The University of Nottingham

Symmetry-Preserving StructurePreserving Equivalences for the Quadratic Eigenvalue Problem
.. 2 open problems.
S. D. Garvey

Open Problems session, MOPNET IV, April 28, 2011

A first System.

$$
Q_{1}(\alpha, \beta):=\alpha^{2} M_{1}+\alpha \beta D_{1}+\beta^{2} K_{1}
$$

System matrices $\left\{K_{1}, D_{1}, M_{1}\right\}$ are real and $(n \times n)$
No assumption that either K_{1} or M_{1} invertible but we do demand that [$K_{1} D_{1} M_{1}$] full rank.

> Homogeneous coordinates approach [1] allows eigenvalues to be considered to be $\lambda:=\alpha / \beta$.

[^0]A second System.

$$
Q_{2}(\alpha, \beta):=\alpha^{2} M_{2}+\alpha \beta D_{2}+\beta^{2} K_{2}
$$

System matrices $\left\{K_{2}, D_{2}, M_{2}\right\}$ are real and $(n \times n)$
We outline the conditions that $\left\{K_{1}, D_{1}, M_{1}\right\}$ and $\left\{K_{2}, D_{2}, M_{2}\right\}$ are isospectral (share the same Jordan form).

Quantities of double dimension.

Underlined matrices, \underline{A}, are $(2 n \times 2 n)$

Underlined "vectors", \underline{v}, are $(2 n \times 2)$

Define L.A.M.s

$$
\begin{aligned}
& \underline{M_{1}}:=\left[\begin{array}{cc}
0 & K_{1} \\
K_{1} & D_{1}
\end{array}\right], \underline{D_{1}}:=\left[\begin{array}{cc}
K_{1} & 0 \\
0 & -M_{1}
\end{array}\right], \quad \underline{K_{1}}:=\left[\begin{array}{cc}
-D_{1} & -M_{1} \\
-M_{1} & 0
\end{array}\right] \\
& \underline{M_{2}}:=\left[\begin{array}{cc}
0 & K_{2} \\
K_{2} & D_{2}
\end{array}\right], \underline{D_{2}}:=\left[\begin{array}{cc}
K_{2} & 0 \\
0 & -M_{2}
\end{array}\right], \quad \underline{K_{2}}:=\left[\begin{array}{cc}
-D_{2} & -M_{2} \\
-M_{2} & 0
\end{array}\right]
\end{aligned}
$$

$¥$ Mackey, D. S.; Mackey, N.; Mehl, C; Mehrmann, V. 'Vector Spaces of Linearizations for Matrix Polynomials’ SIAM J. of Matrix Analysis \& AppIns, 2006, 28(4), pp971-1004

Isospectral Systems

Systems $\left\{K_{1}, D_{1}, M_{1}\right\}$ and $\left\{K_{2}, D_{2}, M_{2}\right\}$ are isospectral (share the Jordan form) if and only if there exist invertible matrices $\underline{T_{L}}{ }^{T}, \underline{T_{R}}$ such that:

$$
\begin{aligned}
& \underline{T_{L}^{T}} \underline{M_{1}} \underline{T_{R}}=\underline{M_{2}} \\
& \underline{T_{L}^{T}} \underline{D_{1}} \underline{T_{R}}=\underline{D_{2}} \\
& \underline{T_{L}^{T}} \underline{K_{1}} \underline{T_{R}}=\underline{K_{2}}
\end{aligned}
$$

Parameterising using K_{1}, D_{1}, M_{1}

Matrices $\underline{T_{L}}{ }^{T}, \underline{T_{R}}$ describing the SPE have the form

$$
\begin{aligned}
& \underline{T_{R}}=\left[\begin{array}{cc}
\left(F_{R}-\frac{1}{2} G_{R} D_{1}\right) & \left(-G_{R} M_{1}\right) \\
\left(G_{R} K_{1}\right) & \left(F_{R}+\frac{1}{2} G_{R} D_{1}\right)
\end{array}\right]^{-1} \\
& \underline{T_{L}}=\left[\begin{array}{cc}
\left(F_{L}-\frac{1}{2} G_{L} D_{1}^{T}\right) & \left(-G_{L} M_{1}^{T}\right) \\
\left(G_{L} K_{1}^{T}\right) & \left(F_{L}+\frac{1}{2} G_{L} D_{1}^{T}\right)
\end{array}\right]^{-1}
\end{aligned}
$$

where $\left\{F_{L}, F_{R}, G_{L}, G_{R}\right\}$ are real $(n \times n)$ parameter matrices obeying:

$$
F_{R} G_{L}{ }^{T}+G_{R} F_{L}{ }^{T}=0
$$

Parameterising using K_{2}, D_{2}, M_{2}

Matrices $\underline{T_{L}}{ }^{T}, T_{R}$ describing the SPE have the form

$$
\begin{aligned}
& \underline{T_{R}}=\left[\begin{array}{cc}
\left(\tilde{F}_{R}-\frac{1}{2} \tilde{G}_{F} D_{2}\right) & \left(-\tilde{G}_{R} M_{2}\right) \\
\left(\tilde{G}_{R} K_{2}\right)^{2} & \left(\tilde{F}_{R}+\frac{1}{2} \widetilde{G}_{R} D_{2}\right)
\end{array}\right] \\
& \underline{T_{L}}=\left[\begin{array}{cc}
\left(\tilde{F}_{L}-\frac{1}{2} \tilde{G}_{L} D_{2}^{T}\right) & \left(-\tilde{G}_{L} M_{2}^{T}\right) \\
\left(\tilde{G}_{L} K_{2}^{T}\right)^{T} & \left(\tilde{F}_{L}+\frac{1}{2} \tilde{G}_{L} D_{2}^{T}\right)
\end{array}\right]
\end{aligned}
$$

where $\left\{\tilde{F}_{L}, \widetilde{F}_{R}, \tilde{G}_{L}, \tilde{G}_{R}\right\}$ are real $(n \times n)$ parameter matrices obeying: $\tilde{F}_{R} \tilde{G}_{L}{ }^{T}+\tilde{G}_{R} \widetilde{F}_{L}{ }^{T}=0$

Open Problem: Explain why $\tilde{G}_{L} \equiv G_{R}$ and $\tilde{G}_{R} \equiv G_{L}$?

All Symmetry Cases for the QEP!

Symmetry case:	Additional Constraints:	
$K_{1}=K_{1}{ }^{T}, \quad D_{1}=D_{1}{ }^{T}, \quad M_{1}=M_{1}{ }^{T}$.	$F_{L}=F_{R}, \quad G_{L}=G_{R}$	
$K_{1}=K_{1}{ }^{T}, \quad D_{1}=-D_{1}{ }^{T}, \quad M_{1}=M_{1}^{T}$.	$F_{L}=F_{R}, \quad G_{L}=-G_{R}$	
$K_{1}=-K_{1}{ }^{T}, \quad D_{1}=D_{1}{ }^{T}, \quad M_{1}=-M_{1}{ }^{T}$.	$F_{L}=F_{R}, \quad G_{L}=G_{R}$	
$K_{1}=-K_{1}{ }^{T}, \quad D_{1}=-D_{1}{ }^{T}, \quad M_{1}=-M_{1}{ }^{T}$	$F_{L}=F_{R}, \quad G_{L}=-G_{R}$	
$K_{1}=M_{1}$	$G_{L}=0, \quad G_{R}=0$	
$K_{1}=-M_{1}, \quad D_{1}=0$	$G_{L}=0, \quad G_{R}=0$	
$K_{1}=M_{1}{ }^{T}, \quad D_{1}=D_{1}{ }^{T}$	$F_{L}=F_{R}, \quad G_{L}=G_{R}$	
$K_{1}=-M_{1}{ }^{T}, \quad D_{1}=-D_{1}{ }^{T}$	$F_{L}=F_{R}, \quad G_{L}=-G_{R}$	

The QEP in Dilated Form.

Theorem: The following two statements are equivalent:
(1) $\quad\left(\alpha^{2} M_{1}+\alpha \beta D_{1}+\beta^{2} K_{1}\right) \nu=0$
(2) For some scalars $\{\mu, \delta, \kappa\}$ not all zero

$$
\begin{aligned}
& \left(\mu\left[\begin{array}{cc}
0 & K_{1} \\
K_{1} & D_{1}
\end{array}\right]+\delta\left[\begin{array}{cc}
K_{1} & 0 \\
0 & -M_{1}
\end{array}\right]+\kappa\left[\begin{array}{cc}
-D_{1} & -M_{1} \\
-M_{1} & 0
\end{array}\right]\right)\left[\begin{array}{l}
\alpha v \\
\beta v
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { and } \\
& \left(\mu \alpha^{2}+\delta \alpha \beta+\kappa \beta^{2}\right)=0
\end{aligned}
$$

The QEP in Dilated Form.

It follows (after a little more work) that if you can find any scalar triple $\{\mu, \delta, \kappa\}$ such that

$$
\left(\mu \underline{M_{1}}+\delta \underline{D_{1}}+\kappa \underline{K_{1}}\right) \underline{v}=0
$$

with $\operatorname{rank}(\underline{v})=2$, then $\{\mu, \delta, \kappa\}$ implicitly defines a pair of eigenvalues of the system and \underline{v} spans the subspace containing the corresponding two long eigenvectors.

The equation above is the dilated form of the QEP.

GEOMETRY evident in the QEP !

It is interesting that

$$
\begin{aligned}
& \left(\left[\begin{array}{cc}
0 & K_{1} \\
K_{1} & D_{1}
\end{array}\right] \times \mu+\left[\begin{array}{cc}
K_{1} & 0 \\
0 & -M_{1}
\end{array}\right] \times \delta+\left[\begin{array}{cc}
-D_{1} & -M_{1} \\
-M_{1} & 0
\end{array}\right] \times \kappa\right) \\
= & {\left[\begin{array}{ll}
\left(\delta K_{1}-\kappa D_{1}\right) & \left(\mu K_{1}-\kappa M_{1}\right) \\
\left(\mu K_{1}-\kappa M_{1}\right) & \left(\mu D_{1}-\delta M_{1}\right)
\end{array}\right] } \\
= & -\left(\left[\begin{array}{cc}
0 & \kappa \\
\kappa & \delta
\end{array}\right] \otimes M_{1}+\left[\begin{array}{cc}
\kappa & 0 \\
0 & -\mu
\end{array}\right] \otimes D_{1}+\left[\begin{array}{cc}
-\delta & -\mu \\
-\mu & 0
\end{array}\right] \otimes K_{1}\right)
\end{aligned}
$$

There are strong flavours of cross-product (exterior product) about this!
Open Problem: What significance does this have?

[^0]: [1] Higham NJ \& Tisseur F. 'More on pseudospectra for polynomial eigenvalue problems and applications in control theory'. Linear Algebra \& AppIns, 2001, 351-352(4), pp435-453

