$
\left(G(k)-\omega^{2} \epsilon_{1}(\omega) M_{1}-\omega^{2} \epsilon_{2}(\omega) M_{2}\right) x=0, \quad x \neq 0
$$

with M_{1}, M_{2} symm pos semidef, $G(k)$ Herm pos def.

- Eigenvalue problem nonlinear in eigenvalue parameter ω.
- Nonlinearity due to frequency-dependent permittivity $\epsilon_{j}(\omega)$.
- 2D problem on uncomplicated domains \rightsquigarrow excellent accuracy for $n=O\left(10^{4}\right)$ using high-order FEs.

Lorentz permittivity model

Example: $\epsilon_{1} \equiv 1$ and $\epsilon_{2}(\omega)$ models observed material properties.

- Popular: Lorentz permittivity model

$$
\epsilon_{2}(\omega)=\alpha+\sum_{k=1}^{K} \frac{\xi_{k}}{\eta_{k}-\omega^{2}-\mathbf{i} \gamma_{k} \omega},
$$

with parameters $\alpha, \xi_{k}, \eta_{k}, \gamma_{k}$ chosen to fit measured data.
Larger $K \rightsquigarrow$ higher accuracy.

- Results in rational eigenvalue problem

$$
G u-\omega^{2} M_{1} u-\omega^{2}\left(\alpha+\sum_{k=1}^{K} \frac{\xi_{k}}{\eta_{k}-\omega^{2}-\mathbf{i} \gamma_{k} \omega}\right) M_{2} u=0 . \quad \text { (REVP) }
$$

- Task: Compute small eigenvalues of (REVP) close to real axis.

Rational Eigenvalue Problems Solved by Linearization

Linearization via polynomial eigenvalue problems

- Naive approach to linearize rational eigenvalue problem: multiply by all denominators and linearize resulting polynomial eigenvalue problem.
Example (Kádár, Szabó, Volk, 2005):
- Lorentz model with $K=7$ terms for 66\% porous silicon
- intermediate polynomial EVP of degree 16
- discretization with FEs of order p

p	size of ... problem	
	original	linearized
2	288	4608
4	720	11520
6	1344	21504
8	2160	34560
12	4368	69888
18	9120	145920

\rightsquigarrow increased execution time and memory consumption

Direct linearization

Direct linearization suggested by [Su/Bai'11] in a nutshell:
(i) Rewrite rational matrix $T(\lambda)$ as

$$
T(\lambda)=P(\lambda)-\tilde{T}(\lambda) \quad P \text { polynomial } \quad \tilde{T} \text { proper rational }
$$

(ii) View \tilde{T} as transfer function matrix \rightsquigarrow realization

$$
\tilde{T}(\lambda)=C^{T}(A-\lambda E)^{-1} B
$$

$A, E \in \mathbb{R}^{d \times d}$ with $d=$ McMillan degree of $\tilde{T}(\lambda)$.
(iii) Schur complement trick \rightsquigarrow

$$
T(\lambda) \hat{=}\left[\begin{array}{cc}
P(\lambda) & C^{T} \\
B & A
\end{array}\right]-\lambda\left[\begin{array}{ll}
0 & 0 \\
0 & E
\end{array}\right]
$$

(iv) Linearize $P(\lambda)$ to obtain linear eigenvalue problem.

Comparison of the two linearizations

problem size		polynomial linearization		direct linearization	
p	\#dofs	size	comp. time (s)	size	comp. time (s)
2	288	1728	15.4	720	6.4
4	720	4320	46.1	1800	16.7
6	1344	8064	116	3360	46.7
8	2160	12960	258	5400	130
12	4368	26208	899	10920	430
18	9120	54720	3471	22800	1424

- Synthetic 2-term Lorentz model.
- Comp. time for 10 smallest eigenvalues of 30 eigenvalue problems (corresponding to 30 different wave vectors), using ARPACK applied to the linearization (shift-and-invert Arnoldi with zero shift).
- Difference becomes more pronounced for larger K and more materials.

Comparison of the two linearizations

problem size		polynomial linearization		direct linearization	
p	\#dofs	size	comp. time (s)	size	comp. time (s)
2	288	4608	-	1584	14.9
4	720	11520	-	3960	35.2
6	1344	21504	-	7392	89.2
8	2160	34560	-	11880	222
12	4368	69888	-	24024	817
18	9120	145920	-	50160	2081

- 7-term Lorentz model for porous silicon
- Formulation of polynomial eigenvalue problem becomes too cumbersome and numerically problematic.

Invariant Pairs for Nonlinear Eigenvalue Problems

Continuation of several eigenvalues

- Idea: Avoid linearization and reuse+refine eigenvalues / eigenvectors obtained from previous wave vector [Spence/Poulton'05].
- Need to represent several eigenvalues / eigenvectors in a robust manner, insensitive to crossings among eigenvalues of interest.

Nonlinear eigenvalue problems

Consider nonlinear eigenvalue problem (NLEVP)

$$
\left(f_{1}(\lambda) A_{1}+f_{2}(\lambda) A_{2}+\cdots+f_{m}(\lambda) A_{m}\right) x=0, \quad x \neq 0
$$

with $A_{1}, \ldots, A_{m} \in \mathbb{C}^{n \times n}$, analytic functions $f_{1}, \ldots, f_{m}: \Omega \rightarrow \mathbb{C}$.

- In theory, any (finite-dimensional) nonlinear eigenvalue problem $T(\lambda)$ can be written in this form.
- In practice, m should be small: $m \ll n$. (excludes NLEVPs arising from Trefftz-type discretizations, boundary element methods)
- Alternative: contour integral formulation [Beyn'11].

Dealing with several eigenvalues

For simplicity, assume $m=2$.
Let λ_{1}, λ_{2} be eigenvalues with eigenvectors x_{1}, x_{2} :

$$
\begin{aligned}
& \left(f_{1}\left(\lambda_{1}\right) A_{1}+f_{2}\left(\lambda_{1}\right) A_{2}\right) x_{1}=0 \\
& \left(f_{1}\left(\lambda_{2}\right) A_{1}+f_{2}\left(\lambda_{2}\right) A_{2}\right) x_{2}=0
\end{aligned}
$$

Rearranging terms...

$$
\begin{aligned}
& A_{1} x_{1} f_{1}\left(\lambda_{1}\right)+A_{2} x_{1} f_{2}\left(\lambda_{1}\right)=0 \\
& A_{1} x_{2} f_{1}\left(\lambda_{2}\right)+A_{2} x_{2} f_{2}\left(\lambda_{2}\right)=0
\end{aligned}
$$

Merging both equations...

$$
A_{1}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f_{1}\left(\lambda_{1}\right) & 0 \\
0 & f_{1}\left(\lambda_{2}\right)
\end{array}\right]+A_{2}\left[x_{1}, x_{2}\right]\left[\begin{array}{cc}
f_{2}\left(\lambda_{1}\right) & 0 \\
0 & f_{2}\left(\lambda_{2}\right)
\end{array}\right]=0
$$

Set $X=\left[x_{1}, x_{2}\right], S=\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] \rightsquigarrow A_{1} X f_{1}(S)+A_{2} X f_{2}(S)=0$.

Invariant pairs

$(X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ is called an invariant pair if

$$
A_{1} X f_{1}(S)+A_{2} X f_{2}(S)+\cdots+A_{m} X f_{m}(S)=0
$$

Remarks:

- For linear eigenvalue problems: $A_{1} X-X S=0 \rightsquigarrow \operatorname{span}(X)$ is invariant subspace belonging to $\wedge(S)$.
- If S in Jordan canonical form \rightsquigarrow concept of Jordan pairs discussed in classical literature on polynomial/nonlinear eigenvalue problems [Gohberg/Lancaster/Rodman'82, Mennicken/Möller'03].
- Numerical aspects for general S discussed in [Beyn/Thümmler'08] for quadratic EVPs with invertible A_{1}.
- Extended to general polynomial EVPs in [Betcke/K.'10] and to nonlinear EVPs in [K.'09].

Avoiding degeneracies

Require extra conditions on invariant pairs to avoid degenerate situations, such as $X=0$.

$$
\text { Is rank }(X)=k \text { a reasonable condition? }
$$

Example [Dennis/Traub/Weber'76]:

$$
\left[\begin{array}{cc}
0 & 12 \\
-2 & 14
\end{array}\right]+\lambda\left[\begin{array}{cc}
-1 & -6 \\
2 & -9
\end{array}\right]+\lambda^{2}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

The eigenvalues 3 and 4 share the same eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
No!

Minimal invariant pairs

Invariant pair $(X, S) \in \mathbb{C}^{n \times k} \times \mathbb{C}^{k \times k}$ is called minimal (of index ℓ) if

$$
V_{\ell}(X, S):=\left[\begin{array}{c}
X \\
X S \\
\vdots \\
X S^{\ell-1}
\end{array}\right]
$$

has full column rank.
For previous example:

$$
X=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad S=\left[\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right]
$$

Then

$$
V_{1}(X, S)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \quad V_{2}(X, S)=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
3 & 4 \\
3 & 4
\end{array}\right]
$$

$V_{2}(X, S)$ has full column rank $\rightsquigarrow(X, S)$ is minimal.

Minimal invariant pairs

Fundamental properties (polynomial: [Beyn/Thümmler’08],
[Betcke/K.'09]; nonlinear [K.'09]):

- For pairwise distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ with eigenvectors x_{1}, \ldots, x_{k},

$$
(X, S)=\left(\left[x_{1}, \ldots, x_{m}\right], \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right)
$$

is minimal invariant.

- (X, S) minimal invariant $\rightsquigarrow\left(X P, P^{-1} S P\right)$ minimal invariant.
- (X, S) minimal invariant \rightsquigarrow eigenvalues of S are eigenvalues of NLEVP.
- It is always possible to choose $\ell \leq k$.
- Nonminimal pairs (X, S) can be reduced: \exists minimal invariant pair $(\widetilde{X}, \widetilde{S})$ s.t. $\operatorname{span}(\widetilde{X})=\operatorname{span}(X)$ and $\Lambda(\widetilde{S})=\Lambda(S)$.
Remark: Structure of $V_{\ell}(X, S)$ closely related to structures appearing in Krylov subspace methods for solving polynomial eigenvalue problems [Z. Bai and Y. Su. SOAR. SIMAX, 2005].

Newton method for invariant pairs

To develop Newton method for computing/continuing, need operator equations of which (X, S) is a regular value.

$$
\begin{equation*}
\mathbb{T}(X, S)=0 \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
\mathbb{T}: \mathbb{C}^{n \times k} \times \mathbb{C}_{\Omega}^{k \times k} & \rightarrow \mathbb{C}^{n \times k} \\
(X, S) & \mapsto X A_{1} f_{1}(S)+\cdots+X A_{m} f_{m}(S),
\end{aligned}
$$

(1) clearly not sufficient to characterize (X, S).

Normalization condition: Choose $W^{H}=V_{\ell}(X, S)^{\dagger} \rightsquigarrow$

$$
\begin{align*}
& \mathbb{V}(X, S)=0 \tag{2}\\
& \mathbb{V}: \mathbb{C}^{n \times k} \times \mathbb{C}_{\Omega}^{k \times k} \rightarrow \mathbb{C}^{k \times k} \\
&(X, S) \mapsto W^{H} V_{\ell}(X, S)-I_{k} .
\end{align*}
$$

Linearizing \mathbb{T} and \mathbb{V}

Fréchet derivatives of \mathbb{T} and \mathbb{V} at (X, S) :

$$
\begin{aligned}
& \mathbb{D T}:(\triangle X, \triangle S) \mapsto \mathbb{T}(\triangle X, S)+\sum_{j=1}^{m} A_{j} X\left[\mathbb{D} f_{j}(S)\right](\triangle S) \\
& \mathbb{D V}:(\triangle X, \triangle S)
\end{aligned} \quad W_{0}^{H} \triangle X+\sum_{j=1}^{\ell-1} W_{j}^{H}\left(\triangle X S^{j}+X \mathbb{D} S^{j}(\triangle S)\right) .
$$

Note that the Fréchet derivative of f_{j} at S can be computed using [Mathias'96, Higham'08]

$$
f_{j}\left(\left[\begin{array}{cc}
S & \triangle S \\
0 & S
\end{array}\right]\right)=\left[\begin{array}{cc}
f_{j}(S) & {\left[\mathbb{D} f_{j}(S)\right](\triangle S)} \\
0 & f_{j}(S)
\end{array}\right]
$$

Is $\mathbb{L}=(\mathbb{D} \mathbb{T}, \mathbb{D V})$ invertible at a minimal invariant pair (X, S) ?

Theorem (K.'09)

Let (X, S) be minimal invariant. The "Jacobian" \mathbb{L} of (\mathbb{T}, \mathbb{V}) at (X, S) is invertible if and only if (X, S) is simple.

Remarks:

1. (X, S) is called simple if the algebraic multiplicities of S match those of the NLEVP.
2. Theorem implies local quadratic convergence of Newton iteration applied to $(\mathbb{T}(X, S), \mathbb{V}(X, S))=(0,0)$.

Newton method for computing invariant pairs

Input: Initial pair (X_{0}, S_{0}).
Output: Approximate solution (X_{p+1}, S_{p+1}).
1: $p \leftarrow 0, W \leftarrow V_{l}\left(X_{0}, S_{0}\right)$
2: repeat
3: \quad Res $\leftarrow \mathbb{T}\left(X_{p}, S_{p}\right)$
4: \quad Solve linear matrix equation $\mathbb{I}_{\rho}(\triangle X, \triangle S)=($ Res, 0$)$.
5: $\quad \widetilde{X}_{p+1} \leftarrow X_{p}-\Delta X, \quad \widetilde{S}_{p+1} \leftarrow S_{p}-\Delta S$
6: \quad Compute compact QR decomposition $V_{l}\left(X_{\rho}, S_{\rho}\right)=W R$.
7: $\quad X_{p+1} \leftarrow \widetilde{X}_{p} R^{-1}, \quad S_{p+1} \leftarrow R \widetilde{S}_{p+1} R^{-1}$
8: until convergence

Remarks:

- If no good initial guess available, use smarter algorithm to create one.
- Add simple line search to enhance global convergence properties.
- Step 4 is very expensive, $\mathcal{O}\left(k^{3}(n+k)^{3}\right)$ flops to solve linear system! After a Schur decomposition of S_{p}, block lower triangular structure of $\mathbb{L}_{p}(\triangle X, \triangle S) \rightsquigarrow \mathcal{O}\left(k(n+k)^{3}\right)$ flops.

Electronic band structure calculcation

Trace 10 smallest frequencies for 75 equally distributed points on boundary of the Brillouin zone:

\# Newton iterations

The computed invariant pair for one wave vector is used to initialize the Newton method for the next wave vector.

Non-Simple Invariant Pairs

Non-simple invariant pairs

Simple invariant pairs contain all copies of multiple eigenvalues.

- In a parameter-dependent nonlinear eigenvalue problem $T(\lambda, s)$, non-simple invariant pairs occur upon eigenvalue collisions.

Generic situation for nonsymmetric nonlinear eigenvalue problems:

- Eigenvalue collisions take place on the real axis.
- Typically, the colliding eigenvalues are simple, forming a double, real eigenvalue upon collision.
- After the collision, the eigenvalues move out into the complex plane.

Turning points

Theorem (informal) [Beyn/Effenberger/K.'11]
A generic eigenvalue collision corresponds to a turning point in the solution branch.
Proof based on results for linear case [Beyn/Kleß/Thümmler'01], [Bindel/Demmel/Friedman'08].

The parameterization of the solution branch by s breaks down near a turning point.

Pseudo-arclength continuation

We employ a standard pseudo-arclength continuation method.

- predictor-corrector method
- first-order predictor
- Newton-based corrector
- step length control

Re-parameterization of solution branch

$$
(X, \Lambda, s)=(X(t), \Lambda(t), s(t))
$$

where t approximates the arclength of the branch.

Reliable detection of turning points.

Augmenting a non-simple invariant pair

Theorem [Beyn/Effenberger/K.'11]
Let $\left(X_{0}, \Lambda_{0}\right)$ be a minimal invariant pair corresponding to a turning point at parameter value s_{0}. Then,

- the null space of $\mathrm{D}_{(X, \Lambda)} \mathrm{F}\left(X_{0}, \Lambda_{0}, s_{0}\right)$ is one-dimensional,
- every basis ($\triangle X_{0}, \triangle \Lambda_{0}$) of the null space has the form

$$
\triangle X_{0}=x v^{\top}, \quad \triangle \Lambda_{0}=u v^{\top}, \quad v^{\top} v=1
$$

- the extended matrices

$$
\hat{X}_{0}=\left[\begin{array}{ll}
X_{0} & x
\end{array}\right], \quad \hat{\Lambda}_{0}=\left[\begin{array}{cc}
\Lambda_{0} & u \\
0 & v^{\top} \Lambda_{0} v
\end{array}\right]
$$

constitute a simple invariant pair at parameter value s_{0}.

$$
\triangle \Lambda_{0} \stackrel{\text { SVD }}{=} U \Sigma V^{\top} \quad \Longrightarrow \quad u:=u_{1} \sigma_{1}, v:=v_{1}
$$

Academic example

Delay differential equation (Jarlebring, 2008; Wu, 1996)

$$
\begin{equation*}
\dot{v}(t)=A_{0} v(t)+A_{1} v(t-\tau) \tag{DDE}
\end{equation*}
$$

with $x_{i}=\frac{i}{n+1} \pi$ and

$$
A_{0}=\left(\frac{n+1}{\pi}\right)^{2}\left[\begin{array}{ccc}
-2 & 1 & \\
1 & \ddots & 1 \\
& 1 & -2
\end{array}\right]+20 I_{n}, \quad A_{1}=\operatorname{diag}_{i=1, \ldots, n}\left[x_{i}\left(1-\mathrm{e}^{x_{i}-\pi}\right)-4.1\right]
$$

Delay eigenvalue problem
Stability analysis of (DDE) requires a few eigenvalues of

$$
\begin{equation*}
\left(-\lambda I+A_{0}+\mathrm{e}^{-\tau \lambda} A_{1}\right) x=0 \tag{DEVP}
\end{equation*}
$$

with largest real part.

Solution via continuation

For $\tau=0$ (no time delay):

- (DEVP) is a symmetric, linear eigenvalue problem.
- easy to solve
- only real eigenvalues

For $\tau>0$:

- Eigenvalues can be obtained by continuation.
- τ plays role of parameter s
- Some eigenvalues collide and form complex conjugate pairs.

Results

Conclusion

Summary:

- frequency-dependent material parameters lead to nonlinear eigenvalue problems
- solution of rational eigenvalue problems by linearization
- invariant pairs offer robust representation of several eigenvalues and eigenvectors
- continuation method based on invariant pairs

Future Work:

- large-scale implementation
- structured problems \rightsquigarrow different generic situations
- use of unit cell eigenfunctions in generalized FEM for wave propagation in photonic crystals

