Stratification of Full Rank Polynomial Matrices

Stefan Johanssonㄹ, Bo Kågström¹² and Paul Van Dooren ${ }^{2}$
 (ongoing work)

${ }^{1}$ Department of Computing Science, Umeå University, Sweden
${ }^{2}$ Department of Mathematical Engineering, Catholic University of Louvain, Belgium

A uniform platform with mass m and length 21 , supported in both ends by springs

The control parameter of the system is the force F applied at distance $\Delta /$ from the center of the platform

Consider dynamical systems described by sets of algebraic-differential equations:

$$
P_{d} X^{(d)}(t)+\cdots+P_{1} x^{(1)}(t)+P_{0} x(t)=f(t), \quad P_{i} \in \mathbb{C}^{m \times n}
$$

Taking the Laplace transform yields the algebraic equation

$$
P(s) \hat{x}(s)=\hat{f}(s) \quad \text { with } \quad P(s):=P_{d} s^{d}+\cdots+P_{1} s+P_{0}
$$

We study linearizations of $P(s)$ with full normal rank r ($r=m$ or $r=n$)

Goal:

Derive stratification rules for full normal rank polynomial matrices $P(s)$

The right linearization of a $m \times n$ polynomial matrix $P(s)$ has the form

$$
s B_{r}+A_{r}:=s\left[\begin{array}{llll}
I_{m} & & & \\
& \ddots & & \\
& & I_{m} & \\
& & & P_{d}
\end{array}\right]+\left[\begin{array}{cccc}
0 & & & P_{0} \\
-I_{m} & \ddots & & P_{1} \\
& \ddots & 0 & \vdots \\
& & -I_{m} & P_{d-1}
\end{array}\right]
$$

If P_{d} has full row rank m this is "equivalent" to :

$$
\mathbf{S}_{\mathrm{C}}(\lambda)=s\left[\begin{array}{ll}
I_{\text {md }} & 0
\end{array}\right]+\left[\begin{array}{ll}
A & B
\end{array}\right]
$$

associated with the matrix pair (A, B)

The left linearization of a $m \times n$ polynomial matrix $P(s)$ has the form

$$
s B_{l}+A_{l}:=s\left[\begin{array}{llll}
I_{n} & & & \\
& \ddots & & \\
& & I_{n} & \\
& & & P_{d}
\end{array}\right]+\left[\begin{array}{cccc}
0 & -I_{n} & & \\
& \ddots & \ddots & \\
& & 0 & -I_{n} \\
P_{0} & P_{1} & \ldots & P_{d-1}
\end{array}\right]
$$

If P_{d} has full column rank n this is "equivalent" to :

$$
\mathbf{S}_{\mathrm{C}}(\lambda)=s\left[\begin{array}{c}
I_{n d} \\
0
\end{array}\right]+\left[\begin{array}{l}
A \\
C
\end{array}\right]
$$

associated with the matrix pair (A, C)

For monic scalar polynomials $p(s)$ we retrieve the first and second companion forms

$$
s l_{d}+\left[\begin{array}{cccc}
0 & & & p_{0} \\
-1 & \ddots & & p_{1} \\
& \ddots & 0 & \vdots \\
& & -1 & p_{d-1}
\end{array}\right]
$$

and

$$
s l_{d}+\left[\begin{array}{cccc}
0 & -1 & & \\
& \ddots & \ddots & \\
& & 0 & -1 \\
p_{0} & p_{1} & \ldots & p_{d-1}
\end{array}\right]
$$

It is well known that the "structure" of the companion forms (i.e. its characteristic polynomial) is $p(s)$.

But is the "structure" of a general polynomial matrix $P(s)$ also that of its linearizations $s B_{l}+A_{l}$ and $s B_{r}+A_{r}$?

More importantly, can we study perturbations of $P(s)$ via (arbitrary) perturbations of $s B_{l}+A_{l}$ and $s B_{r}+A_{r}$?

We will see that we have to impose conditions for this !

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}} J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}} J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Singular part:

- $L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}-$ Right singular blocks
- $L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}$ - Left singular blocks

$$
L_{k}=\left[\begin{array}{cccc}
-\lambda & 1 & & \\
& \ddots & \ddots & \\
& & -\lambda & 1
\end{array}\right]
$$

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}, J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Singular part:

- $L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}$ - Right singular blocks $J_{k}\left(\mu_{i}\right)=$
- $L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}$ - Left singular blocks

Regular part:

- $J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right)$ - Each $J\left(\mu_{i}\right)$ is block-diagonal with Jordan blocks corresponding to the finite eigenvalue μ_{i}
- $N_{s_{1}}, \ldots, N_{S_{k}}$ - Jordan blocks corresponding to the infinite eigenvalue

Any $P(s)$ can be transformed to Smith canonical form using unimodular transformations $M_{l}(s)$ and $M_{r}(s)$:

$$
M_{l}(s) P(s) M_{r}(s)=\left[\begin{array}{cccc|c}
e_{1}(s) & 0 & \cdots & 0 & \\
0 & e_{2}(s) & \ddots & \vdots & O_{r, n-r} \\
\vdots & \ddots & \ddots & 0 & \\
0 & \ldots & 0 & e_{r}(s) & \\
\hline & O_{m-r, r} & & & O_{m-r, n-r}
\end{array}\right]
$$

where each $e_{j}(s)$ divides $e_{j+1}(s)$ for $j=1, \ldots, r-1$.
The invariant polynomials $e_{j}(s)$ define the elementary divisors $(s-\alpha)^{k_{j}}$ at a particular zero α of $e_{j}(s)$

The structural elements of $P(s)$ are :
Its invariant polynomials $e_{j}(s)$ and corresponding finite elementary divisors $(s-\alpha)^{k_{j}}$ at every zero α

The elementary divisors at ∞ (defined as the elementary divisors of $\mu^{d} P(1 / \mu)$ at $\mu=0$)

The minimal indices ϵ_{i} of the left null space (defined via $M_{l}(s)$)

The minimal indices η_{j} of the right null space (defined via $M_{r}(s)$)

Theorem

The linearization $s B_{r}+A_{r}$ shares the following structural elements with $P(s)$

Both have the same finite elementary divisors (and finite invariant factors)

Both have the same elementary divisors at ∞ (defined via $\mu^{d} P(1 / \mu)$ and $\left.\mu A_{r}+B_{r}\right)$

Both have the same right minimal indices (defined via the right null space)

Moreover, if $P(s)$ has normal rank m, then both have no left minimal indices (or left null space)

Theorem (dual)

The linearization $s B_{I}+A_{l}$ shares the following structural elements with $P(s)$

Both have the same finite elementary divisors (and finite invariant factors)

Both have the same elementary divisors at ∞ (defined via $\mu^{d} P(1 / \mu)$ and $\left.\mu A_{r}+B_{r}\right)$

Both have the same left minimal indices (defined via the left null space)

Moreover, if $P(s)$ has normal rank n, then both have no right minimal indices (or right null space)

But are these relations still holding when we allow arbitrary perturbations of the (structured pencils) $s B_{r}+A_{r}$ and $s B_{l}+A_{l}$?

Clearly not as the following simple example shows :
A companion matrix

$$
s l_{d}+\left[\begin{array}{cccc}
0 & & & p_{0} \\
-1 & \ddots & & p_{1} \\
& \ddots & 0 & \vdots \\
& & -1 & p_{d-1}
\end{array}\right]
$$

can not have multiple Jordan blocks at one eigenvalue $s=\alpha$ but a general matrix can of course.

Theorem

An $m \times n$ polynomial matrix $P(s)$ of degree d and normal rank $r=m$ has m finite elementary divisors
 elementary divisors $1 / s^{k_{j, \infty}}$, and $n-m$ right minimal indices $\epsilon_{j}, j=1, \ldots, n-m$ (some of these indices can be trivially zero) satisfying

$$
\sum_{j}^{m} \sum_{i} k_{j, i}+\sum_{j}^{m} k_{j, \infty}+\sum_{j}^{n-m} \epsilon_{j}=d m
$$

All structures satisfying these constraints are possible for such a polynomial matrix.

If P_{d} has rank m, there are no infinite elementary divisors.

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}} J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}, J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Singular part:

- $L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}-$ Right singular blocks
- $L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}$ - Left singular blocks

$$
L_{k}=\left[\begin{array}{cccc}
-\lambda & 1 & & \\
& \ddots & \ddots & \\
& & -\lambda & 1
\end{array}\right]
$$

Any matrix pencil $s B+A$ or system pencil $\mathbf{S}(s)$ can be transformed into Kronecker canonical form (KCF) using equivalence transformations (U and V non-singular):
$U^{-1}(\mathbf{S}(s)) V=$ $\operatorname{diag}\left(L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}} J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right), N_{s_{1}}, \ldots, N_{s_{k}}, L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}\right)$

Singular part:

- $L_{\epsilon_{1}}, \ldots, L_{\epsilon_{p}}$ - Right singular blocks $J_{k}\left(\mu_{i}\right)=$
- $L_{\eta_{1}}^{T}, \ldots, L_{\eta_{q}}^{T}$ - Left singular blocks

Regular part:

- $J\left(\mu_{1}\right), \ldots, J\left(\mu_{t}\right)$ - Each $J\left(\mu_{i}\right)$ is block-diagonal with Jordan blocks corresponding to the finite eigenvalue μ_{i}
- $N_{s_{1}}, \ldots, N_{S_{k}}$ - Jordan blocks corresponding to the infinite eigenvalue
- Given a system pencil and its orbit: What other structures are found within its closure?

Stratification

The closure hierarchy of all possible orbits of Kronecker structures

We make use of:

- Graphs to illustrate stratifications
- Dominance orderings for integer partitions in proofs and derivations

An integer partition κ of an integer K is defined as $K=\left(\kappa_{1}, \kappa_{2}, \ldots\right)$ where $\kappa_{1} \geq \kappa_{2} \geq \cdots \geq 0$ and $K=K_{1}+K_{2}+\ldots$.

- $\mathcal{R}=\left(r_{0}, r_{1}, \ldots\right)$ where $r_{i}=\# L_{k}$ blocks with $k \geq i$
- $\mathcal{L}=\left(I_{0}, I_{1}, \ldots\right)$ where $I_{i}=\# L_{k}^{T}$ blocks with $k \geq i$
- $\mathcal{J}_{\mu_{i}}=\left(j_{1}, j_{2}, \ldots\right)$ where $j_{i}=\# J_{k}\left(\mu_{i}\right)$ blocks with $k \geq i$. $\mathcal{J}_{\mu_{i}}$ is known as the Weyr characteristics of the finite eigenvalue μ_{i}
- $\mathcal{N}=\left(n_{1}, n_{2}, \ldots\right)$ where $n_{i}=\# N_{k}$ with $k \geq i . \mathcal{N}$ is known as the Weyr characteristics of the infinite eigenvalue

Minimum rightward coin move: rightward one column or downward one row (keep partition monotonic)

$$
\mathrm{O}_{\mathrm{O}}^{2} \mathrm{O} \mathrm{O}
$$

Minimum leftward coin move: leftward one column or upward one row (keep partition monotonic)

[Edelman, Elmroth \& Kågström; 1999]

- By making use of linearizations, the cover relations for polynomial matrices are derived from general matrix pencils $s H+G$ and matrix pairs (A, B) :
- The stratification rules for $P(s)$ with full normal rank from the rules for $\mathrm{sH}+G$
- The stratification rules for $P(s)$ with full normal rank and $r a n k P_{d}=m$ from the rules for (A, B)

Orbit covering relations for full normal rank $P(s)$

Theorem (Theorem 1)

Given the structure integer partitions \mathcal{R} and $\mathcal{J}_{\mu_{i}}$ of $s B_{r}+A_{r}$ associated with a full normal rank polynomial matrix $P(s)$, where $\mu_{i} \in \overline{\mathbb{C}}$, one of the following if-and-only-if rules finds $s \widetilde{B}_{r}+\widetilde{A}_{r}$ such that:
$\mathcal{O}\left(s B_{r}+A_{r}\right)$ covers $\mathcal{O}\left(s \widetilde{B}_{r}+\widetilde{A}_{r}\right) \quad \mathcal{O}\left(s B_{r}+A_{r}\right)$ is covered by
(1) Minimum rightward coin move in \mathcal{R}
(2) If the rightmost column in \mathcal{R} is one single coin, move that coin to a new rightmost column of some $\mathcal{J}_{\mu_{i}}$ (which may be empty initially)
(3) Minimum leftward coin move in any $\mathcal{J}_{\mu_{i}}$ as long as $j_{1}^{(i)}$ not $\mathcal{O}\left(s \widetilde{B}_{r}+\widetilde{A}_{r}\right)$
(1) Minimum leftward coin move in \mathcal{R}
(2) If the rightmost column in some $\mathcal{J} \mu_{i}$ consists of one coin only, move that coin to a new rightmost column in \mathcal{R}
(3) Minimum rightward coin move in any $\mathcal{J}_{\mu_{i}}$ exceed m
Rules 1 and 2: Coin moves that affect r_{0} are not allowed

Orbit covering relations for full normal rank $P(s)$

Theorem (Theorem 1)

Given the structure integer partitions \mathcal{R} and $\mathcal{J}_{\mu_{i}}$ of $s B_{r}+A_{r}$ associated with a full normal rank polynomial matrix $P(s)$, where $\mu_{i} \in \overline{\mathbb{C}}$, one of the following if-and-only-if rules finds $s \widetilde{B}_{r}+\widetilde{A}_{r}$ such that:
$\mathcal{O}\left(s B_{r}+A_{r}\right)$ covers $\mathcal{O}\left(s \widetilde{B}_{r}+\widetilde{A}_{r}\right) \quad \mathcal{O}\left(s B_{r}+A_{r}\right)$ is covered by
(1) Minimum rightward coin move in \mathcal{R}
(2) If the rightmost column in \mathcal{R} is one single coin, move that coin to a new rightmost column of some $\mathcal{J}_{\mu_{i}}$ (which may be empty initially)
(3) Minimum leftward coin move in any $\mathcal{J}_{\mu_{i}}$ as long as $j_{1}^{(i)}$ not $\mathcal{O}\left(s \widetilde{B}_{r}+\widetilde{A}_{r}\right)$
(1) Minimum leftward coin move in \mathcal{R}
(2) If the rightmost column in some $\mathcal{J} \mu_{i}$ consists of one coin only, move that coin to a new rightmost column in \mathcal{R}
(3) Minimum rightward coin move in any $\mathcal{J}_{\mu_{i}}$ exceed m
Rules 1 and 2: Coin moves that affect r_{0} are not allowed

Theorem (Theorem 2)

Given the structure integer partitions \mathcal{R} and $\mathcal{J}_{\mu_{i}}$ of $s B_{r}+A_{r}$ associated with a full normal rank polynomial matrix $P(s)$, where $\mu_{i} \in \overline{\mathbb{C}}$, one of the following if-and-only-if rules finds $s \widetilde{B}_{r}+\widetilde{A}_{r}$ such that:
$\mathcal{B}\left(s B_{r}+A_{r}\right)$ covers $\mathcal{B}\left(s \widetilde{B}_{r}+\widetilde{A}_{r}\right) \quad \mathcal{B}\left(s B_{r}+A_{r}\right)$ is covered by
(1) Minimum rightward coin move in \mathcal{R}
(2) If the rightmost column in \mathcal{R} is one single coin, move that coin to the first column of $\mathcal{J}_{\mu_{i}}$ for a new eigenvalue μ_{i}
(3) Minimum leftward coin move in any $\mathcal{J}_{\mu_{i}}$ as long as $j_{1}^{(i)}$ not exceed m
4. Let any pair of eigenvalues coalesce, i.e., take the union of their sets of coins
(3) Minimum rightward coin move in any $\mathcal{J}_{\mu_{i}}$
(4) For any $\mathcal{J}_{\mu_{i}}$, divide the set of coins into two new sets so that their union is $\mathcal{J} \mu_{i}$
(1) Minimum leftward coin move in \mathcal{R}
(2) If some $\mathcal{J}_{\mu_{i}}$ consists of one coin only, move that coin to a new rightmost column in \mathcal{R}

- Minimum rightward coin

Rules 1 and 2: Coin moves that affect r_{0} are not allowed

A uniform platform with mass m and length 21 , supported in both ends by springs

The control parameter of the system is the force F applied at distance $\Delta /$ from the center of the platform

The equations of motion linearized near the equilibrium:
$m \ddot{z}+\left(c_{1}+c_{2}\right) \dot{z}+\left(k_{1}+k_{2}\right) z+I\left(c_{1}-c_{2}\right) \dot{\varphi}+I\left(k_{1}-k_{2}\right) \varphi=F$
$J \ddot{\varphi}+I\left(c_{1}-c_{2}\right) \dot{z}+I\left(k_{1}-k_{2}\right) z+I^{2}\left(c_{1}+c_{2}\right) \dot{\varphi}+I^{2}\left(k_{1}+k_{2}\right) \varphi=-\Delta I F$
where $J=m l^{2} / 3$ is the moment of inertia.

Equations of motion written on the form $M \ddot{x}+C \dot{x}+K x=E u:$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
m & 0 \\
0 & J
\end{array}\right] \ddot{x}+\left[\begin{array}{cc}
c_{1}+c_{2} & I\left(c_{1}-c_{2}\right) \\
I\left(c_{1}-c_{2}\right) & R^{2}\left(c_{1}+c_{2}\right)
\end{array}\right] \dot{x}+} \\
& {\left[\begin{array}{cc}
k_{1}+k_{2} & I\left(k_{1}-k_{2}\right) \\
I\left(k_{1}-k_{2}\right) & R^{2}\left(k_{1}+k_{2}\right)
\end{array}\right] x=\left[\begin{array}{c}
1 \\
-\Delta I
\end{array}\right] F}
\end{aligned}
$$

The right linearization:

$$
\left[s I_{4}+A \mid B\right]=\left[\begin{array}{cc|c}
s /_{2} & M^{-1} K & M^{-1} E \\
-I_{2} & s /_{2}+M^{-1} C & 0
\end{array}\right]
$$

Uniform platform - Illustrating the bundle stratification

The software tool
StratiGraph is used for computing and visualizing the stratification
[Elmroth, P. Johansson \& Kågström; 2001]
[P. Johansson; PhD Thesis 2006]

Uniform platform - Illustrating the bundle stratification

Most generic

Each node represents a bundle (or orbit) of a canonical structure

Least generic $4 \times 5 P(s)$

Least generic $4 \times 5(A, B)$

Uniform platform - Illustrating the bundle stratification

Each edge represents a cover relation

It is always possible to go from any canonical structure (node) to another higher up in the graph by a small perturbation

Uniform platform - Illustrating the bundle stratification

Only possible bundles for the uniform platform

Only possible bundles for a full normal rank 4×5 polynomial matrix with $\operatorname{det}\left(P_{d}\right) \neq 0$

Uniform platform - Illustrating the bundle stratification

Stefan Johansson et al.

Uniform platform - Illustrating the bundle stratification

Stefan Johansson et al.

Stefan Johansson et al.

Uniform platform - Illustrating the bundle stratification

Stefan Johansson et al.

Stefan Johansson et al.

Stefan Johansson et al.

> Deformations of $P(s)$ can be treated via the linearization $s B_{r}+A_{r}$ provided

Deformations of $P(s)$ can be treated via the linearization $s B_{r}+A_{r}$ provided
(1) $P(s)$ has full normal rank m

Deformations of $P(s)$ can be treated via the linearization $s B_{r}+A_{r}$ provided
(1) $P(s)$ has full normal rank m
(2) deformations respect the conditions that

- only m elementary divisors are possible
- there is no left null space structure

Deformations of $P(s)$ can be treated via the linearization $s B_{r}+A_{r}$ provided
(1) $P(s)$ has full normal rank m
(2) deformations respect the conditions that

- only m elementary divisors are possible
- there is no left null space structure

This yields simple conditions on allowable structures in the stratigraph

Deformations of $P(s)$ can be treated via the linearization $s B_{r}+A_{r}$ provided
(1) $P(s)$ has full normal rank m
(2) deformations respect the conditions that

- only m elementary divisors are possible
- there is no left null space structure

This yields simple conditions on allowable structures in the stratigraph

It allows to understand deformations of the controllability structure of polynomial models.

