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Can you control this platform ?

ko

Fard

A uniform platform with mass m and length 2/,
supported in both ends by springs

The control parameter of the system is the force F
applied at distance Al from the center of the platform

Stefan Johansson et al.



Polynomial matrices

Consider dynamical systems described by sets of
algebraic-differential equations:

Pax(D(t) + « -+ + Pux(t) + Pox(t) = f(t), PjeC™"

Taking the Laplace transform yields the algebraic
equation

We study linearizations of P(s) with full normal rank r
(r=morr=n)

Derive stratification rules for full normal rank
polynomial matrices P(s)
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Linearization

The right linearization of a m x n polynomial matrix P(s)
has the form

Im 0 Po

SB,+ A, =5 + Tl P1

Im 0 :
Pd ~Im  Pg-1

If P4 has full row rank m this is "equivalent"” to :
Sc(A)=s[lma 0]+ [A B]

associated with the matrix pair (A, B)
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Linearization

The left linearization of a m x n polynomial matrix P(s)
has the form

In O _In
SB)+A :=s + .

In O _In
P4 Po P1 ... Pg-1

If Pg has full column rank n this is "equivalent" to :

won-<[5] 4

associated with the matrix pair (A, C)
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Linearization

For monic scalar polynomials p(s) we retrieve the first
and second companion forms

0 Po
Slqg + - pll
' 0 :
-1 pga
and
0 -1

sly +
? 0o -1
Po P1 ... Pd-1
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Linearization

It is well known that the "structure" of the companion
forms (i.e. its characteristic polynomial) is p(s).

But is the "structure" of a general polynomial matrix
P(s) also that of its linearizations sB;+ A; and sB, + A, ?

More importantly, can we study perturbations of P(s)
via (arbitrary) perturbations of sB;+ A, and sBr + A, ?

We will see that we have to impose conditions for this !
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Kronecker canonical form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, “eay Lep,_/(u]_), PP ,_/(Nt), N511 seay Nsk, Lgl' seay qu)

Stefan Johansson et al.



Kronecker canonical form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, f ey Lep,_/(ul), PP ,_/(Nt), N511 seay Nsk, Lgl' seay qu)

Singular part: -2 1
® Le,, ..., Le, - Right singular blocks Lk = '
oL, .. LT

m n

- Left singular blocks
q
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Kronecker canonical form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, P Lep,_/(u]_), P ,_/(Ht), N511 fay Nsk, Lgl' P qu)

di=A 1
Singular part:
® Lc,, ..., Le, - Right singular blocks Jk(Hi) =
1
T T _ i
] Lm' e an Left singular blocks =X

Regular part:

@ J(u1), ..., J(ut) — Each J(u;) is block-diagonal with jordan blocks
corresponding to the finite eigenvalue y;

@ Ns,,...,Ns, —Jordan blocks corresponding to the infinite
eigenvalue
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Smith canonical form

Any P(s) can be transformed to Smith canonical form
using unimodular transformations M;(s) and M,(s) :

[ e1(s) 0 0 i
0 62(5) .'- : Or’n_r
MiSPSMA(s) = | ¢ B er?s)
Om-r,r Om-r,n-r

where each gj(s) divides ej;1(s) forj=1,...,r—1.

The invariant polynomials ej(s) define the elementary
divisors (s — )X at a particular zero a of g(s)
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Smith canonical form

The structural elements of P(s) are :

Its invariant polynomials €j(s) and corresponding finite
elementary divisors (s — a)X at every zero a

The elementary divisors at o
(defined as the elementary divisors of u?P(1/u) at u = 0)

The minimal indices €; of the left null space
(defined via M(s))

The minimal indices n; of the right null space
(defined via M(s))
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How are these related ?

Theorem

The linearization sB, + A, shares the following structural
elements with P(s)

Both have the same finite elementary divisors (and
finite invariant factors)

Both have the same elementary divisors at oo (defined
via u9P(1/u) and pA, + B;)

Both have the same right minimal indices (defined via
the right null space)

Moreover, if P(s) has normal rank m, then both have no
left minimal indices (or left null space)
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How are these related ?

Theorem (dual)

The linearization sB; + A; shares the following structural
elements with P(s)

Both have the same finite elementary divisors (and
finite invariant factors)

Both have the same elementary divisors at oo (defined
via u9P(1/u) and pA, + B;)

Both have the same left minimal indices (defined via
the left null space)

Moreover, if P(s) has normal rank n, then both have no
right minimal indices (or right null space)
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Perturbations and structure

But are these relations still holding when we allow
arbitrary perturbations of the (structured pencils)
SBr+Arand sB;+A;?

Clearly not as the following simple example shows :

A companion matrix

0 Po
Slg + p_l
0 :
-1 pga

can not have multiple Jordan blocks at one eigenvalue
s = a but a general matrix can of course.
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Possible structures for a polynomial matrix

An m x n polynomial matrix P(s) of degree d and normal
rank r = m has m finite elementary divisors

(s— )\,-)kfli,j =1,...,m for each zero A;, m infinite
elementary divisors 1/sk.=, and n — m right minimal
indices €j, j=1,...,n—m (some of these indices can be

trivially zero) satisfying

m

m n—m
I ITED W SR
Joi J J

All structures satisfying these constraints are possible
for such a polynomial matrix.

If P4 has rank m, there are no infinite elementary
divisors.
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Check this on the Kronecker form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, “eay Lep,_/(u]_), PP ,_/(Nt), N511 seay Nsk, Lgl' seay qu)
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Check this on the Kronecker form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, f ey Lep,_/(ul), PP ,_/(Nt), N511 seay Nsk, Lgl' seay qu)

Singular part: -2 1
@ Ley,..., Le, - Right singular blocks Lk =
o LT, ..., LT - Left singular blocks L
m Nq
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Check this on the Kronecker form

Any matrix pencil sB + A or system pencil S(s) can be
transformed into Kronecker canonical form (KCF) using
equivalence transformations (U and V non-singular):

U (S(s))V =
diag(Lel, P Lep,_/(u]_), P ,_/(Ht), N511 fay Nsk, Lgl' P qu)

di=A 1
Singular part:
® Lc,, ..., Le, - Right singular blocks Jk(Hi) =
1
T T _ i
] Lm' e an Left singular blocks =X

Regular part:

@ J(u1), ..., J(ut) — Each J(u;) is block-diagonal with jordan blocks
corresponding to the finite eigenvalue y;

@ Ns,,...,Ns, —Jordan blocks corresponding to the infinite
eigenvalue

Stefan Johansson et al.



Stratification of orbits

@ Given a system pencil and its orbit: What other
structures are found within its closure?

Stratification

The closure hierarchy of all possible orbits of Kronecker
structures

We make use of:
@ Graphs to illustrate stratifications

@ Dominance orderings for integer partitions in proofs
and derivations

Stefan Johansson et al.



Canonical structure indices

An integer partition k of an integer K is defined as
K =(K1,K2,...) where k3 > k2 >--->0 and
K=kK1+Ky+....

@ R =(ro,r1,...) where rj = #Ly blocks with k > i
@ L=(lp,]1,...) where [; = #LZ blocks with k > i

® Ju = (1,J2,...) where ji = #/x(u;) blocks with k > i.
Jy; is known as the Weyr characteristics of the
finite eigenvalue y;

@ N =(ny, ny,...) where nj = #Ng with kK > i. N'is
known as the Weyr characteristics of the infinite
eigenvalue

Stefan Johansson et al.



Integer partitions

Minimum rightward coin move: rightward one column
or downward one row (keep partition monotonic)

QO

Oo.ﬂ — 00

0000 0000e
Minimum leftward coin move: leftward one column or
upward one row (keep partition monotonic)

O = 0@
Q0@ — 00
0000 0000

[Edelman, Elmroth & Kagstrom; 1999]
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Covering relations for full normal rank P(s)

@ By making use of linearizations, the cover relations
for polynomial matrices are derived from general
matrix pencils sH + G and matrix pairs (A, B):

e The stratification rules for P(s) with full normal rank
from the rules for sH + G

e The stratification rules for P(s) with full normal rank
and rankPq = m from the rules for (A, B)

Stefan Johansson et al.



Orbit covering relations for full normal rank P(s)

Theorem (Theorem 1)

Given the structure integer partitions R and [J; of sBr + Ar
associated with a full normal rank polynomial matrix P(s),

where p; € C, one of the following if-and-only-if rules finds
sBr + A, such that:

O(sBr +A;) covers O(sB, +A;)  O(sBr+A,) is covered by
@ Minimum rightward coin O(sBr +Ar)
move in R @ Minimum leftward coin move

@ If the rightmost column in R in R
is one single coin, move that @ If the rightmost column in

coin to a new rightmost some [J,; consists of one

column of some 7, (which coin only, move that coin to

may be empty initially) a new rightmost column in R
© Minimum leftward coin move @ Minimum rightward coin

in any Jy, as long as j(l') not move in any Jy;

exceed m

Rules 1 and 2: Coin moves that affect ro are not allowed

Stefan Johansson et al.
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Bundle covering relations for full normal rank P(s)

Theorem (Theorem 2)
Given the structure integer partitions R and J,; of sSBr 4+ Ar
associated with a full normal rank polynomial matrix P(s), where

uj € C, one of the following if-and-only-if rules finds sE‘r +Z\r such
that:

B(sBr +Ay) covers B(sBr +A;)  B(sBr+A/) is covered by

@ Minimum rightward coin B(sBr +Ar)
move in R © Minimum leftward coin move

@ Ifthe rightmost column in R in R
is one single coin, move that @ If some 7, consists of one

coin to the first column of coin only, move that coin to

Jy; for a new eigenvalue yj a new rightmost column in R
© Minimum leftward coin move @ Minimum rightward coin

in any J,; as long as j(l') not move in any Jy;

exceed m © ror any g, divide the set of
@ Let any pair of eigenvalues coins into two new sets so

coalesce, i.e., take the union that their union is J;

of their sets of coins
Rules 1 and 2: Coin moves that affect ro are not allowed

]
Stefan Johansson et al.




Example - Uniform platform

ko

Fard

A uniform platform with mass m and length 2/,
supported in both ends by springs

The control parameter of the system is the force F
applied at distance Al from the center of the platform
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Uniform platform - Equations of motion

The equations of motion linearized near the
equilibrium:

mz+(c1+¢C2)z+ (k1 +k)z+1(c1 —c2)p +1(ky —kz)p =F
J§+1(c1 — c2)z+ (k1 —k2)z+ I(c1 + C2)@ + (k1 + k2)p = —AIF

where | = ml?/3 is the moment of inertia.
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Uniform platform — Right linearization

Equations of motion written on the form
Mx + Cx + Kx = Eu:

5 7 GlS) maa]x
[k1+k2 Iz(kl—kz)} _[ 1 }F
(k1 —k2) 1°(k1+k2) —Al

The right linearization:

I:S/4—|—AB]|:SI2 M-1K M—IE}

-l sl,+M-IC| 0O
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Uniform platform - lllustrating the bundle stratification

o
gy

N The software tool

A StratiGraph is used for

-4 L M) 9 96) | (LT Computing and

-5 ek imonu)] (e =) Visualizing the

-6 moummn  Stratification

7 may=mn)  [Elmroth, P. Johansson &

-8 Il P | Kégstrf)m; 2001]

-9 [P. Johansson; PhD Thesis
-10 2006]

-1 (Lo 27,0)] [z

-12

-13

-19
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Uniform platform - lllustrating the bundle stratification

-0 Ly

, Most generic )

-2

-3 L& Jy(ln) & (4a) & Jollig)

. 1 Each node represents a
— bundle (or orbit) of a

5 (Lphmemaie)] (Lo \Z=m)| canonical structure

-6

-7

-8

- Least generic 4 x 5 P(s) |

-10

-1

-12

13 Least generic 4 x5 (A, B) J

-19
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Uniform platform - lllustrating the bundle stratification

-0

-1

o Each edge represents a ’

, cover relation

-4 Ly® Jy(0) © Ty © Tu(ks) | (LuD el

& Ji(pa)

-5 (Lo () @ Ji(112) @ Jy(1s) | (L [Ze24m)]

-6 wzem |t is always possible to go

7 mapem)  from any canonical
structure (node) to

-8 (Lo Tosy) ©21(12) ) [ Tolt) © Ja(ba) & o) ] . .
another higher up in the

-9
graph by a small

-10 .

T perturbation

-1 (T2, (L2354 ] o’

-12

-13

-19
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Uniform platform - lllustrating the bundle stratification

-0
p Only possible bundles for
s the uniform platform ’
-3
-4 Lo ) he ) | (L0 Tl .
;H Only possible bundles for
5 Cehmeiione] (e Ll a full normal rank 4 x 5
-6 twmel  polynomial matrix with
-7 PERATAERAT) det(Pd) #0
-8 (2 Jolpn) ©201(0) ) (LD Jo(1) & 1) © (1))
9
-10
-1 () [z
-12
-13
-19
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Uniform platform - lllustrating the bundle stratification

Ly

Ls® Jq (1)
LD Jy (k1) © Jy(kz) A
Lo R: OOO
1(k2) ® J1(is) LD J(ia) J1(=0.02)® J_0.02: O
J1(=0.06)  J-0.06: O
1(u2) ® J1(1s) I Ly® Jo(g) © T (42) I
1(142) D J1(us) I Ly® J3(p) LsD 2J3 (1)




Uniform platform - lllustrating the bundle stratification

Ly

Ls® Jy(pa)
LD Jy () © (1) A
Lo R: OOO
1(12) D Ja(is) LD J5(ka) jl(—0-02)$ J-0.02: O
J1(=0.06)  J-0.06: O
1(u2) ® J1(1s) I Ly® Jo(g) © T (42) I
Rule 1: Minimum leftward coin J
move in R, without affecting r
E(Mz)@J1(#3)I Ly® J3(p) Li. o




Uniform platform - lllustrating the bundle stratification

L,
L3® R: O00@
Ls® Jy () J1(B) Jg: O
LoD Ji (1) D J1(k2) A ﬂ
Lo R: OOO
1(12) © Ja(uis) L® Jo(k) jl(—0,02)® J-002: @
J1(=0.06)  J-0.06: O
1(u2) ® J1(1s) I Ly® Jo(g) © T (42) I -~
Rule 2: If some [J; consists of one
: coin only, move that coin to a new
(1) ® Ju(ss) | Ly J () [z rightmost column in R




Uniform platform - lllustrating the bundle stratification

Ly
L3®
Ls® Jq (1) )1 (B)
LD Jy (k1) © Jy(kz) A
Lo R: OOO
1(12) D Ja(is) LD J5(ka) jl(—0-02)$ J-0.02: O
J1(=0.06)  J-0.06: O
1(u2) ® J1(1s) I Ly® Jo(g) © T (42) I -~
Rule 3: Minimum rightward coin J
move in any Jy;
E(Mz)@J1(#3)I Ly® J3(p) Li el




Uniform platform - lllustrating the bundle stratification

L,
L3®
Ls® Jq (1) )1 (B)
LD Jy () © (1) A
Lo R: OOO
1(42) © Ji(14s) LoD J5(1a) jl(—0-02)$ J-0.02: O
J1(=0.06)  J-0.06: O
1(u2) ® J1(1s) I Ly® Jo(g) © T (42) I -~
Rule 4: For any 7, divide the set
of coins into two new sets so that
1(K2) @ J1(1is) I L@ Js () @ their union is jlli




Uniform platform - lllustrating the bundle stratification

L4 (most generic) ]
\ L3®
1(B)
LD Jy (k1) © Jy(kz)
Lo®
(1) © Jy(ts) J1(=0.02)®
\ J1(~0.06)
1(u2) ® J1(1s) I Ly® Jo(t) © Jy(142) -~
| L2@)2(a)
1(142) D J1(us) I Ly® J3(p) LB 2J:(u (least generic)




Concluding remarks

Deformations of P(s) can be treated via the linearization
SBr + A, provided
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Concluding remarks

Deformations of P(s) can be treated via the linearization
SBr + A, provided

@ P(s) has full normal rank m

@ deformations respect the conditions that

e only m elementary divisors are possible
e there is no left null space structure

This yields simple conditions on allowable structures in
the stratigraph

It allows to understand deformations of the
controllability structure of polynomial models.

Stefan Johansson et al.



